Browse Topic: Neural networks
Modern vehicle integration has become exponentially more difficult due to the complicated structure of designing wiring harnesses for multiple variants that have diverse design iterations and requirements. This paper proposes an AI-driven solution for addressing variant complexity. By using Convolutional Networks and Deep Neural Networks (CNN & DNN) to generate harness routing using defined specifications and constraints, the proposed solution uses minimal human intervention, substantially less time, and enables less complexity in designing. AI trained modelled systems can generally even predict failures in production methods which also reduces downtime and increases productivity. The new AI system automatically converts design specifications to manufacturable design specifications to avoid confusion with design parameters, by optimizing concepts with connector placements, grommet fittings, clip alignments, and other tasks. The solution coping with the inherent dynamic complexity of
This paper offers a state-of-the-art energy-management strategy specifically developed for FCHEV focusing on robustness under uncertain operations. Currently, energy management strategies try to optimize fuel economy and take into account the sluggish response of fuel cells (FCs); however, they mostly do so assuming all system variables are explicit and deterministic. In real-world operations, however, a variety of sources may cause the uncertainty in power generation, energy conversion, and demand interactions, e.g., the variation of environmental variables, estimated error, and approximation error of system model, etc., which accumulates and adversely impacts the vehicle performance. Disregarding these uncertainities can result in overestimation of operating costs, overall efficiency and overstepped performance limitations, and, in serious cases can cause catastrophic system breakdown. To mitigate these risks, the current work introduces a neural network-based energy management
The success of off-road missions for ground vehicles depends heavily on terrain traversability, which in turn requires a thorough understanding of soil characteristics a key component being soil moisture content. When large areas need to be analyzed, satellite imagery is often used, although this approach typically reduces the spatial resolution. This decrease of spatial resolution creates what are known as mixed pixels, when two or more classes or features are in a single pixel’s area, which can lead to noisier data and lower accuracy models. This paper investigates using linear spectral unmixing as a way to help clean / mitigate noisy data to yield better predictive models. Hyperspectral remote sensing from the Hyperion satellite platform and ground truth from the International Soil Moisture Network (ISMN) are used for the dataset. This study found that soil moisture content prediction, comparing the mixed multilayer perceptron (MLP) model with an unmixing approach revealed a 10–30
Items per page:
50
1 – 50 of 1389