Browse Topic: Remote sensing

Items (298)
ABSTRACT Continued proliferation of terrorist activities throughout the globe, as well as other low to medium intensity conflicts, present unique challenges to the US Army, Marines, and Special Operating Forces, especially in times of reduced manpower and operating budgets. Soldiers are called upon to do increasingly complex, dangerous, and lengthy missions with reduced troop strength and in more remote and austere conditions often far from traditional means of ready resupply. The need for organic persistent surveillance of potentially hostile areas is also of significant value to improve situational awareness and preserve the tactical advantage. The high risk nature of these missions can be significantly mitigated and operational tempo (OPTEMPO) improved by using unmanned solutions. Previously proposed solutions attempting to make use of Unmanned Ground Vehicles (UGVs) or Unmanned Air Vehicles (UAVs) alone experienced multiple problems. One solution that addresses these issues is to
Deminico, Mathew R.Mills, Myron E.
ABSTRACT Knowing the soil’s strength properties is a vital component to accurately develop Go/No-Go mobility maps for the Next Generation NATO Reference Mobility Model (NG-NRMM). The Unified Soil Classification System (USCS) and soil strength of the top 0-6” and 6-12” of the soil are essential terrain inputs for the model. Current methods for the NG-NRMM require in-situ measurement of soil strength using a bevameter, cone penetrometer, or other mechanical contact device. This study examines the use of hyperspectral and thermal imagery to provide ways of remotely characterizing soil type and strength. Hyperspectral imaging provides unique spectrums for each soil where a Soil Classification Index (SCI) was developed to predict the gradation of the soil types. This gradation provides a means of identifying the soil type via the major divisions within the USCS classification system. Thermal imagery is utilized to collect the Apparent Thermal Inertia (ATI) for each pit, which is then
Ewing, JordanOommen, ThomasJayakumar, ParamsothyAlger, Russell
Turbulence, temperature changes, water vapor, carbon dioxide, ozone, methane, and other gases absorb, reflect, and scatter sunlight as it passes through the atmosphere, bounces off the Earth’s surface, and is collected by a sensor on a remote sensing satellite. As a result, the spectral data received at the sensor is distorted. Scientists know this and have devised several ways to account for the atmosphere’s corrupting influence on remote sensing data
Researchers have used inkjet printing to create a compact multispectral version of a light field camera. The camera, which fits in the palm of the hand, could be useful for many applications including autonomous driving, classification of recycled materials and remote sensing
Indian Space Research Organisation (ISRO) uses indigenously developed launch vehicles like PSLV, GSLV, LVM3 and SSLV for placing remote sensing and communication satellites along with spacecrafts for other important scientific applications into earth bound orbits. Navigation systems present in the launch vehicle play a pivotal role in achieving the intended orbits for these spacecrafts. During the assembly of these navigation packages on the launch vehicle, it is required to measure the initial tilt of the navigation sensors for any misalignment corrections, which is given as input to the navigation software. A high precision inclinometer is required to measure these tilts with a resolution of 1 arc-second. In this regard, an indigenous inclinometer is being designed. The sensing element of this design comprises of a compliant mechanism which is designed to sense the tilt by measuring the displacement of a proof mass occurring due to the respective component of earth’s gravitational
Shaju, Tony MKrishna, NirmalRao, G NagamalleswaraKumar, T SureshK, Pradeep
Remember what it’s like to twirl a sparkler on a summer night? Hold it still and the fire crackles and sparks but twirl it around and the light blurs into a line tracing each whirl and jag you make
Radio is a well-established technology. For over 100 years, it has been widely used: in communication, radar, navigation, remote control, remote sensing, and other respects. It is popular because it works; it is reliable. And yet laser has shown itself to be a superior medium of communication. Indeed, the laser-vs-radio debate is already getting old. What is new – and what will truly change the debate – are the transformations currently taking place in laser telecommunications – transformations which will drive innovation in defense
Radio is a well-established technology. For over 100 years, it has been widely used: in communication, radar, navigation, remote control, remote sensing, and other respects. It is popular because it works; it is reliable. And yet laser has shown itself to be a superior medium of communication. Indeed, the laser-vs-radio debate is already getting old. What is new - and what will truly change the debate - are the transformations currently taking place in laser telecommunications - transformations which will drive innovation in defense. It is perhaps worth pausing to remind ourselves of what laser's existing advantages over radio are. Laser communications offer faster data transfer, and greater data capacity. And by virtue of their structure and size, lasers are almost impossible to detect, intercept, or jam. Interference is also rare. Lasers do not ‘leak’ in the same way radio does, and, as against the broad transmission style of radio, they transfer information along a very narrow beam
Speckle noise degrades the visual appearance and the quality of a synthetic aperture radar (SAR) image. The reduction of speckle noise is the first step in any remote-sensing device. To improve the noisy SAR images, a variety of adaptive and nonadaptive noise reduction filters were used. In order to eliminate speckle noise present in SAR images, an adaptive cuckoo search optimization-based speckle reduction bilateral filter has been designed in this article. To test the ability to eliminate multiplicative noise, the suggested filter’s effectiveness was compared to that of several de-speckling approaches. It has been measured with different assessment metrics such as PSNR, EPI, SSIM, and ENL. When compared to conventional de-noising filters, the proposed filter shows promising results for lowering speckle noise and retaining edge properties. In addition, the PSNR value has increased as compared to the PMD method and this method has been shown to be efficient in reducing speckle noise in
Abdus Subhahan, D.Kumar, C.N.S. Vinoth
The development of predictive maintenance has become one of the most important drivers of innovation, not only in the maritime industry. The proliferation of on-board and remote sensing and diagnostic systems is creating many new opportunities to reduce maintenance costs and increase operational stability. By predicting impending system faults and failures, proactive maintenance can be initiated to prevent loss of seaworthiness or operability. The motivation of this study is to optimize predictive maintenance in the maritime industry by determining the minimum useful remaining lead-acid battery capacity measurement frequency required to achieve cost-efficiency and desired prognostic performance in a remaining battery capacity indication system. The research seeks to balance operational stability and cost-effectiveness, providing valuable insight into the practical considerations and potential benefits of predictive maintenance. The methodology employed in this study includes outlining
Golovan, AndriiGritsuk, IgorHoncharuk, Iryna
This standard covers Airspeed Instruments which display airspeed of an aircraft, as follows
A-4ADWG Air Data Subcommittee
This AS covers Vertical Velocity Instruments which display the rate of change of pressure altitude of an aircraft, as follows: Type A - Direct reading, self-contained, pressure actuated Type B - Electrically or electronically operated, self-contained, pressure actuated Type C - Electrically or electronically operated, input from a remote pressure sensor
A-4ADWG Air Data Subcommittee
Measurements in snow conditions performed in the past were rarely initiated and best suited for pure and extremely detailed quantification of microphysical properties of a series of microphysical parameters, needed for accretion modelling. Within the European ICE GENESIS project, a considerable effort of natural snow measurements has been made during winter 2020/21. Instrumental means, both in-situ and remote sensing were deployed on the ATR-42 aircraft, as well as on the ground (ground station at ‘Les Eplatures’ airport in the Swiss Jura Mountains with ATR-42 overflights). Snow clouds and precipitation in the atmospheric column were sampled with the aircraft, whereas ground based and airborne radar systems allowed extending the observations of snow properties beyond the flight level chosen for the in situ measurements. Overall, five flight missions have been performed at different numerous flight levels (related temperature range from -10°C to +2°C) beyond the ‘Les Eplatures’ airport
Jaffeux, LouisSchwarzenboeck, AlfonsCoutris, PierreFebvre, GuyDezitter, FabienAguilar, Borisbillault-Roux, Anne-claireGrazioli, JacopoBerne, AlexisKöbschall, KilianJorquera, SusanaDelanoe, Julien
The prevailing mission-based paradigm for ocean color remote sensing typically involves high-cost satellite platforms launched and operated by government agencies such as NASA, NOAA, ESA, and JAXA. These platforms host state-of-the-art ocean-viewing radiometers with design and sensitivity specifications appropriate for delineating a comparatively weak water-leaving radiance from the total radiant signal detected at the top of the atmosphere. The current suite of such operational ocean color sensors includes NASA’s Moderate Resolution Imaging Spectroradi-ometer (MODIS; Aqua satellite), NOAA’s VIIRS (SNPP and NOAA-20 satellites), the Ocean and Land Color Instrument (OLCI; Sentinel-3 A/B satellites), and the Second-Generation Global Imager (SGLI) onboard the GCOM-C satellite. All of these sensors provide multi-spectral band sets (visible, near-infrared (NIR), and shortwave infrared (SWIR)) with daily coverage at approximately kilometer-scale spatial resolution. However, even kilometer
The ability to control light using a semiconductor device could allow low-power, relatively inexpensive sources like LEDs or flashlight bulbs to replace more powerful laser beams in new technologies such as holograms, remote sensing, self-driving cars, and high-speed communication
Light from an object contains continuous various colors, the spectrum of light, that result from the interaction between light and the object. Spectral measurement is thus the basis of remote sensing, allowing for highly accurate material analysis and image recognition. Although the world is full of colors, human being and standard color cameras receive light through their eyes/sensors and perceive it as only three primary colors of red (R), green (G), and blue (B). Hyperspectral (HS) imaging is a technology that splits and detects light into more colors than humans and color cameras can. The richer spectral information of HS image is promising for machine vision to provide more information than human eyes or color cameras in visual inspection of foods, industrial products, and so on
Unmanned Ground Vehicle (UGV) has a wide range of applications in the military, agriculture, firefighting and other fields. Path planning, as a key aspect of autonomous driving technology, plays an essential role for UGV to accomplish the established driving tasks. At present, there are many global path planning algorithms in grid maps on unstructured roads, while general grid maps do not consider the specific elevation or ground type difference of each grid, and unstructured roads are generally considered as flat and open roads. On the contrary, the unmanned off-road is always a bumpy road with undulating terrain, and meanwhile, the landform is complex and the types of features are diverse. In order to ensure the safety and improve the efficiency of autonomous driving of UGV in off-road environment, this paper proposes a global off-road path planning method for UGV based on the raw image of remote sensing map. Firstly, the raw image is gridded. The map elevation information is
Zhang, JianXie, FeiWang, ChaoLiu, QiuzhengHong, RiDu, Jinpeng
A research team co-led by Qiang Lin, a professor of electrical and computer engineering at the University of Rochester, has set new milestones in addressing this challenge, with the first multi-color integrated Pockels laser that
Stratospheric balloons are routinely used for Earth imaging and environmental monitoring in the upper atmosphere. The balloons are often enormous in size — several hundred feet —and when inflated could engulf an entire football stadium. Urban Sky, a Denver-based stratospheric technology and remote sensing startup, has miniaturized the technology for collecting images and data of the Earth by developing small stratospheric balloons
The concept of remote sensing, which is defined as sensing information of an object or objects from far away, has been a major endeavor from the very beginning of space exploration. With this exploration from outer space came a myriad of opportunities that not only answered questions about other worlds, but also allowed us to explore our own world. This includes a better understanding of the earth’s surface: land, water, and atmosphere
Innovators at the NASA Langley Research Center have designed a Pulsed 2-Micron Laser Transmitter for Coherent 3-D Doppler Wind LiDAR Systems. The design produces a compact, efficient, long-lifetime laser transmitter as needed for use in space, while also having potential applications as an airborne or ground-based wind measurement tool
The current European fleet of vehicles is ageing and lifetime mileages are rising proportionally. Consequently, a substantial fraction of the vehicle fleet is currently operating at mileages well beyond current durability legislation (≤ 160,000 km). Emissions inventories and models show substantial increases in emissions with increasing mileage, but knowledge of the effect of emissions control system deterioration at very high mileages is sparse. Emissions testing has been conducted on matched pairs (or more) of diesel and gasoline (and CNG) vehicles, of low and high mileage, supplementing the results with in-house data, in order to explore high mileage emission deterioration factors (DF). The study isolated, as far as possible, the effect of emissions deterioration with mileage, by using nominally identical vehicle models and controlling other variables. Several emissions species were considered, including pollutants under consideration for control at Euro 7, with measurements made
Zanfagna, AdrianoHausberger, StefanLandl, LukasAndersson, JonTriantafyllopoulos, GeorgiosKolokotronis, DimitriosHolmes, GeoffreySaltas, EliasDimaratos, AthanasiosSamaras, ZissisLigterink, NorbertRose, RebeccaSoderena, PetriKontses, AnastasiosDilara, PanagiotaKeenan, Matthew
This SAE Aerospace Standard (AS) specifies minimum performance requirements for pressure altimeter systems other than air data computers. This document covers altimeter systems that measure and display altitude as a function of atmospheric pressure. The pressure transducer may be contained within the instrument display case or located remotely. Requirements for air data computers are specified in AS8002. Some requirements for nontransducing servoed altitude indicators are included in AS791. This document does not address RVSM requirements because general RVSM requirements cannot be independently detailed at the component level. The instrument system specified herein does not include aircraft pressure lines. Unless otherwise specified, whenever the term “instrument” is used, it is to be understood to be the complete system of pressure transducer components, any auxiliary equipment, and display components. The test procedures specified herein apply specifically to mechanical type
A-4ADWG Air Data Subcommittee
Coastal and riverine shorelines are dynamic landscapes that change continually in response to environmental forces. The combination of static infrastructure with dynamic and diverse landscapes creates management challenges for navigation, storm damage reduction, and ecosystem health that are exacerbated during natural disasters. The U.S. Army Corps of Engineers (USACE) flood risk management (FRM) mission strives to reduce the nation's flood risk and increase resilience to disasters. FRM is inherently interdisciplinary, requiring accurate identification of environmental, physical, and infrastructure features that can reduce risk from flood and coastal storm disasters
Weak optical signals are common in many science and technology applications. However, they are difficult to detect or process due to the incoherent noise that is inherently present in any system. PhD student Benjamin Crockett and colleagues, working under the supervision of Professor José Azaña of the Institut national de la recherche scientifique (INRS), have conceived a technique for the recovery of weak, noise-dominated optical signals. Their research was published in the journal Optica
Soldier modernization programs take on new urgency as funding priorities shift and operational demands increase. There are many challenges posed by resource constraints and changing operational environments. Defense connectivity solutions offer new capabilities and innovative, economical approaches to help soldiers and commanders at every level make better decisions faster – when observing, orienting, deciding and acting (OODA) in unforgiving operational environments
Soldier modernization programs take on new urgency as funding priorities shift and operational demands increase. There are many challenges posed by resource constraints and changing operational environments. Defense connectivity solutions offer new capabilities and innovative, economical approaches to help soldiers and commanders at every level make better decisions faster - when observing, orienting, deciding and acting (OODA) in unforgiving operational environments. There is no doubt that military forces worldwide are adapting their equipment and operating models to new levels of operational intensity. As the US Army Vision describes, forces are refocusing on “high-intensity conflict […] in dense urban terrain, in electronically degraded environments and under constant surveillance.”1
A new device known as MC-TENG — short for multilayered cylindrical triboelectric nanogenerator — generates electrical power by harvesting energy from the sporadic movement of the tree branches from which it hangs. The self-powered sensing system could continuously monitor the fire and environmental conditions without requiring maintenance after deployment
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed. The photonic integrated chip could allow for many advances in the optical field and industry, ranging from improvements in virtual-reality glasses to optical remote sensing
NASA Ames developed a novel remote sensing instrument with advanced scientific capabilities for Multispectral Imaging, Detection and Active Reflectance (MiDAR). The MiDAR transmitter and receiver demonstrate a cost-effective solution for simultaneous high-frame-rate, high signal-to-noise ratio (SNR) multispectral imaging, with hyperspectral potential, high-bandwidth simplex communication, and in-phase radiometric calibration. The use of computational imaging further allows for multispectral data to be fused using Structure from Motion (SfM) and fluid lensing algorithms to produce 3D multi-spectral scenes and high-resolution underwater imagery of benthic systems as part of future scientific airborne field campaigns
Currently, the dominant method to generate ultrafast laser pulses passively is to use semiconductor saturable absorber mirrors (SESAMs). This type of passive mode locker produces exceptional results but is difficult to fabricate, expensive, and limited in bandwidth. In contrast, a graphene-based saturable absorber is easier to produce and has the advantages of much wider bandwidth, lower saturation intensity, tunable modulation depth, ultrafast recovery time, and much higher optical damage threshold, thus producing higher energies
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed. The photonic integrated chip could allow for many advances in the optical field and industry, ranging from improvements in virtual-reality glasses to optical remote sensing
An analysis of shoreline change, dune volume, beach volume, beach slope, and cumulative elevation change along the northern Outer Banks of North Carolina near the CHL Field Research Facility over a 6-year study period. Army Engineer Research and Development Center, Vicksburg, Mississippi The dynamic nature of the nation's coastlines necessitates frequent shoreline monitoring and mapping. The U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), has collected datasets on the nearshore zone's changing conditions for over 40 years. During the course of these efforts, CHL has continued to develop different technologies to refine shoreline monitoring techniques, with a particular focus on the application of remote sensing technology to coastal monitoring. Light detection and ranging (lidar) scanners have proven useful for the CHL coastal measurement efforts, providing highly detailed data of coastal change and
The dynamic nature of the nation’s coastlines necessitates frequent shoreline monitoring and mapping. The U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), has collected datasets on the nearshore zone’s changing conditions for over 40 years. During the course of these efforts, CHL has continued to develop different technologies to refine shoreline monitoring techniques, with a particular focus on the application of remote sensing technology to coastal monitoring. Light detection and ranging (lidar) scanners have proven useful for the CHL coastal measurement efforts, providing highly detailed data of coastal change and hydro-dynamic processes
There is a need for rad-hard crystal stabilized clock sources with at least 300 krad of total ionizing dose (TID) immunity. A common solution has been to spot-shield a commercial off-the-shelf part or enclose it in a vault. Rad-hard clock sources are needed for main electronics boards (MEBs) and readout electronics that need to operate in hazardous space environments. Remote sensing and telemetry require that the readout circuits be co-located with the sensors, which can be separated by an arbitrary distance from the data processing electronics
Using advanced machine learning, drones could be used to detect dangerous “butterfly” landmines in remote regions of post-conflict countries. Researchers had previously developed a method that allowed for highly accurate detection of butterfly landmines using low-cost commercial drones equipped with infrared cameras. New research focuses on automated detection of landmines using convolutional neural networks, the standard machine learning method for object detection and classification in the field of remote sensing
For remote sensing spectrometers, wavelength-scanned laser emissions are used to capture the absorption spectrum of targets to perform measurement of soil and/or gas. Previous techniques to accomplish these measurements have involved combining multiple fixed-wavelength lasers to detect a single species, limiting the scope and effectiveness of the instruments
With the emergence of intelligent ground vehicles, an objective evaluation of vehicle mobility has become an even more challenging task. Vehicle mobility refers to the ability of a ground vehicle to traverse from one point to another, preferably in an optimal way. Numerous techniques exist for evaluating the mobility of vehicles on paved roads, both quantitatively and qualitatively, however, capabilities to evaluate their off-road performance remains limited. Whereas a vehicle’s off-road mobility may be significantly enhanced with intelligence, it also introduces many new variables into the decision making process that must be considered. In this paper, we present a decision analytic framework to accomplish this task. In our approach, a vehicle’s mobility is modeled using an operator’s preferences over multiple mobility attributes of concern. We also provide a method to analyze various operating scenarios including the ability to mitigate uncertainty in the vehicles inputs. An example
Pandey, VijitashwaSlon, ChristopherDeschenes, LineGorsich, DavidJayakumar, Paramsothy
Acoustic waves propagating in the atmosphere may undergo many effects including refraction by temperature and wind velocity gradients, scattering by atmospheric turbulence, absorption by the atmosphere (fluid), diffraction by terrain features, and absorption and reflection by a porous ground. As a result, there may be insonification in acoustic shadow zones, amplitude and phase fluctuations of the propagating sound signals, loss of signal coherence, changes in the interference maxima and minima of the direct ground reflected waves, and multipath effects. Understanding these effects is important for a variety of military applications, such as acoustic source localization and classification, noise propagation in the atmosphere, and the development of new remote sensing techniques of the atmosphere
Spatiotemporal imaging contains a large class of imaging problems, which involve collecting a sequence of data sets to resolve both the spatial and temporal (or spectral) distributions of some physics quantity. This capability is exploited in numerous different fields such as remote sensing, security surveillance systems, astronomical imaging, and biomedical imaging. One typical example is hyperspectral imaging, which is a powerful technology for remotely inferring the material properties of the objects in a scene of interest. Ultrasonic and thermal imaging are other important examples of spatiotemporal imaging where high spatial resolution is needed for urban planning, military planning, intelligence and disaster monitoring and evaluation
Since 1st September 2014 the Hong Kong Environmental Protection Department (HKEPD) has been utilising a Dual Remote Sensing technique to monitor the emissions from gasoline and liquified petroleum gas (LPG) vehicles for identifying high emitting vehicles running on road. Remote sensing measures and determines volume ratios of the emission gases of HC, CO and NO against CO2, which are used for determining if a vehicle is a high emitter. Characterisation of each emission gas is shown and its potential to identify a high emitter is established. The data covers a total of about 2,200,000 LPG vehicle emission measurements taken from 14 different remote sensing units. It was collected from 6th January 2012 to 20th April 2017 across a period before and after the launch of the Remote Sensing programme for evaluating the performance of the programme. The results show that the HKEPD Remote Sensing programme is very effective to detect high emitting vehicles and reduce on-road vehicle emissions
Organ, Bruce DHuang, YuhanZhou, JohnHong, GuangYam, Yat-ShingChan, Edward
Items per page:
1 – 50 of 298