Browse Topic: Data exchange
Modern battery management systems, as part of Battery Digital Twin, include cloud-based predictive analytics algorithms. These algorithms predicts critical parameters like Thermal runaway events, state of health (SOH), state of charge (SOC), remaining useful life (RUL), etc. However, relying only on cloud-based computations adds significant latency to time-sensitive procedures such as thermal runaway monitoring. This is a very critical and safety function and delay is not acceptable, but automobiles operate in various areas throughout the intended path of travel, internet connectivity varies, resulting in a delay in data delivery to the cloud and similarly delay in return of the detected warning to the driver back in the vehicle. As a result, the inherent lag in data transfer between the cloud and vehicles challenges the present deployment of cloud-based real-time monitoring solutions. This study proposes application of Federated Learning and applying to a thermal runaway model in low
Type IV composite pressure (CP) vessels composed of a plastic liner and composite layers require special design attention to the dome region. The cylindrical portion of the composite cylinder is wrapped with composite layers consisting of the 900 hoop layers and low-angle helical layers, whereas the dome surface carries helical layers only. The winding angle of the helical layers being a constant over the cylindrical portion starts to vary from the cylinder-dome junction toward the boss at the top continuously. Along with the winding angle, the composite thickness also varies continuously resulting in a maximum thickness at the top crown region. The complete analysis and layer-wise stress prediction of Type IV composite cylinders for service pressures up to 70 MPa was analyzed by the Classical Lamination theory (CLT)-based MATLAB program. The MATLAB program developed in this work for the dome initially performs the dome profile generation through the numerical integration of the dome
This document establishes the Rotorcraft Industry Technology Association (RITA) Health and Usage Monitoring System Data Interchange Specification. The RITA HUMS Data Interchange Specification will provide information exchange within a rotorcraft HUMS and between a rotorcraft HUMS and external entities.
Modern military aircraft represent some of the most complex electronic environments ever engineered. These platforms integrate advanced avionics, radar systems, data links, and communication networks that must function seamlessly in hostile, high-frequency environments. In these mission-critical contexts, electromagnetic interference (EMI) poses a silent but serious threat that can degrade signal integrity, cause crosstalk between systems, or even lead to mission failure. The combination of increasing data rates, higher frequencies, and more complex electromagnetic environments demands shielding solutions that can deliver superior performance while contributing to overall system weight reduction. This challenge has driven innovation toward advanced materials that maintain electrical effectiveness while dramatically reducing mass.
Researchers developed wearable skin sensors that can detect what’s in a person’s sweat. Using the sensors, monitoring perspiration could bypass the need for more invasive procedures like blood draws and provide real-time updates on health problems such as dehydration or fatigue. The sensor design can be rapidly manufactured using a roll-to-roll processing technique that essentially prints the sensors onto a sheet of plastic.
This study introduces an innovative intelligent tire system capable of estimating the risk of total hydroplaning based on water pressure measurements within the tread grooves. Dynamic hydroplaning represents an important safety concern influenced by water depth, tread design, and vehicle longitudinal speed. Existing intelligent tire systems primarily assess hydroplaning risk using the water wedge effect, which occurs predominantly in deep water conditions. However, in shallow water, which is far more prevalent in real-world scenarios, the water wedge effect is absent at higher longitudinal speeds, which could make existing systems unable to reliably assess the total hydroplaning risk. Groove flow represents a key factor in hydroplaning dynamics, and it is governed by two mechanisms: water interception rate and water wedge pressure. In both the shallow water and deep water cases, the groove water flow will increase as a result of increasing the longitudinal speed of the vehicle for a
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Artificial intelligence (AI) systems promise transformative advancements, yet their growth has been limited by energy inefficiencies and bottlenecks in data transfer. Researchers at Columbia Engineering have unveiled a groundbreaking solution: a 3D photonic-electronic platform that achieves unprecedented energy efficiency and bandwidth density, paving the way for next-generation AI hardware.
Not only the use, but also the wearing time of medical wearables continues to increase in modern healthcare. However, to ensure that wearable products do not cause skin irritation, product designers must consider the moisture vapor transmission rate (MVTR) during development. It plays an important role in skin compatibility and wearing comfort — and can be decisively influenced by the right joining technology.
This document defines a set of standard application layer interfaces called JAUS Manipulator Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Manipulator Services represent platform-independent capabilities commonly found across domains and types of unmanned systems. At present, twenty-five (25) services are defined in this document. These services are categorized as: Low Level Manipulator Control Services – The one service in this category allows for low-level command of the manipulator joint actuation efforts. This is an open-loop command that could be used in a simple tele-operation scenario. The service in this category is listed as follows: Primitive Manipulator Service Manipulator Sensor Services – These services, when queried, return instantaneous sensor data. Three services are defined that return respectively joint positions, joint velocities, and joint
Items per page:
50
1 – 50 of 1325