Browse Topic: Brake components

Items (2,105)
Moisture is known to be a relevant factor during a friction material life, affecting tribological behaviors such as friction coefficient and torque variations. In this study we investigated the interaction between friction materials and water; employing various techniques such as contact angle measurements, water adsorption, and exposure to controlled environmental condition changes. Focusing on NAO friction material, mix modifications were studied to highlight differences and understand mechanisms, in particular, organic content and hydrophobic agents, were examined. Characterization results showed that brake pads hydrophobicity can be influenced by water interaction conditions; even low-wettability surfaces, such as those treated with hydrophobic modifiers, can still absorb water depending on internal factors (e.g., porosity) and external conditions (e.g., contact time, humidity). Additionally, we investigated the capacity of a friction material to adsorb water and desorb it back to
Iodice, ValentinaDurando, PietroBalestra, SimonePellerej, Diego
Pin-on-disk tribometers are used to determine the frictional behaviour and boundary layer dynamics of material pairings. Material pairings are examined under defined conditions in order to reason about the friction behaviour and wear. Pairings for real brake systems with larger pad sizes can be tested on flywheel mass test rigs in order to provide proof of suitability. This is mainly due to a lack of knowledge about the scaling behaviour of friction linings. The Department of Machinery System Design at TU Berlin has combined the classic approach of a pin-on-disk tribometer with a flywheel mass test rig (up to 12.78 kgm2) and thus set up a laboratory brake on which material pairings with different pad shapes and sizes (up to 48 cm2) can be examined. The flywheel mass test rig consists of an adjustable DC-motor that drives a shaft on which variable flywheel masses and brake disks can be installed. The variability allows for different kinetic energies at different friction speeds. The
Heuser, Robert MichaelRosenthal, Tobias RichardWiest, Daniel ChristianMeyer, Henning Jürgen
Friction material properties critically impact brake squeal simulation outcomes due to their nonlinear and transversely isotropic behaviors, which vary with load type and direction. To improve the reliability of brake squeal predictions, this study introduces the Transversely-isotropic Elastic Constants Optimization (TECO) method, a novel multi-dimensional constrained optimization framework for refining the elastic constants and damping ratio of friction materials. By integrating experimental testing, finite element analysis (FEA), and an advanced optimization technique - Gradient Response Surface Algorithm (GRA), the TECO method minimizes discrepancies between simulated and experimental data, ensuring accurate characterization of elastic properties. The TECO method offers significant advantages, including flexibility and robustness, making it an effective alternative to ultrasonic measurements and traditional optimization techniques, especially for anisotropic friction lining
Philip, RonyMuralidharan, SudharsanMohanam, Gopalakrishnan
As the ICE vehicle changes into the EV, we can use regenerative brake. It can improve not only the energy consumption but also reduce the hydraulic brake usage. The less hydraulic brake usage mitigates the heat loading on the brake disc. From this reason, the lightweight brake can be used in the EV. However, when the lightweight brake is applied, the brake NVH can be increased. The optimization design of the lightweight brake should be done to prevent the brake NVH. In this paper, the optimal brake disc thickness and brake interfaces are determined by using of disc heat capacity analysis. The lightweight brake should be optimized by using of the brake squeal analysis. We can verify the results from both analysis and test. Finally, we can have the lightweight brake, which is competitive in terms of cost, weight and robust to the brake NVH.
Kim, SunghoKim, JeongkyuHwang, JaekeunKang, Donghoon
Lightweight materials are essential in reducing the overall weight and improving the efficiency and performance of ICE and electric vehicles. The use of aluminum alloys is critical in transitioning to a more energy sustainable and environmentally friendly future. The accessible combinations of high modulus to density and strength to weight ratios, as well as their excellent thermal conductivity, make them an ideal solution for overall weight reduction in vehicles, thereby improving fuel efficiency and reducing emissions. Aluminum alloys with high strength and lifetime thermal stability have been industrialized for usage in brake rotor applications. Amongst the most used aluminum alloys with high thermal stability are 2618-T8 and 4032-T6 for use in aerospace and automotive industries, respectively. However, when it comes to prolonging the life of a product at temperatures that exceed 200°C, the properties of these alloys will quickly degrade within the first 300 hours of exposure
Duchaussoy, AmandineLorenzino, PabloFranklin, JackTzedaki, Maria
Advanced ferritic nitrocarburizing process combined with a specialized post-oxidation treatment described as FNC + Smart ONC® [1] is developed for brake rotor applications. The process can be applied to standard grey cast iron brake rotors, significantly reducing PM 10 emissions to levels below the Euro 7 limits for most vehicles equipped with at least some recuperative braking capabilities, all without compromising performance. Finished grey iron brake rotors, ferritic nitrocarburized and post oxidized were evaluated according to several industry standards. The standards include SAE J2707B (Block Wear Test including Highway) [2], GRPE-90-24 Rev.1 Emission Test (Full WLTP Brake Cycle 6 Times) [3], and SAE J2522 (AK-Master Performance) [4]. Nitrocarburized post oxidized brake rotors were compared to untreated grey iron rotors exposed to several friction materials. Ferritic nitrocarburizing and post oxidation addresses the issue of corrosion, which is particularly relevant for brake
Winter, Karl-MichaelHolly, Mike
As Lowmet pad porosity increases, pad hardness decreases; pad ISO compressibility increases; the nominal friction coefficient increases (SAE J2522); and the disc wear/pad wear decreases. Brake squeal occurrence is affected by the total wear of disc and pads; the wear differential between the inboard pad and outboard pad; pad tangential taper; and pad hardness/material damping. Also, pad chamfer shape has a strong influence on brake squeal occurrence.
Rhee, Seong KwanRathee, AmanSingh, Shiv RajSharma, Devendra
In an earlier publication, it was reported that the pad compressibility measured under 160 bars on NAO formulas keeps decreasing with increasing number of repeated measurements due to unrecoverable residual deformation of the friction material combined with increasing moisture adsorption, which increases the hardness of the friction material. This current investigation was undertaken to find out if this same phenomenon occurs for NAOs under a low pressure of 100 bars during compressibility measurements and under 700N during dynamic modulus measurements. In all cases, it is found that the same phenomenon occurs, meaning that friction materials become permanently compressed without full recovery, making them harder to compress and raising up the modulus. The dynamic modulus of friction material attached to a backplate is found to be lower as compared with the friction material without the backplate, which is caused by more rapid moisture adsorption of friction material pads without a
Sriwiboon, MeechaiRhee, Seong KwanSukultanasorn, Jittrathep
Brake caliper rattle noise is difficult to simulate due to its non-stationary, random, and broadband frequency characteristics. Many CAE engineers have adopted rattle vibration as an alternative metric to quantitative noise levels. Previous rattle noise simulations primarily presented relative displacement results derived from normal mode analysis or vibration dB levels rather than actual noise dB levels. However, rattle noise consists of continuous impact noise, which must account for reflections, diffractions, and refractions caused by transient nonlinear contacts and localized vibrations—especially during extremely short contact events. To accurately simulate impact noise, vibration and acoustic characteristics should be analyzed using a simplified structure, given the numerous mechanisms influencing impact noise generation. The rattle noise can be effectively modeled using LS-Dyna, which incorporates both explicit and BEM solvers. The correlation between test results and CAE
Park, Joosang
This work investigates the influence of casting microstructure on the mechanical performance of ad hoc samples of recycled EN AC-43200 Al-Si alloy. Three batches are produced by modifying the casting process parameters (i.e., molten alloy temperature and in-mold cooling conditions) to obtain different casting microstructures. Room temperature tensile and high-cycle fatigue tests, coupled with metallography, X-ray tomography, and fatigue fracture surface analysis, are performed to elucidate the relationship between microstructural characteristics and mechanical properties of the investigated alloy. The findings indicate that casting pores and intermetallic precipitates play a pivotal role in influencing the mechanical behavior and performance of cast, recycled EN AC-43200 Al-Si alloy. Additionally, an inverse correlation between secondary dendrite arm spacing (SDAS) and both tensile properties and fatigue life is established.
Pavesi, AriannaBarella, SilviaD'Errico, FabrizioBonfanti, AndreaBertasi, Federico
The effects of particle size and composition of platelet titanates, including potassium titanate and potassium-magnesium titanate, were investigated to determine their friction stability, wear resistance, and transfer film formation. The composition and properties of titanates were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and particle size analysis. Tribological properties were evaluated using a tribometer (MFT-5000), while the worn surfaces were analyzed with scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Results indicate that the transfer film characteristics are significantly influenced by the particle size and composition of platelet titanates. Brake pads containing potassium-magnesium titanates formed a more uniform transfer film, leading to improved friction stability and reduced wear rates. In contrast, potassium titanates increased friction levels but also resulted in higher wear on the brake friction materials. These
Jara, Diego ChavezLorenzana, CarlosSliepcevich, 1Lt AndreaConforti, Michael
This SAE Recommended Practice defines a clearance line for establishing dimensional compatibility between drum brakes and wheels with 19.5-inch, 22.5-inch, and 24.5-inch diameter rims. Wheels designed for use with drum brakes may not be suitable for disc brake applications. The lines provided establish the maximum envelope for brakes, including all clearances, and minimum envelope for complete wheels to allow for interchangeability. This document addresses the dimensional characteristics only and makes no reference to the performance, operational dynamic deflections, or heat dissipation of the system. Valve clearances have not been included in the fitment lines. Bent valves may be required to clear brake drums. Disc brake applications may require additional running clearances beyond those provided by the minimum contour lines. Mounting systems as noted are referenced in SAE J694.
Truck and Bus Wheel Committee
This study employs computational fluid dynamics (CFD) to analyze airflow and thermal characteristics within an agricultural tractor, focusing on operator comfort and component safety. Initial simulations identified hotspots, such as the brake pedals, operator platform, and hand throttle, where temperatures exceeded acceptable limits (rise over ambient, ROA). A multi-step approach—including sealing air leaks, adding heat insulation materials, and optimizing the deflector guard—was implemented to mitigate excessive heat. While these modifications significantly improved temperature conditions on the right platform, the left brake pedal remained problematic. Further enhancements, such as sealing an electrical socket and modifying the shroud design, effectively reduced heat exposure. The improved shroud also led to a slight decrease in static pressure (2.21%) and an 8.61% reduction in power consumption, improving airflow efficiency. Although an alternative ring fan design reduced power
Mohan, AnandSoni, PeeyushSethuraman, SriramanGovindan, SenthilkumarSakthivel, AnanthBabu, Rathish Maller
The thermal characteristics of brakes significantly influence the braking performance of passenger vehicles. During braking, most of the vehicle’s kinetic energy is converted into internal energy in the brake disk through friction, leading to complex coupled thermomechanical issues. This article focuses on the analysis of a disk brake from a specific vehicle model. Using STAR-CCM+, a virtual disk brake bench simulation model was established. Based on the multi-timescale and multi-field coupled simulation method, the analysis of the brake disk temperature and field distributions under cyclic braking conditions was carried out. Subsequently, this work investigated the effects of factors such as thermal conduction, thermal radiation, and the shape of ventilation ribs on the heat generation and dissipation characteristics of the brake disk. Finally, a thermal deformation simulation and optimization method was developed using STAR-CCM+, ABAQUS, and ALTAIR OPTISTRUCT software. In comparison
Jiang, DaxinHan, ChaoDeng, JianjiaoJia, QingZhao, Wentao
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
CTTC C2, Electrical Components and Systems
This document specifies a universal method of measuring the thickness change of friction materials to determine the effects of temperature. The test applies to both disc and drum-type linings commonly used in hydraulic and air brake systems for automotive or commercial vehicle applications. This document describes several methods for thermal swell and growth. Method A is where the friction material is in contact with a heated surface to simulate the heat input to the pad that occurs during actual usage. Method B uses an oven to heat the freestanding material and is an approximate procedure requiring less instrumentation. Method A is recommended for disc brake pad assemblies, noise insulators, or flat coupons, while Method B is recommended for curved drum brake linings. This document also describes how to test the warmed-up disc brake pads and noise insulators for hot compressibility using Method A.
Brake Linings Standards Committee
For mature virtual development, enlarging coverage of performances and driving conditions comparable with physical prototype is important. The subjective evaluation on various driving conditions to find abnormal or nonlinear phenomena as well as objective evaluation becomes indispensable even in virtual development stage. From the previous research, the road noise had been successfully predicted and replayed from the synthesis of system models. In this study, model based NVH simulator dedicated to virtual development have been implemented. At first, in addition to road noise, motor noise was predicted from experimental models such as blocked force and transfer function of motor, mount and body according to various vehicle conditions such as speed and torque. Next, to convert driver’s inputs such as acceleration and brake pedal, mode selection button and steering wheel to vehicle’s driving conditions, 1-D performance model was generated and calibrated. Finally, the audio and visual
Park, SangyoungDirickx, TomKang, Yeon JuneNam, Jeong MinGonçalves, Vinícius Valencia
With the advancement of control technology in the automotive field, there is a possibility of cross-system redundant control between various actuators. As for the braking system, current brake-by-wire system often uses mechanical backup braking methods to give the vehicle a certain braking capacity after failure. However, in the mechanical backup braking mode, the brake master cylinder is connected to the supporting wheel cylinder, and the brake assist is lost, which leads to an increase in brake pressure and makes it difficult for the driver to step on the brake pedal. Meanwhile, due to the limitation of the brake master cylinder stroke, the maximum braking deceleration of the vehicle is only 3 m/s2 after the driver fully presses the brake pedal. The above two defects greatly affect the safety of the vehicle during backup braking. To solve the above problems, this article takes electric vehicles as the research object, designs a new type of hydraulic circuit for the braking system
Tian, BoshiLi, LiangLiao, YinshengLv, HaijunHu, ZhimingSun, YueQu, Wenying
Passenger safety is of utmost importance in the automotive industry. Hence, the health of the components, especially the brake system, should be effectively monitored. On account of the significance of artificial intelligence in recent times, any brake fault resulting during operation can be accurately detected using a combination of advanced measurement techniques and machine learning algorithms. The current study focuses on developing and evaluating a robust framework to quantify and classify the faults of a general automotive drum brake. For this purpose, a new experiment for a drum brake, which can be operated under a controlled environment with known levels of faults, is developed. The experiment is instrumented to measure the fundamental dynamic signals (such as brake torque, the angular velocity of the brake drum, and brake shoe accelerations) during a braking event. The response signals from several experiments with various faults and operating conditions serve as the input
Yella, AkashBharinikala, Yuva Venkat AjaySundar, Sriram
This SAE Recommended Practice covers minimum requirements for air brake hose assemblies made from reinforced elastomeric hose and suitable fittings for use in automotive air brake systems, including flexible connections from frame to axle, tractor to trailer, trailer to trailer, and other unshielded air lines with air pressures up to 1 MPa, that are exposed to potential pull or impact. This hose is not to be used where temperatures, external or internal, fall outside the range of -40 to +100 °C. Provisions for extreme low temperature performance testing to -54 °C are included in the document.
Hydraulic Hose and Hose Fittings Committee
The improvement of heat dissipation performance of ventilated brake discs is vital to braking safety. Usually, the technical approaches shall be material optimization or structural improvement. In this paper, a simulation model of the heat transfer of brake discs is established using STAR-CCM+ software. Cast iron, aluminum metal matrix composite (Al-MMC), and carbon-ceramic composite materials (C-SiC) are compared. The results show that: Al-MMC has better thermal conductivity so that a more uniform temperature gradient distribution shall be formed; C-SiC has poorer heat capacity yet, according to previous studies, it has better thermal stability, which is the ability to ensure its friction factor under high-temperature condition; cast iron performs better with convective heat transfer rate, which enhances the heat transfer between the surface and surrounding flow field. Based on the results, this paper proposes four types of material combined brake discs using different friction
Wang, JiaruiJia, QingZhao, WentaoXia, ChaoYang, Zhigang
This paper presents a novel Dual-source Electro-Hydraulic Brake system (D-EHB) that incorporates a redundant braking module to enhance safety and reliability. The D-EHB is designed to address the critical issue of brake failure in vehicles, which can lead to severe accidents. The D-EHB system comprises two independent units: the Main Brake Unit (MBU) and the Redundant Brake Unit (RBU). Each unit has its own hydraulic power source. The MBU's hydraulic pressure is generated by a combination of a servo motor, ball screw, and servo piston, while the RBU has a simpler structure, with hydraulic pressure generated by a motor and plunger pump combination. Mathematical models for each component of the D-EHB have been developed and validated using AMESim. The mathematical models of each part were then combined to design a wheel cylinder hydraulic pressure estimation algorithm that can calculate the wheel cylinder pressure based on motor and valve output signals, making the system applicable to
Wang, WenqiangZhao, XuezhiShangguan, Wen-BinRen, Bingyu
Enhancing the heat dissipation performance of ventilated brake discs is a complex challenge involving fluid dynamics, solid mechanics, rotational motion, thermal transfer, and frictional interactions. To address this issue, this study developed a comprehensive simulation model for brake disc heat dissipation, informed by wind tunnel testing conducted on a multi-purpose vehicle (MPV) model. The research included a sensitivity analysis of design parameters related to the brake disc blades and employed a topology optimization approach to enhance the disc's heat dissipation capabilities. The study successfully demonstrated the applicability of topology optimization to the intricate thermal simulation of brake discs. As a result, a novel brake disc blade design with a unique geometry was developed, and the underlying principles contributing to its improved thermal performance were thoroughly analyzed. The optimized brake disc design, distinguished by a carefully contoured inlet curve and a
Zhao, WentaoJia, QingQin, LanweiXia, ChaoChao, HanDaxin, JiangYang, Zhigang
With the development of automotive electrification and intelligent technology, vehicles have higher and higher requirements for braking systems. On the one hand, it requires it to have an active braking function, and at the same time facilitates the integration with other control systems of the chassis domain. The system should minimize oil pollution as much as possible, and under the premise of ensuring the pedal force, it can be used to recover the brake energy as much as possible to improve the range of electric vehicles as possible. The new brake system based on Electronic mechanical brake (EMB) as a line -controlled decoupling braking system can not only meet the needs of the brake pedal sensation, but also achieve continuous and accurate control of braking power. It can effectively Taking into account braking economy, braking safety, and braking comfort. In addition, the development of EMB technology is still immature and the failure rate is high, so research on EMB's fault
Li, XuesongQin, KeyunZheng, HongyuKaku, Chuyo
This paper introduces an innovative in-wheel electric drive system designed for all-wheel drive Formula Student Electric racing cars. The system utilized AMK's DD5-14-10-POW-18600-B5 model as the driving motor, with a gearbox transmission ratio of 13.2 determined through Optimum Lap simulation. A two-stage gear reducer was integrated into a unified hub-spoke assembly, which connected directly to the ten-inch carbon fiber rim. In this paper, three conventional FSEC planetary gear reducer shafting designs are introduced, and a new shafting structure is proposed. Then the four structures are compared in multiple dimensions. Subsequently, we designed the shafting of the gear group, determined the size parameters of the shafting structure and the bearing type, and completed the verification. The planetary carriers were integrated with the wheel-edge suspension columns. Meanwhile, a special floating brake disc mounting method was employed, which increased the brake disc's heat capacity by
Guo, RuijieZeng, JunhaoYang, YuancaiHou, YijieZhu, ZhonghuiXiong, Jiaming
Brake-by-wire systems have received more and more attention in the recent years, but a close look on the available systems shows, that they have not reached full by-wire level yet. Most systems are still using hydraulic connections between main cylinder and the brake calipers on at least one axle to ensure functional safety. Mostly, this is the front axle, since the front brakes have to convert more kinetic energy during braking manoeuvers. Electromechanical actuators are currently used for rear brakes in hybrid brake-by-wire applications solely, since a loss of the front brake calipers can lead to severe conditions and control loss of the vehicle during braking. Further, the higher mass of battery electric vehicles (BEVs) leads to much higher braking forces on both axles and to increased sizes of the electromechanical calipers. This article presents a concept for a brake-by-wire system for battery electric vehicles, which features electromechanical brake actuators on all corners and a
Heydrich, MariusLenz, MatthiasIvanov, ValentinStoev, JulianLecoutere, Johan
Due to the frequent and significant changes of the motor torque of hybrid vehicles during driving often occurring with the driving conditions, and the existence of the transmission tooth surface switching caused by the change in torque direction, as well as the underdamping characteristics caused by the relatively simple transmission system, the vehicle is prone to vehicle body shaking problems under conditions such as the transformation from acceleration conditions to energy recovery conditions, and exit from energy recovery. In order to ensure the ride smoothness of the hybrid vehicle while improving its power response performance, aiming at the underdamping characteristics of its transmission system, this paper develops a transmission PCM vibration suppression control strategy based on the vehicle control system to enhance the torque response and smoothness after Tip out or Tip in after braking. This strategy includes the identification of preconditions and the active intervention
Jing, JunchaoZhang, JunzhiZuo, BotaoLiu, YiqiangHuang, WeishanXue, Tianjian
Drivers sometimes operate the accelerator pedal instead of the brake pedal due to driver error, which can potentially result in serious accidents. To address this, the Acceleration Control for Pedal Error (ACPE) system has been developed. This system detects such errors and controls vehicle acceleration to prevent these incidents. The United Nations is already considering regulations for this technology. This ACPE system is designed to operate at low speeds, from vehicle standstill to creep driving. However, if the system can detect errors based on the driver's operation of the accelerator pedal at various driving speeds, the system will be even more effective in terms of safety. The activation threshold of ACPE is designed to detect operational errors, and it is necessary to prevent the system from being activated during operational operations other than operational errors, i.e., false activation. This study focuses on the pedal operation characteristics of pedal stroke speed and
Natsume, HayatoShen, ShuncongHirose, Toshiya
Videos from cameras onboard a moving vehicle are increasingly available to collision reconstructionists. The goal of this study was to evaluate the accuracy of speeds, decelerations, and brake onset times calculated from onboard dash cameras (“dashcams”) using a match-moving technique. We equipped a single test vehicle with 5 commercially available dashcams, a 5th wheel, and a brake pedal switch to synchronize the cameras and 5th wheel. The 5th wheel data served as the reference for the vehicle kinematics. We conducted 9 tests involving a constant-speed approach (mean ± standard deviation = 57.6 ± 2.0 km/h) followed by hard braking (0.989 g ± 0.021 g). For each camera and brake test, we extracted the video and calculated the camera’s position in each frame using SynthEyes, a 3D motion tracking and video analysis program. Scale and location for the analyses were based on a 3D laser scan of the test site. From each camera’s position data, we calculated its speed before braking and its
Flynn, ThomasAhrens, MatthewYoung, ColeSiegmund, Gunter P.
Onboard sensing and Vehicle-to-Everything (V2X) connectivity enhance a vehicle's situational awareness beyond direct line-of-sight scenarios. A team led by Southwest Research Institute (SwRI) demonstrated 20% energy savings by leveraging these information streams on a 2017 Prius Prime as part of the first phase of the ARPA-E-funded NEXTCAR program. Combining this technology with automation can improve vehicle safety and enhance energy efficiency further. In the second phase, SwRI demonstrated 30% energy savings over the baseline. This paper summarizes the efforts to achieve 30% savings on a 2021 Honda Clarity PHEV. The vehicle was outfitted with the SwRI Ranger automated driving suite for perception and localization. Model-based control schemes with selective interrupt and control (SIC) were used to override stock vehicle controls and actuate the accelerator, brake, and electric power steering system, enabling drive-by-wire and steer-by-wire functionalities. Key algorithms contributing
Bhagdikar, PiyushGankov, StanislavSarlashkar, JayantHotz, ScottRajakumar Deshpande, ShreshtaRengarajan, SankarAdsule, KartikDrallmeier, JosephD'Souza, DanielAlden, JoshuaBhattacharjya, Shuvodeep
The Electro-Mechanical Brake (EMB) eliminates the traditional hydraulic pipeline arrangement through high-performance servo motor at the vehicles brake calipers. This provides a foundation for intelligent electric vehicles to achieve high-precision, fast response, and strong robustness in brake clamping force control. However, EMB faces some tricky nonlinear disturbances such as varying system stiffness disturbances, complex friction obstruction, etc., which leads to a decline in clamping force control performance. Therefore, this paper proposes a high-quality clamping force control for EMB considering nonlinear disturbances. First, we establish an EMB actuator model including the permanent magnet synchronous motor, mechanical transmission mechanism, and system stiffness characteristics. Next, the high-quality clamping force control strategy for EMB is designed. An outer-loop clamping force regulator is developed using Proportional-Integral-Derivative (PID) feedback control and
Zhao, HuiChaoChen, ZhigangLi, LunWang, ZhongshuoWu, JianChen, ZhichengZhu, Bing
Gray cast iron is a cost-effective engineering material widely used for heavy duty engine blocks and brake rotor discs in vehicles. Thermomechanical fatigue (TMF) frequently occurs during vehicle operation due to temperature fluctuations in brake rotors. To speed up the design of the component, design structurally sounding brake rotors, and prevent premature thermally induced cracking, it is critical to investigate TMF behavior of the gray cast iron. This study presents a series of fatigue tests, including isothermal low cycle fatigue (LCF) tests at temperatures up to 700°C, as well as in-phase (IP) and out-of-phase (OP) TMF tests across various temperature ranges. Because of the asymmetric behavior in tension and compression, creep behaviors in both tension and compression and oxidation are also studied. These behaviors are the key to enable simulation of thermally induced cracks in rotors.
Liu, YiLee, HeewookHess, DevinCoryell, Jason
The use of drum brakes in Battery Electric Vehicles (BEVs) offers numerous benefits, including energy efficiency, reduced brake dust emissions, and reliable performance under challenging weather conditions. The capability of regenerative braking reduces the friction brake application frequency in BEVs and therefore the brakes can be prone to corrosion and performance degradation especially considering conventional disc brake systems. The closed design of a drum brake prevents corrosion of the friction-components by sealing out water, dirt or snow. A common sealing concept is performed with a labyrinth between the gap of the rotating drum and the axle mounted backplate. A hermetical isolation of water and snow ingress into the drum cannot be achieved with this concept, so additional aerodynamic measures are necessary to deflect the air/water path and protect the inner brake components. Additionally, interfaces like wheel cylinders, electric park brake parts, brake shoe pins, and axle
Hennicke, TimKuthada, TimoBernhard, AdrianReichhart, LeanderWeber, EugenMoers, MichaelRettig, Marc
This recommended practice covers the attachment of bonded anti-noise brake pad shims only. Mechanically attached shims (those without bonding) are not covered by this procedure.
Brake Linings Standards Committee
Disc brakes play a vital role in automotive braking systems, offering a dependable and effective means of decelerating or halting a vehicle. The disc brake assembly functions by converting the vehicle's kinetic energy into thermal energy through friction. The performances of the brake assembly and user experience are significantly impacted by squeal noise and wear behaviour. This paper delves into the fundamental mechanisms behind squeal noise and assesses the wear performance of the disc brake assembly. Functionally graded materials (FGMs) are an innovative type of composite material, characterized by gradual variations in composition and structure throughout their volume, leading to changes in properties such as mechanical strength, thermal conductivity, and corrosion resistance. FGMs have emerged as a groundbreaking solution in the design and manufacturing of brake rotors, addressing significant challenges related to thermal stress, wear resistance, and overall performance. These
C V, PrasshanthS, GurumoorthyBhaskara Rao, LokavarapuS, SridharS, Badri NarayananKumar, AjayBiswas, Sayan
The incorporation of natural available material into synthetic materials to form a fiber within a single polymer matrix has been ignited since environment concerns become crucial nowadays. Composite materials embedded with two or more types of fibers makes a composite as hybrid. The study of hybridization of natural and synthetic fibers brings out superior mechanical and tribological properties. In our present studies, fabrication of jute & glass fiber reinforced epoxy-based polymer hybrid composites were carried out using resin infusion technique. For comparing the various properties, the composite made of pure jute fiber i.e 100% jute, pure glass fiber i.e 100% glass, the hybrid composite containing 75% jute and 25% glass fiber, 50% jute and 50% glass fiber, and 25% jute and 75% glass fiber were made and its functional behaviors were studied. The results revealed the hybrid composite containing 25% jute and 75% glass fiber possessed maximum tensile strength of 292±5.8 MPa, flexural
J, ChandradassT, ThirugnanasambandhamM, Amutha SurabiP, Baskara SethupathiRajendran, RMurugadoss, Palanivendhan
This work pioneers the development of eco-friendly brake pads using coconut fiber and sawdust as reinforcement materials, combined with abrasives and friction modifiers. The innovation lies in the utilization of these natural fibers, which are not only cost-effective and abundantly available but also contribute to the sustainability of brake pad manufacturing. The study aims to explore the feasibility and performance of these organic fibers in brake pad applications. Coconut fiber and sawdust were chosen for their unique properties, such as high strength-to-weight ratio and thermal stability, making them ideal candidates for enhancing brake pad performance. The inclusion of abrasives and friction modifiers further optimizes the braking efficiency and durability of the pads. Comprehensive testing was conducted, including hardness, compression, wear (using a pin-on-disc apparatus), and thermogravimetric analysis (TGA), to thoroughly evaluate the mechanical properties and thermal
Ajay Devan, V.Gunasekar, N.Ravikumar, K.Balaguru, B. A.Deepak, S.
The SAE Formula prototypes are developed by students, where in the competition, various aspects of project definitions are evaluated. Among the factors evaluated for scoring is the braking system, in which the present work aims to present the development and design of the braking system of a vehicle, prototype of Formula SAE student competition. As it is a project manufactured mostly by students, where the chassis, suspension system, electrical, transmission and powertrain are developed, it is important to first pass the static and safety tests, where the brakes of the four wheels are tested during deceleration at a certain distance from the track. To enable such approval and also to demonstrate, for the competition judges, the veracity of the system’s sizing, all the parameters and assumptions of the choice of the vehicle’s braking system are presented, thus ensuring their reliability, efficiency and safety. Using drawing and simulation software such as SolidWorks and Excel for
Gomes, Lucas OlenskiGrandinetti, Francisco JoséMartins, Marcelo SampaioSouza Soares, Alvaro ManoelReis de Faria Neto, AntônioCastro, Thais SantosAlmeida, Luís Fernando
This SAE Recommended Practice is derived from common methods used within the industry and is not intended to validate a given design or configuration. This SAE Recommended Practice applies to vehicles below 4540 kg of gross vehicle weight rating.
Brake NVH Standards Committee
This SAE standard specifies a method for testing and measuring a normalized elastic constant of brake pad assemblies using ultrasound. This document applies to disc brake pad assemblies and its coupons or segments used in road vehicles.
Brake Linings Standards Committee
Brake disc temperature is a critical factor influencing the performance and wear characteristics of braking systems in automobiles. Hence it is very important to optimize the correlation of brake disc temperature prediction with test. In this study critical parameters of Brake Disc temperature evaluation are identified, and algorithm is used to optimize the critical parameters to achieve the correlation of prediction with experiment data. Through a series of controlled experiments and simulations, disc temperatures are monitored under different braking conditions and simultaneously input parameters for prediction are optimized to achieve the correlation. Statistical methods were applied to evaluate the observed correlations and to model the predictive behavior of brake disc temperatures. Finally, A front-loading tool is developed to optimize the brake disc keeping target thermal capacity via algorithm. The findings of this study are expected to contribute to the enhancement of brake
Negi, Ayush SinghKochhar, Raman
TOC
Tobolski, Sue
Electromechanically actuated drum brakes are one interesting option for the realization of brake-by-wire systems for future electric vehicles. A key characteristic for the design and control of electromechanical brake actuators is the actuation point stiffness, as this quantity relates the actuation force to the required actuator position. The various known approaches for the control of electromechanical brakes, which primarily focus on disc foundation brakes, typically rely on the stiffness curve at least to some extent. A transfer of these approaches to drum brakes is not straightforward, because the actuation point stiffness for drum brakes is much more complex compared to disc brakes. In particular, a strong hysteretic behavior is observed for the standing drum and a considerable change of the stiffness and hysteresis can be observed for the rotating drum. Although drum brakes have been used for decades these effects have not been thoroughly discussed in literature, yet. Hence
Peter, SimonJanhsen, MichaelStümke, DanielGörges, Daniel
The essential aspect of an automobile is its braking system. Brakes absorb the kinetic energy of the rotating parts, i.e., wheels, and dissipate this energy into the surroundings in the form of heat. This entire process is quite complex, and the brake disc is subjected to extreme thermal and structural stresses along with deformation, which might damage the disc. This paper presents a structural and thermal analysis of an Audi Q3 brake disc using an ANSYS 2021-R1. The present brake disc is designed using SOLIDWORKS software. Composite materials are added in the ansys material library by adding their respective characteristics. The thermal analysis mainly focused on temperature variation and directional heat flux. The structural study was conducted to understand the stresses developed during braking and the deformations observed. Along with a comprehensive structural and thermal analysis, this work has also estimated the life of the brake disc, the factor of safety, and the real-time
Bahulekar, AtharvShiralkar, ShaunakJomde, AmitShamkuwar, SonalPatane, PrashantShinde, TarangDandin, Shahbaz
This paper’s aim is to explain alternative friction lining formulations based on inorganic polymer binders for the production of new, future-proof brake friction materials. The aspects of high-temperature stability in the fading tests of the AKM- and AMS tests, as well as the reduction in PM10 emissions compared to classic organic friction materials, make these materials particularly fascinating for future use. Additionally, the energy savings potential of this type of friction lining could be of particular importance when sustainability considerations further influence our development activities in friction brake related applications.
Milczarek, Roman PaulWittig, Niels
Brake drag in disc brakes occurs during the off-brake-phase, when the brake is not applied but friction contacts between brake disc and pads persist. First and foremost, the resulting drag torque increases energy consumption, where a few Newton meters can have a significant impact on the crucial factor – range – of battery-electric-vehicles. Moreover, brake wear is accelerated in conjunction with enlarged taper-wear of the pads. Additional wear can also imply increased brake particle emissions which are going to be limited by upcoming regulations due to their potential health risk. In this light different countermeasures aim to create and maintain a sufficient air gap between brake disc and pads when the brake is released to avoid residual friction contacts. Among others these include optimization of piston retraction by adjusting the seal-grooves and integrating pad springs into the caliper to push the pads back. State of the art to analyze the effectiveness of countermeasures are
Huchtkoetter, PhilippNeubeck, JensWagner, Andreas
Items per page:
1 – 50 of 2105