Browse Topic: Cybersecurity
Modern vehicles require sophisticated, secure communication systems to handle the growing complexity of automotive technology. As in-vehicle networks become more integrated with external wireless services, they face increasing cybersecurity vulnerabilities. This paper introduces a specialized Proxy based security architecture designed specifically for Internet Protocol (IP) based communication within vehicles. The framework utilizes proxy servers as security gatekeepers that mediate data exchanges between Electronic Control Units (ECUs) and outside networks. At its foundation, this architecture implements comprehensive traffic management capabilities including filtering, validation, and encryption to ensure only legitimate data traverses the vehicle's internal systems. By embedding proxies within the automotive middleware layer, the framework enables advanced protective measures such as intrusion detection systems, granular access controls, and protected over-the-air (OTA) update
Automotive Over-the-Air (OTA) software updating has become a cornerstone of the modern connected vehicle, enabling manufacturers to remotely deploy bug fixes, security patches, and new features. However, this convenience comes with significant cybersecurity challenges. This paper provides a detailed examination of automotive OTA update security and the software store (software Applications & services store) mechanisms. I discuss the current industry standards and regulations, notably ISO/SAE 21434 and the United Nations Economic Commission for Europe (UNECE) regulations UN R155 (cybersecurity) and UN R156 (software updates) and explain their relevance to secure OTA and software update management. I then explored the Uptane framework, an open and widely adopted architecture specifically designed to secure automotive OTA updates. Next, OTA-specific threat models are analyzed, detailing potential attack vectors and corresponding mitigation strategies. Real-world case studies are presented
With the rapid advancement of connected vehicle technologies, infotainment Electronic Control Units (ECUs) have become central to user interaction and connectivity within modern vehicles. However, this enhanced functionality has introduced new vulnerabilities to cyberattacks. This paper explores the application of Artificial Intelligence (AI) in enhancing the cybersecurity framework of infotainment ECUs. The study introduces AI-powered modules for threat detection and response, presents an integrated architecture, and validates performance through simulation using MATLAB, CANoe, and NS-3. This approach addresses real-time intrusion detection, anomaly analysis, and voice command security. Key benefits include zero-day exploit resistance, scalability, and continuous protection via OTA updates. The paper references real-world automotive cyberattack cases such as OTA vulnerability patches, Connected Drive exploits, and Uconnect hack, emphasizing the critical need for AI-enabled proactive
The integration of Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML) has transformed various industries, offering substantial benefits. The application of these technologies in engine reliability testing has immense potential as they offer real-time monitoring and analysis of engine performance parameters. Engine reliability testing is vital for ensuring the safety, efficiency, and longevity of engines. Traditional methods are time consuming, expensive, and rely heavily on manual inspection and data analysis. This paper shows how IoT and ML technologies can enhance the efficiency of engine reliability testing. The paper includes the following case studies:
With the increasing connectivity of modern vehicles, cybersecurity threats have become a critical concern. Intrusion Detection Systems (IDS) play a vital role in securing in-vehicle networks and embedded vehicle computers from malicious attacks. This presentation shares about an IDS framework designed specifically for POSIX-based operating systems used in vehicle computers, leveraging system-level monitoring, anomaly detection, and signature-based methods to identify potential security breaches. The proposed IDS integrates lightweight behavioral analysis to ensure minimal computational overhead while effectively detecting unauthorized access, privilege escalation, communication interface monitoring etc. By employing a combination of rule-based and OS datapoints, the system enhances threat detection accuracy without compromising real-time performance. Practical series deployments demonstrate the effectiveness of this approach in mitigating cyber threats in automotive environments
In view of the complexity of railway engineering structure, the systematicness of professional collaboration and the high reliability of operation safety, this paper studied the spatial-temporal information data organization model with all elements in whole domain for Shuozhou-Huanghua Railway from the aspect of Shuozhou-Huanghua Railway spatial-temporal information security. Taking the unique spatial-temporal benchmark as the main line, the paper associated different spatial-temporal information to form an efficient organization model of Shuozhou-Huanghua Railway spatial-temporal information with all elements in the whole domain, so as to implement the effective organization of massive spatial-temporal information in various specialties and fields of Shuozhou-Huanghua Railway; By using GIS (Geographic Information System) visualization technology, spatial analysis technology and big data real-time dynamic rendering technology, it was realized the real-time dynamic visualization display
The automotive industry's rapid shift towards electric and connected vehicles intensifies the demand for robust solutions addressing software integrity, cybersecurity, and stringent regulatory compliance, particularly concerning powertrain components and related control units. This paper addresses the significant challenge faced by automotive companies in efficiently managing and deploying an exponentially increasing number of software and hardware variants under the rigorous requirements of UNECE Regulation No. 156. This regulation mandates secure, traceable, and systematic software update processes for new vehicles and their components [1]. The proposed solution demonstrates a transformative approach that significantly reduces the software release cycle for Over-The-Air (OTA) updates which usually take 6 to 8 months to emerge [2]. By leveraging advanced techniques in automated compliance tracking, efficient parameter management, and centralized documentation, this approach bridges
Items per page:
50
1 – 50 of 603