Browse Topic: Data exchange
Modern vehicles require sophisticated, secure communication systems to handle the growing complexity of automotive technology. As in-vehicle networks become more integrated with external wireless services, they face increasing cybersecurity vulnerabilities. This paper introduces a specialized Proxy based security architecture designed specifically for Internet Protocol (IP) based communication within vehicles. The framework utilizes proxy servers as security gatekeepers that mediate data exchanges between Electronic Control Units (ECUs) and outside networks. At its foundation, this architecture implements comprehensive traffic management capabilities including filtering, validation, and encryption to ensure only legitimate data traverses the vehicle's internal systems. By embedding proxies within the automotive middleware layer, the framework enables advanced protective measures such as intrusion detection systems, granular access controls, and protected over-the-air (OTA) update
NASA's Space Communications and Navigation (SCaN) Program and the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, have successfully tested wideband technology that allows spacecraft to communicate with both government and commercial networks for the first time. Launched July 23, 2025, aboard a SpaceX Falcon 9 rideshare mission, the Polylingual Experimental Terminal (PExT) is demonstrating multilingual wideband terminal technology. Hosted on a satellite from York Space Systems, PExT enhances a spacecraft's communications subsystem, enabling mission controllers to track and exchange data more efficiently across a broad range of networks and frequencies.
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
Since the advent of laser-based imaging techniques in the early 2000s, image acquisition has faced a fundamental challenge: the imaging speed and signal averaging was directly tied to the firing rate of the laser. Because a minimum of one laser pulse generates a single data point, traditional flashlamp-based lasers operating at relatively low repetition rates were constrained in their ability to capture fine spatial or temporal detail quickly. For applications requiring real-time analysis or high-resolution mapping, these limitations often reduced the practicality of otherwise powerful imaging technologies.
222
Items per page:
50
1 – 50 of 1378