Browse Topic: Data acquisition and handling
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
The added connectivity and transmission of personal and payment information in electric vehicle (EV) charging technology creates larger attack surfaces and incentives for malicious hackers to act. As EV charging stations are a major and direct user interface in the charging infrastructure, ensuring cybersecurity of the personal and private data transmitted to and from chargers is a key component to the overall security. Researchers at Southwest Research Institute® (SwRI®) evaluated the security of direct current fast charging (DCFC) EV supply equipment (EVSE). Identified vulnerabilities included values such as the MAC addresses of both the EV and EVSE, either sent in plaintext or encrypted with a known algorithm. These values allowed for reprogramming of non-volatile memory of power-line communication (PLC) devices as well as the EV’s parameter information block (PIB). Discovering these values allowed the researchers to access the IPv6 layer on the connection between the EV and EVSE
The ISO TR 5469 Technical Report provides a framework to classify the AI/ML technology based on usage level and the properties and requirements to mitigate cyber and functional safety risks for the technology. This paper provides an overview of the approach used by ISO TR 5469 as well as an example of how one of the six ISO TR 5469 desirable properties (resilience to adversarial and intentional malicious input) can be analyzed for adversarial attacks. This paper will also show how a vehicle testbed can be used to provide a student with an AI model that can be used to simulate a non-targeted cyber security attack. The testbed can be used to simulate a poisoning attack where the student can manipulate a training data set to deceive the AI model during a simulated deployment.1 The University of Detroit Mercy (UDM) has developed Cyber-security Labs as a Service (CLaaS) to support teaching students how to understand and mitigate cyber security attacks. The UDM Vehicle Cyber Engineering (VCE
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
Artificial Intelligence has gained lot of traction and importance in the 21st century with use cases ranging from speech recognition, learning, planning, problem solving to search engines etc. Artificial Intelligence also has played a key role in the development of autonomous vehicles and robots ranging from perception, localization, decision to controls. Within the big AI umbrella there is machine learning which is all about using your computer to "learn" how to deal with problems without “programming". Deep learning is a branch of machine learning based on a set of algorithms that learn to represent the data directly from the input such as an image, text, Sound, etc. Within deep learning there are Convolutional Neural Networks and Recurrent Neural Networks (CNN/RNN). The study here used convolutional neural network approach to perform image/object recognition. Given that the objective of the autonomous or semi-autonomous vehicle is to promote safety and reduce number of accidents, it
Items per page:
50
1 – 50 of 5882