Browse Topic: Communication protocols
ABSTRACT Modern ground vehicles rely on Controller Area Network (CAN) bus for communication between Electronic Control Units (ECUs) as a vital component to connect sensors and actuators together in a mission-critical distributed real-time vehicle control system. CAN is well-suited to this task and over the more than three decades since its inception it has become a proven and ubiquitous technology. But its age means that it was not designed for modern security threats of local and remote attacks and special techniques must be deployed to protect CAN. This paper provides a simple taxonomy of attacks on CAN, including how an attack accesses a CAN bus, and discusses four techniques used to defend against these attacks. Citation: K Tindell, “Defending In-vehicle CAN Buses From Attacks,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
ABSTRACT This paper describes the strategies and challenges involved to secure vehicles which use automotive Ethernet-based networks. Since the early 1990’s, the Controller Area Network (CAN) bus has been the standard in automotive networking systems. However, automotive Ethernet is becoming more common in recent years and is considered the future in automotive networking. This new technology has unique advantages over traditional CAN bus networks (e.g. higher bandwidth that can support hashing and encryption), and it still requires additional security measures such as monitoring and detection of anomalies to better secure the vehicle. Southwest Research Institute (SwRI) has previously developed a CAN-only intrusion detection system (IDS) which protects a vehicle’s CAN bus by actively monitoring traffic and flagging messages that are identified as anomalies. SwRI successfully implemented the ability to read, train, and detect on automotive Ethernet data in the IDS. The integration of
ABSTRACT Predictive analysis of vehicle electrical systems is achievable by combining condition based maintenance (CBM) techniques and testing for statistical significance (TSS). When paired together, these two fundamentally sound sciences quantify the state of health (SOH) for batteries, alternators, starters, and electrical systems. The use of a communication protocol such as SAE J1939 allows for scheduling maintenance based on condition and not a traditional time schedule
ABSTRACT This paper discusses how programs can leverage VICTORY architecture and specifications in order to achieve interoperability between electronics systems integrated with ground vehicles. It explains the contents of the VICTORY architecture, and the concept of compliance with the VICTORY system and component type specifications. It suggests a model for Army ground vehicle programs to utilize the VICTORY architecture and specifications, and a process called guided self-verification to test components for compliance with VICTORY specifications
ABSTRACT This paper focuses on the use of PKI within intra vehicle networks in compliance with the VICTORY specification. It will describe how the use of PKI within vehicle networks can leverage and integrate with the other PKI efforts across the Army to ensure a consistent and interoperable solution. It will also describe some of the challenges with implementing PKI as part of VICTORY and introduce possible solutions to address these challenges
ABSTRACT Curtiss-Wright has developed an open-standard approach for real time control over Ethernet, incorporating VICTORY .specifications. The paper presents definitions for Real Time, traditional perceptions of Ethernet for real-time usage, solutions for real time, a comparison to MIL-STD-1553, and suggestions for additional specifications to include in VICTORY
ABSTRACT Most of the current fielded Unmanned Ground Vehicle (UGV) functionality is dependent on the ability to drive the UGV using tele-operation technology. In addition, a large number of payloads require tele-operation to perform the mission function. Tele-operation technology is dependent on providing the operator streaming video, which is reliant on radio capabilities along with video format, resolution and compression routines. There have been Army efforts to perform real-time network modeling as part of Program Executive Office-Integration (PEO-I). These are primarily related to the passing of C2 tactical information from vehicle to vehicle. Ground Vehicle Robotics (GVR) has funded a ‘proof of principle’ effort that culminated in a demonstration performed in February, 2011. This effort modeled the impact of latency, packet/data loss and distorted signal on streaming video being sent from a virtual UGV to the Operator Control Unit (OCU). These distorted signals, cause loss of
ABSTRACT Building embedded systems is nothing like building desktop applications, as the hard real time requirements and relative harshness of the operating environment further constrains design choices to meet real world needs. Those familiar with mainframe or server farm hosted, high volume, wide bandwidth applications know similar harsh computing environments for application development. Given that more man-hours have been devoted to web application development over the past decade than have been devoted to embedded application development, there may be some valuable lessons to be learned that can be adopted by the embedded community for in-vehicle computing. The best web application development teams successfully apply the notions of Representational State Transformation (REST) and Resource Description Framework (RDF) to handle the increasing demands on their sites. We have taken these technologies and applied them to the smaller scale vehicle telematics platforms (PowerPC, ARM
ABSTRACT Over time, the National Institute of Standards and Technology (NIST) has refined the 4Dimension / Real-time Control System (4D/RCS) architecture for use in Unmanned Ground Vehicles (UGVs). This architecture, when applied to a fully autonomous vehicle designed for missions in urban environments, can greatly assist in the process of saving time and lives by creating a more intelligent vehicle that acts in a safer and more efficient manner. Southwest Research Institute (SwRI®) has undertaken the Southwest Safe Transport Initiative (SSTI) aimed at investigating the development and commercialization of vehicle autonomy as well as vehicle-based telemetry systems to improve active safety systems and autonomy. This paper will discuss the implementation of the 4D/RCS architecture to the SSTI autonomous vehicle, a 2006 Ford Explorer
ABSTRACT Materials and parts in complex systems, such as ground vehicles, can suffer from fatigue due to use, age and other stresses experienced during service. It is therefore essential to evaluate damage and predict the remaining life, reliability and safety of the vehicle. This paper describes the design of a wireless system for real-time monitoring of ground vehicles using Lamb waves. The proposed approach integrates sensor technology, signal processing and wireless networking into a single solution for online structural health monitoring (SHM). Lamb wave inspection is accomplished by inexpensive piezoelectric transducer patches (PZT), which are surface-mounted on the critical components of the vehicle without interrupting its operation. Lamb wave scattering from damage is obtained by comparing the recorded signal with the healthy sample and then damage-related features are identified using Probability Diagnostic Imaging (PDI). The problem of multiple Lamb wave modes is addressed
ABSTRACT The advent of both new bidirectional communications capabilities and increasing levels of automation to offload driver workload is requiring the vehicle’s architecture to evolve substantially. Military vehicles of the US Armed Forces are subject to even greater cybersecurity threats. New vehicle hardware includes many sensors, cameras and other systems to capture road, weather and traffic conditions. These systems will be communicating the data both internally and externally from the vehicle. In addition, the vehicles will send and receive data via multiple communications protocols. Each of these communication protocols have unique capabilities and inherent weaknesses with regard to secure communications. With this vehicle evolution, and with the pervasive cyber threats, the vehicle will have to be architected for holistic vehicle cyber situational awareness. The US Army and US Marine Corps need to be fully versed and trained to recognize threats and effectively deal with them
ABSTRACT This paper describes an approach to secure previously deployed vehicles by using bus monitoring and segmentation to remove malicious messages from the CAN bus. Modern automotive buses were designed for reliability rather than security. This lack of security means that any node on the bus can transmit a message to any other node and the receiver cannot verify the sender or that the message is unaltered. The intrusion detection and prevention system seeks to solve that issue by actively monitoring traffic on all connected busses, alerting an operator when an error is detected and removing flagged messages from the bus. The system will eventually be installed on an Interim Armored Vehicle (IAV) Stryker. Citation: R. Elder, C. Westrick, P. Moldenhauer, “Cyberattack Detection and Bus Segmentation in Ground Vehicles”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
ABSTRACT The Integrated Bridge currently fielded in the MRAP FoV is a capabilities insertion that provides data integration and visualization services to the vehicle crew. The Integrated Bridge combines displays, data buses, video sensors, switches/routers, radio interfaces, power management components, etc. to provide a unified view as well as a vehicle system control means to its crew members. The Integrated Bridge provides a flexible and modular architecture that can readily be adapted to the variety of Government Furnished Mission Equipment found in the MRAP FoV utilizing developmental hardware and software augmented with VICTORY technology to provide additional standardization and capabilities. This paper describes the continuation and capability extension of the VICTORY Radio Adapter, now called the Integrated Bridge GPIU (General Purpose Interface Unit). Details of the work leading to the fielding of a significantly enhanced version of the GPIU are discussed. GPIU software and
This SAE Standard specifies a message set, and its data frames and data elements, for use by applications that use vehicle-to-everything (V2X) communications systems
This article offers an algorithmic solution for moving a homogeneous platoon of position-controlled vehicles on a curved path with varying speeds and in the presence of communication losses and delays. This article considers a trajectory-based platooning with the leader–following communication topology, where the lead vehicle communicates its reference position and orientation to each autonomous follower vehicle. A follower vehicle stores this communicated information for a specific period as a virtual trail of the lead vehicle starting from the lead vehicle’s initial position and orientation. An algorithm uses this trail to find the follower vehicle’s reference position and orientation on that trail, such that the follower vehicle maintains a constant distance from the lead vehicle. The proposed algorithm helps form a platoon where each vehicle can traverse a curve with varying speeds. In contrast, in the existing literature, most of the solutions for vehicle platooning on a curved
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach of this algorithm is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm. This solution is either computed decentralized by various traffic participants, who share and
Items per page:
50
1 – 50 of 917