Browse Topic: Neural networks
“Today’s supercomputers and data centers demand many megawatts of power,” said Haidan Wen, a Physicist at the U.S. Department of Energy (DOE) Argonne National Laboratory. “One challenge is to find materials for more energy-efficient microelectronics. A promising candidate is a ferroelectric material that can be used for artificial neural networks as a component in energy-efficient microelectronics.”
Autonomous vehicle motion planning and control are vital components of next-generation intelligent transportation systems. Recent advances in both data- and physical model-driven methods have improved driving performance, yet current technologies still fall short of achieving human-level driving in complex, dynamic traffic scenarios. Key challenges include developing safe, efficient, and human-like motion planning strategies that can adapt to unpredictable environments. Data-driven approaches leverage deep neural networks to learn from extensive datasets, offering promising avenues for intelligent decision-making. However, these methods face issues such as covariate shift in imitation learning and difficulties in designing robust reward functions. In contrast, conventional physical model-driven techniques use rigorous mathematical formulations to generate optimal trajectories and handle dynamic constraints. Hybrid Data- and Physical Model-Driven Safe and Intelligent Motion Planning and
In the highly competitive automotive industry, optimizing vehicle components for superior performance and customer satisfaction is paramount. Hydrobushes play an integral role within vehicle suspension systems by absorbing vibrations and improving ride comfort. However, the traditional methods for tuning these components are time-consuming and heavily reliant on extensive empirical testing. This paper explores the advancing field of artificial intelligence (AI) and machine learning (ML) in the hydrobush tuning process, utilizing algorithms such as random forest, artificial neural networks, and logistic regression to efficiently analyze large datasets, uncover patterns, and predict optimal configurations. The study focuses on comparing these three AI/ML-based approaches to assess their effectiveness in improving the tuning process. A case study is presented, evaluating their performance and validating the most effective method through physical application, highlighting the potential
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
Items per page:
50
1 – 50 of 1350