Browse Topic: Data exchange
Gear shifting effort or force especially in manual transmission has been one of the key factors for subjective assessment in passenger vehicle segment. An optimum effort to shift into the gears creates a big difference in overall assessment of the vehicle. The gear shifting effort travels through the transmission shifting system that helps driver to shift between the different available gears as per the torque and speed demand. The shifting system is further divided into two sub-systems. 1. Peripheral system [Gear Shift Lever with knob and shift Cable Assembly] and Shift system inside the transmission [Shift Tower Assembly, Shift Forks, Hub and sleeve Assembly with keys, Gear Cones and Synchronizer Rings etc.] [1]. Both the systems have their own role in overall gear shifting effort. There has been work already done on evaluation of the transmission shifting system as whole for gear shifting effort with typical test bench layouts. Also, work has been on assessment of life of the
Today's battery management systems include cloud-based predictive analytics technologies. When the first data is sent to the cloud, battery digital twin models begin to run. This allows for the prediction of critical parameters such as state of charge (SOC), state of health (SOH), remaining useful life (RUL), and the possibility of thermal runaway events. The battery and the automobile are dynamic systems that must be monitored in real time. However, relying only on cloud-based computations adds significant latency to time-sensitive procedures such as thermal runaway monitoring. Because automobiles operate in various areas throughout the intended path of travel, internet connectivity varies, resulting in a delay in data delivery to the cloud. As a result, the inherent lag in data transfer between the cloud and cars challenges the present deployment of cloud-based real-time monitoring solutions. This study proposes applying a thermal runaway model on edge devices as a strategy to reduce
This document establishes minimum performance criteria at GCWR and calculation methodology to determine tow-vehicle TWR for passenger cars, multipurpose passenger vehicles, and trucks. This includes all vehicles up to 14000 pounds GVWR
ABSTRACT New generations of ground vehicles are required to perform tasks with an increased level of autonomy. Autonomous navigation and Artificial Intelligence on the edge are growing fields that require more sensors and more computational power to perform these missions. Furthermore, new sensors in the market produce better quality data at higher rates while new processors can increase substantially the computational power. Therefore, near-future ground vehicles will be equipped with large number of sensors that will produce data at rates that has not been seen before, while at the same time, data processing power will be significantly increased. This new scenario of advanced ground vehicles applications and increase in data amount and processing power, has brought new challenges with it: low determinism, excessive power needs, data losses and large response latency. In this article, a novel approach to on-board artificial intelligence (AI) is presented that is based on state-of-the
ABSTRACT This paper proposes that within the Land domain, there is not only a need to define an approach to open architectures, but also to mandate their use, in order to provide an agile framework for our fighting forces going forward. The paper sets out to explain such an approach; that taken by UK MOD and industry to produce the Generic Vehicle Architecture (GVA) defense standard. It will discuss how the GVA standard was formed, how it is currently being used and how it contributes to the wider MOD initiative for Open Systems Architecture for the Land domain. Finally the paper considers how the UK GVA relates to the US Victory standard and how interoperability may be achieved
ABSTRACT Addressing the well-established need for accurate cyber situational awareness on military vehicles and weapons platforms, we developed a well-tested, robust Intrusion Detection System – Fox Shield™ – currently rated TRL-8. The system is described and the lessons learned during its development are discussed. The basic principles of our anomaly detectors are outlined, and the details of our innovative warning-aggregating Fuser are presented. Many attack detection examples are presented, using a publicly available CANbus dataset. Citation: E.I. Novikova, V. Le, M. Weber, C. Andersen, S.N. Hamilton, “Best Practices For Ground Vehicle Intrusion Detection Systems”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2020
ABSTRACT The demand for mobile, secure communications has been and will continue to be a fundamental requirement for dismounted, urban and distributed operations in the field. It is imperative that soldiers on the front lines receive actionable information in a timely, secured and uninterrupted manner to increase force protection and effectiveness. In this paper, we describe a novel, high technical maturity (TRL 8+) communications link that offers the mounted and dismounted soldier secure, beyond line of sight, encrypted capability for weapons control and command & control of multiple platforms. An innovative spread spectrum waveform was designed from the ground up to deliver necessary functionality for reliable communications amongst multiple nodes with a data rate and range commensurate with battlefield scenarios
ABSTRACT Sharing platform health information in a disconnected environment requires the use of design strategies that consider the various systems that must participate in the creation, processing, and consuming of component health information. Using a common representation of a vehicle structure, platform health can be calculated, predicted, and communicated to end users at all levels of the enterprise. Implementing a Service Oriented Architecture (SOA) using a Grid Services approach enables a central application to manage and share data as needed; performing data integration, data cleansing, and data normalization. This design pattern facilitates holistic collaboration for platform health management on-platform, at-platform, within the tactical domain, at the national level, and at the OEM location
ABSTRACT To address the need for rapid capture of terrain profiles, and changes in terrain, researchers from Michigan Tech demonstrated a UAS collection system, during a live exercise, supported by the North Atlantic Treaty Organization’s (NATO) Science and Technology Organization (STO). The UAS collection system was deployed to provide high resolution topography (resolution less than 1 cm) with a terrain collection rate greater than 1 meter per second and results were processed within minutes. The resulting topography is of sufficient quality to demonstrate that the technique can be applied to update mobility models, as well as the detection of traverse by ground vehicles
ABSTRACT The modern battlefield demands a high degree of electronic capability for both on board processing and off board command and control. The trend for additional electronic systems on board combat vehicles continues to increase at a geometric rate. Battlefield demands and operational scenarios have resulted in a greater need for, advanced sensor technology, increased processing power, greater connectivity and systems interoperability (VICTORY). The integration of these advanced sensors with communications place a large bandwidth and power demand on the vehicle infrastructure. This paper will identify an advanced vehicle electronic architecture enabled by the latest high density processing technologies. An architecture has been developed and is under continued investigation at GDLS. The architecture includes deterministic network technology for spatial and temporal coherence of the sensor data. It provides a mission capability that is crew centric for any function at any crew
ABSTRACT All CBM+ solutions must establish a business case considering cost of implementation and sustainment of value with a quantifiable return on investment. The business case must be traceable to specific failure modes, associated failure effects, criticality, and risk. Risk is not limited to safety and operational risks. Predictive systems by definition return both true and false predictions representing operational and financial risk from high false positive rates. There is also risk of losing operator confidence in predictive systems when there is a high false positive rate. All of these risks must be quantified and considered in the design and development of CBM+ systems. Model based approaches are effective in accelerating development, defining advanced functional characteristics, and efficiently testing dynamic effects of complex systems. CBM+ maintenance strategies rely on performance of complex systems
Advances in IoT and electronic technology are enabling more personalized, continuous medical care. People with medical conditions that require a high degree of monitoring and continuous medication infusion can now take advantage of wearable medicine injection devices to treat their problems. Wireless communication allows medical personnel to monitor and adjust the amount and flow rate of an individual’s medication. The small size of the injectors enables the individual to be active and not be burdened or limited by a line-powered instrument (see Figure 1
With the advent of electric and hybrid drivetrain in the commercial vehicle industry, electrically driven reciprocating compressors have gained widespread prominence. This compressor provides compressed air for key vehicle systems such as brakes, suspension systems and other auxiliary applications. To be a market leader, such an E-compressor needs to meet a myriad of design requirements. This includes meeting the performance by supplying air at required pressure and flow rate, durability requirements and having a compact design while maintaining cost competitiveness. The reed valve in such a compressor is a vital component, whose design is critical to meet the aforementioned requirements. The reed valves design has several key parameters such as the stiffness, natural frequency, equivalent mass, and lift distance which must be optimized. This reed valve also needs to open and close rapidly in response to the compressor operating speed. Since it is the order of milliseconds, the valve
High productivity, low manufacturing costs, and high workpiece quality: these are the key factors that deliver sustainability, profitability, and competitive edge for industrial manufacturers. Reliable machine monitoring yields valuable real-time insights into ongoing processes; it is the basis for dependable, productive, and reproducible manufacturing and it helps machine operators to reach well-founded decisions on both short- and long-term improvements. This technology can even capture anomalies in highly dynamic machining processes, so users can respond instantly to ensure high productivity, decrease scrap rates, and prolong tool lifetimes. Thanks to all these advantages, continuous machine and process monitoring based on suitable sensor technology is a critical success factor in today’s manufacturing industry
The automotive industry faces unprecedented regulatory and societal pressure to adopt sustainable manufacturing practices. A recent survey by Accenture shows that more than 34 percent of today’s largest manufacturers have committed to zero-emission goals, yet 93 percent of them will miss their targets unless they double their emission reduction rates by 2030
Items per page:
50
1 – 50 of 1261