Browse Topic: Neural networks
Functional Mock-up Units (FMUs) have become a standard for enabling co-simulation and model exchange in vehicle development. However, traditional FMUs derived from physics-based models can be computationally intensive, especially in scenarios requiring real-time performance. This paper presents a Python-based approach for developing a Neural Network (NN) based FMU using deep learning techniques, aimed at accelerating vehicle simulation while ensuring high fidelity. The neural network was trained on vehicle simulation data and trained using Python frameworks such as TensorFlow. The trained model was then exported into FMU, enabling seamless integration with FMI-compliant platforms. The NN FMU replicates the thermal behavior of a vehicle with high accuracy while offering a significant reduction in computational load. Benchmark comparisons with a physical thermal model demonstrate that the proposed solution provides both efficiency and reliability across various driving conditions. The
The article is devoted to a comprehensive analysis of the digital transformation of education using the example of a project to train engineering personnel for the innovative transport industry in Russia. Special attention is paid to the introduction of hybrid formats, digital platforms, inclusivity, issues of digital inequality, as well as the experience of the National Research Center of the Russian Federation FSUE NAMI and interaction with leading universities in the country. A comparative analysis with foreign initiatives, including modern AI solutions for inclusive education, is presented, as well as the impact of the project to create educational and methodological centers on the professional motivation of teachers.
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
In automotive engineering, understanding driving behavior is crucial for decision on specifications of future system designs. This study introduces an innovative approach to modeling driving behavior using Graph Attention Networks (GATs). By leveraging spatial relationships encoded in H3 indices, a graph-based model constructed, which captures dependencies between various vehicle operational parameters and their operational regions using H3 indices. The model utilizes CAN signal features such as speed, fuel efficiency, engine temperature, and categorical identifiers of vehicle type and sub-type. Additionally, regional indices are incorporated to enrich the contextual information. The GAT model processes these heterogeneous features, learning to identify patterns indicative of driving behavior. This approach offers several significant advantages. Firstly, it enhances the accuracy of driving behavior modeling by effectively capturing the complex spatial and operational dependencies
Items per page:
50
1 – 50 of 1418