Browse Topic: Brake fluids
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycol ethers, and appropriate inhibitors for use in the braking system of any motor vehicle, such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR) or a terpolymer of ethylene, propylene, and a diene (EPDM
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
This SAE Recommended Practice is intended to provide basic recommended practices for aid in the development and use of safe and efficient practices for all operations involving the production, handling, and dispensing of SAE J1703 motor vehicle brake fluids and SAE J1704 borate ester-based brake fluids
This SAE Standard provides the testing and functional requirements guidance necessary for a leak detection device that uses any non-A/C refrigerant tracer gas, such as helium or a nitrogen-hydrogen blend, to provide functional performance equivalent to a refrigerant electronic leak detector. It explains how a non-refrigerant leak detector’s calibration can be established to provide levels of detection equal to electronic leak detectors that meet SAE J2791 for R-134a and SAE J2913 for R-1234yf
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled metal
The braking system in a vehicle is one of the most crucial parts for proper and safe operation. It is required to slow down or stop the vehicle and work by converting the kinetic energy of the wheel to heat. It is essential to dissipate the generated heat for optimal working and the long life of the disc brakes. Heat generated is due to friction between the brake pad and disc. Due to overheating of brakes due to prolonged braking and heavy braking, brake fade occurs. This leads to boiling of the brake fluid, gassing, and glazing of brake pads, hence reducing braking performance. Therefore, in this study, we used computer simulations to determine the best design that allows for the most heat dissipation by analyzing four different conventional disc brake designs. It was found that the slotted disc brake design had the maximum value of heat transfer coefficient (87.2% more than that of the vented disc brake) and also correspondingly the most decrease in the maximum temperature (39.56
This SAE Recommend Practice specifies a method for measuring the deflection of friction materials and disc brake pad assemblies in a manner more consistent with classical material compressive strain testing. This SAE test method differs from SAE J2468 in the preload and maximum load applied to the test sample when deflection is measured. It adopts the material applied stress levels found in ISO 6310 (0.5 to 8.0 MPa) using a 25 mm diameter flat plunger
The noise and vibration are directly related to the perceived quality of a vehicle and it is crucial that the manufacturers focus their efforts to reduce that. When an unusual noise appears, it is a great challenge to define an approach for understanding the phenomenon, identifying the cause and then defining a solution to reduce its effect. A “knocking noise” coming from the brake rigid pipes is perceived while driving the vehicle in a cobbled pavement at low speed and it coincides with the closure of brake system module inlet valves. When a valve closes quickly, there is a sudden change in the flow velocity, which generates a pressure transient in the brake fluid inducing vibrations in the rigid pipes. The pressure transient can be minimized by reducing the speed at which the pressure waves travel in the pipe. The bulk modulus, the density of the fluid, the velocity of valve closing, the Young’s modulus and the dimensions of the pipes, determine the wave speed. The objective of this
The noise and vibration are directly related to the perceived quality of a vehicle and it is crucial that the manufacturers focus their efforts to reduce that. When an unusual noise appears, it is a great challenge to define an approach for understanding the phenomenon, identifying the cause and then defining a solution to reduce its effect. A “knocking noise” coming from the brake rigid pipes is perceived while driving the vehicle in a cobbled pavement at low speed and it coincides with the closure of brake system module inlet valves. When a valve closes quickly, there is a sudden change in the flow velocity, which generates a pressure transient in the brake fluid inducing vibrations in the rigid pipes. The pressure transient can be minimized by reducing the speed at which the pressure waves travel in the pipe. The bulk modulus, the density of the fluid, the velocity of valve closing, the Young’s modulus and the dimensions of the pipes, determine the wave speed. The objective of this
This SAE Recommended Practice describes the recommended methods for testing flexible harness coverings for use on ground vehicle electrical distribution systems. This SAE Recommended Practice shall apply to all tapes, extruded tube, and textile tube
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
This SAE Recommended Practice was prepared to provide engineers, designers, and manufacturers of motor vehicles with a set of minimum performance requirements in order to assess the suitability of silicone and other low water tolerant type brake fluids (LWTFs) for use in motor vehicle brake systems. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM). In the development of the recommended requirements and test procedures contained herein, it is concluded that the LWTFs must be functionally compatible with braking systems designed for SAE J1703 and SAE J1704 fluids. To utilize LWTFs to the fullest advantage, they should not be mixed with other brake fluids. Inadvertent mixtures of LWTFs with fluids meeting SAE J1703 are not known to have any adverse effects on performance, but not all combinations have been tested. Vehicle manufacturer’s recommendations
This article describes experimental research results of the inductive sensor of the electropneumatic clutch control system for the mechanical transmission. Inductive sensors are used to determine the position of the car body, the position of the controls and the position of the rod of the clutch control actuator. The design of the clutch pedal position sensor is proposed, which can be brought into line with the master cylinder to unify the clutch control systems. Complete unification of the automated electropneumatic clutch control system for trucks will allow creating modifications in which it is possible to completely abandon the use of brake fluid in the drive, which will improve the ergonomic and environmental performance of the vehicle. The advantages of such sensors are the ability to receive a signal in digital form without additional converters, the ability to work using only two wires, no contact between moving parts, resistance to aggressive environments and compact size. The
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled metal
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report
This Recommended Practice is derived from OEM and tier-1 laboratory tests and applies to two-axle multipurpose passenger vehicles, or trucks with a GVWR above 4536 kg (10 000 pounds) equipped with hydraulic disc or drum service brakes. Before conducting testing for a specific brake sizes or under specific test conditions, review, agree upon, and document with the test requestor any deviations from the test procedure. Also, the applicable criteria for the final test results and wear rates deemed as significantly different require definition, assessment, and proper documentation; especially as this will determine whether or not Method B testing is needed. This Recommended Practice does not evaluate or quantify other brake system characteristics such as performance, noise, judder, ABS performance, or braking under extreme temperatures or speeds. Minimum performance requirements are not part of this recommended practice. Consistency and margin of pass/fail of the minimum requirements
Hydraulic brake pipes are responsible for fluid flows and as consequence the proper functionality of the most important safety system in passenger vehicles. Even so, this component has no much development since it was applied in the 1930s. In fact, the brake pipes can be particularly vulnerable components, being mainly in an exposed condition under the vehicle and near of components with relative movement. Externally it needs to survive a wide range of environmental conditions whereas internally it must withstand pressurized brake fluid. Brake pipes failures is an obvious safety hazard. Using simulations with car body, burst and corrosion bench test and multiple linear regression, this paper attempts to present, basing the pipes lifetime in the burst bench test, how the pipes are really vulnerable or not to damages caused by interference with other components, corrosion or even in frequent abrasion. As well as pipes behavior during interference, how such as corrosion in spot exposed
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
This practice describes recommended performance requirements of fuel tank closures used in conjunction with fuel level senders and fuel delivery systems. It provides guidelines that assure interchangeability and compatibility between fuel tanks and fuel pump/sender closure systems without specifying a specific closure system design. These systems may be used in rigid fuel tank systems made of plastic or metal. Complete details of specific designs shall be established by mutual agreement between customer and supplier. The dimensions and performance requirements are selected to optimize a The closure system, durability and reliability with respect to — Vehicle SHED measurements — Fuel system / crash integrity — LEV – II useful life b Assembly and service ease and reliability c Packaging of fuel tanks and their sending units d Interchangeability of sender closures between various fuel tank designs
This standard specifies a method for testing and measuring the deflection of friction materials assemblies and compressibility of friction materials. This standard applies to disc brake pad assemblies and its coupons or segments, brake shoe lining and its coupons or segments, and brake blocks segments used in road vehicles. This SAE test method is consistent in intent with the ISO 6310 and the JIS 4413
Brake bleeding is the process of removing air bubbles present on hydraulic brake systems from the master cylinder to the calipers of a vehicle, including the brake pipes and hoses. This is very important procedure affecting on brake performance, but still has been a key issue in automobile industry for last decades because reaching best bleeding performance has a limit that there is always remaining air in brake system. In this paper, it is reported on numerical and experimental investigations into the topic of bleeding performance improvements. Compressible brake fluid turbulent flow simulation with two-phase mixture model was performed to investigate the details of the bleeding performance drop during its cycles. The rig test of the hollow cylinder was carried out in order to secure the brake consumption amount curve whose results were used for the criterion of the parametric simulations using Tait equation to estimate the property of the brake fluid with the bulk modulus of 19,535
This SAE Recommended Practice promotes uniformity in the evaluation and qualification tests conducted on GDI fuel injectors used in gasoline engine applications, where fuel pressures are typically well above 1 MPa. The document scope is limited to electrically-actuated fuel injection devices used in automotive GDI systems and is primarily restricted to bench tests
Motor vehicle brake fluid must conform to the requirements of SAE J1703 or J1704, not only when manufactured, but also after extended storage in any commercial packaging container. The purpose of this SAE Information Report is to generate an awareness of the major problems involved in the storage of brake fluids and, to some extent, provide means of circumventing them. It is also the purpose of this document to relate to experience and to test data accumulated and to list certain conclusions which should aid in the proper selection of containers for brake fluid
This procedure is applicable to squeal type noise occurrences for passenger car and light truck type vehicles that are used under conventional operating conditions. For the purposes of this test procedure, squeal is defined as occurring between 900 and 18 000 Hz
This SAE Recommended Practice is intended to provide basic recommended practices for aid in the development and use of safe and efficient practices for all operations involving the production, handling, and dispensing of SAE J1703 Motor Vehicle Brake Fluids and SAE J1704 Borate Ester Based Brake Fluids
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled
One potential fire ignition source in a motor vehicle is the hot surfaces on the engine exhaust system. These hot surfaces can come into contact with combustible and flammable liquids (such as engine oil, transmission fluid, brake fluid, gasoline, or Diesel fuel) due to a fluid leak, or during a vehicle collision. If the surface temperature is higher than the hot surface ignition temperature of the combustible or flammable liquid in a given geometry, a fire can potentially ignite and propagate. In addition to automotive fluids, another potential fuel in post-collision vehicle fires is grass, leaves, or other vegetation. Studies of hot surface ignition of dried vegetation have found that ignition depends on the type of vegetation, surface temperature, duration of contact, and ambient conditions such as temperature and wind speed. Ignition can occur at surface temperatures as low as 300 °C, if the vegetation is in contact with the surface for 10 minutes or longer. At surface temperatures
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycolethers and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
This SAE Recommended Practice describes the recommended methods for testing flexible harness coverings for use on ground vehicle electrical distribution systems. This Recommended Practice shall apply to all tapes, extruded tube and textile tube
This Recommended Practice applies to on-road vehicles with a GVWR below 4540 kg equipped with disc brakes
This SAE Recommended Practice provides general guidelines on the material selection, construction and qualification of components and wiring systems used to construct wiring systems for Heavy Duty Vehicles The guidelines are limited to primary wiring systems of less than 50 V and includes cable sizes American Wire Gage 20 to AWG 4 on heavy-duty on-highway trucks. The document identifies appropriate operating performances requirements. This document excludes the male to female connection of the SAE J560 connectors
This SAE Standard covers molded rubber boots used as end closures on drum-type wheel brake actuating cylinders to prevent the entrance of dirt and moisture, which could cause corrosion and otherwise impair wheel brake operation. The document includes performance tests of brake cylinder boots of both plain and insert types under specified conditions and does not include requirements relating to chemical composition, tensile strength, or elongation of the rubber compound. Further, it does not cover the strength of the adhesion of rubber to the insert material where an insert is used. The rubber material used in these boots is classified as suitable for operation in a temperature range of −40 to +120 °C ± 2 °C (−40 to + 248 °F ± 3.6 °F
This SAE Standard encompasses connectors that form the electrical interface(s) between the heavy duty lighting device(s) and the truck and truck/trailer wiring harness system. This document provides design and performance requirements based upon the mechanical, electrical and environmental conditions and covers applications of connectors for direct current electrical systems of 24 V nominal or less in heavy-duty signaling and marking devices. This standard excludes forward lighting devices (i.e., fog lamps) but includes the following list of lamps: Stop Lamps Tail Lamps Turn Signal/Hazard Warning Lamps Side Marker Lamps Clearance Lamps Identification Lamps Back Up Lamps Side-Turn Signal Lamps Work Lamps License Lamps Chassis Component Status (ABS) Lamps Identification Lamps
Items per page:
50
1 – 50 of 305