Browse Topic: Data exchange
This study introduces an innovative intelligent tire system capable of estimating the risk of total hydroplaning based on water pressure measurements within the tread grooves. Dynamic hydroplaning represents an important safety concern influenced by water depth, tread design, and vehicle longitudinal speed. Existing intelligent tire systems primarily assess hydroplaning risk using the water wedge effect, which occurs predominantly in deep water conditions. However, in shallow water, which is far more prevalent in real-world scenarios, the water wedge effect is absent at higher longitudinal speeds, which could make existing systems unable to reliably assess the total hydroplaning risk. Groove flow represents a key factor in hydroplaning dynamics, and it is governed by two mechanisms: water interception rate and water wedge pressure. In both the shallow water and deep water cases, the groove water flow will increase as a result of increasing the longitudinal speed of the vehicle for a
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Artificial intelligence (AI) systems promise transformative advancements, yet their growth has been limited by energy inefficiencies and bottlenecks in data transfer. Researchers at Columbia Engineering have unveiled a groundbreaking solution: a 3D photonic-electronic platform that achieves unprecedented energy efficiency and bandwidth density, paving the way for next-generation AI hardware.
This document defines a set of standard application layer interfaces called JAUS Manipulator Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Manipulator Services represent platform-independent capabilities commonly found across domains and types of unmanned systems. At present, twenty-five (25) services are defined in this document. These services are categorized as: Low Level Manipulator Control Services – The one service in this category allows for low-level command of the manipulator joint actuation efforts. This is an open-loop command that could be used in a simple tele-operation scenario. The service in this category is listed as follows: Primitive Manipulator Service Manipulator Sensor Services – These services, when queried, return instantaneous sensor data. Three services are defined that return respectively joint positions, joint velocities, and joint
Abstract Real-world driving data is an invaluable asset for several types of transportation research, including emissions estimation, vehicle control development, and public infrastructure planning. Traditional methods of real-world driving data collection use expensive GPS-based data logging equipment which provide advanced capabilities but may increase complexity, cost, and setup time. This paper focuses on using the Google Maps application available for smartphones due to the potential to scale-up real-world driving data logging. Samples of the potential data processing and information that can be gathered by such a logging methodology is presented. Specifically, two months of Google Maps driving data logged by a rural Michigan resident on their smartphone may provide insights on their driving range, duration, and geographic area of coverage (AOC) to guide them on future vehicle purchase decisions. Aggregating such statistics from crowd-sourcing real-world driving data via Google
Vehicle handling is significantly influenced by aerodynamic forces, which alter the normal load distribution across all four wheels, affecting vehicle stability. These forces, including lift, drag, and side forces, cause complex weight transfers and vary non-linearly with vehicle apparent velocity and orientation relative to wind direction. In this study, we simulate the vehicle traveling on a circular path with constant steering input, calculate the normal load on each tire using a weight transfer formula, calculate the effect of lift force on the vehicle on the front and rear, and calculate the vehicle dynamic relation at steady state because the frequency of change due to aerodynamic load is significantly less than that of the yaw rate response. The wind velocity vector is constant while the vehicle drives in a circle, so the apparent wind velocity relative to the car is cyclical. Our approach focuses on the interaction between two fundamental non-linearity’s: the nonlinear
The experimental investigation analyzed the performance of three machining conditions: dry machining, cryogenic machining, and cryogenic machining with minimum quantity lubrication (MQL) on tool wear, cutting forces, material removal rate, and microhardness. The outcome of this study presents valuable knowledge regarding optimizing conditions of turning operations for Ti6Al4V and understanding the machinability under cryogenic-based cooling strategies. Based on the experimentation, cryogenic machining with MQL is the most beneficial approach, as it reduces cutting force and flank wear with a required material removal rate. This strategy significantly enhances the machining efficiency and quality of Ti6Al4V under variable feed rates (0.05 mm/rev, 0.1 mm/rev, 0.15 mm/rev, 0.2 mm/rev, 0.25 mm/rev) where cutting velocity (120 m/min) and depth of cut (1 mm) are constant. The effects of the main cutting force, feed force, thrust force, material removal mechanism, flank wear, and
Laparoscopic surgery, a minimally invasive technique, has transformed surgical procedures in high-income countries. This method, which uses a laparoscope to perform surgeries through small incisions, offers significant benefits such as reduced infection rates and quicker recovery times. Despite its advantages, laparoscopic surgery remains largely inaccessible in low- and middle-income countries (LMICs) due to the high cost of equipment and other logistical challenges.
Bladder cancer has a cure rate of over 90 percent when detected early, but it has a high recurrence rate of 70 percent, necessitating continuous monitoring. Late detection often requires major surgeries such as bladder removal followed by artificial bladder implantation or the use of a urine pouch, significantly lowering the patient’s quality of life. However, existing urine test kits have low sensitivity, and cystoscopy, which involves inserting a catheter into the urethra for internal bladder examination, is both painful and burdensome. This highlights the urgent need for a simple yet accurate diagnostic technology for patients.
State-of-the-art fighter aircraft have a large number of support systems that operate in multiple areas. These systems are continuously optimized to achieve maximum efficiency and performance. Countless sensors monitor the environment and generate important data that helps to understand the areas overflown. But even in life-threatening combat situations, target acquisition systems support pilots and provide additional information that can be decisive with the help of augmented reality (AR) and artificial intelligence (AI). Military aviation is an arena with great potential for the use of technical aids that have transformed the original fighter aircraft into a technological masterpiece. In addition to the high level of complexity, the upcoming generation change from fifth- to sixth-generation fighter jets poses major challenges for component suppliers and accelerates the pace of technological competition. A military fighter jet is already an extremely demanding environment for
The objective of this research is to develop an optimization strategy for the Electrochemical Drilling process on Nimonic alloy material, taking into account various performance factors. The optimization strategy relies on the integration of the Taguchi method with Grey Relational Analysis (GRA). Nimonic is extensively utilized in aerospace, nuclear, and marine industries, specifically in situations that are prone to corrosion. The experimental trials are structured based on Taguchi's principle and encompass three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. This inquiry examines performance indicators like the rate of material removal, surface roughness, as well as geometric parameters such as overcut, shape, and orientation tolerance. Based on the investigation, it is determined that the feed rate is the primary factor that directly affects the intended performance criteria. In order to enhance the accuracy of predictions, multiple regression
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, regardless of their level of hardness. Due to the growing demand for superior products and the necessity for quick design changes, decision-making in the manufacturing industry has become increasingly intricate. The preliminary intention of this work is to concentrate on Cupronickel and suggest the creation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for the purpose of predictive modeling in ECM. The study employs a Taguchi-grey relational analysis (GRA) methodology to attain multi-objective optimization, with the target of maximizing material removal rate, minimizing surface roughness, and simultaneously achieving precise geometric tolerances. The ANFIS model suggested for Cupronickel provides more flexibility, efficiency, and accuracy compared to conventional approaches, allowing for enhanced monitoring and control in ECM operations
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study focuses on Cupronickel and suggests creating predictive models to anticipate performance metrics in ECM through regression analysis. The experiments are formulated based on Taguchi's principles, and a multiple regression model is utilized to deduce the mathematical equations. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. The proposed prediction technique for Cupronickel is more adaptable, efficient, and accurate in comparison to current models, providing enhanced monitoring capabilities. The updated models have
Autonomous vehicles utilise sensors, control systems and machine learning to independently navigate and operate through their surroundings, offering improved road safety, traffic management and enhanced mobility. This paper details the development, software architecture and simulation of control algorithms for key functionalities in a model that approaches Level 2 autonomy, utilising MATLAB Simulink and IPG CarMaker. The focus is on four critical areas: Autonomous Emergency Braking (AEB), Adaptive Cruise Control (ACC), Lane Detection (LD) and Traffic Object Detection. Also, the integration of low-level PID controllers for precise steering, braking and throttle actuation, ensures smooth and responsive vehicle behaviour. The hardware architecture is built around the Nvidia Jetson Nano and multiple Arduino Nano microcontrollers, each responsible for controlling specific actuators within the drive-by-wire system, which includes the steering, brake and throttle actuators. Communication
Items per page:
50
1 – 50 of 1296