Browse Topic: Brake fluids

Items (305)
Brake caliper commonly utilizes rubber or spring components to maintain specific clearance range for sliding characteristics, rendering them susceptible to rattle noise. The Electro-Mechanical Brake (EMB) caliper has attracted attention for its advantageous features such as reduced brake drag, optimized vehicle layout, and precise brake control. However, the inclusion of additional components related to the dry-type pressurizing system results in increased caliper weight and susceptibility to rattle noise. This study thoroughly examines rattle noise characteristics in our prototype EMB caliper, identifying primary noise sources on the piston and guide-pin sides. Implementing piston seals and guide-pin boots tightening force proves the effectiveness in improving rattle noise characteristics. Collisions between the piston and ball-screw head can be mitigated by piston inner seal, significantly reducing rattle noise. The effectiveness of the piston outer seal is limited and can be
Yoon, BoramJeon, Kyeong HunBoo, SangpilShin, ChoongsikKim, Tae Hoon
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycol ethers, and appropriate inhibitors for use in the braking system of any motor vehicle, such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR) or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
This SAE Recommended Practice is intended to provide basic recommended practices for aid in the development and use of safe and efficient practices for all operations involving the production, handling, and dispensing of SAE J1703 motor vehicle brake fluids and SAE J1704 borate ester-based brake fluids
Brake Fluids Standards Committee
This SAE Standard provides the testing and functional requirements guidance necessary for a leak detection device that uses any non-A/C refrigerant tracer gas, such as helium or a nitrogen-hydrogen blend, to provide functional performance equivalent to a refrigerant electronic leak detector. It explains how a non-refrigerant leak detector’s calibration can be established to provide levels of detection equal to electronic leak detectors that meet SAE J2791 for R-134a and SAE J2913 for R-1234yf
Interior Climate Control Service Committee
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled metal
USCAR
The braking system in a vehicle is one of the most crucial parts for proper and safe operation. It is required to slow down or stop the vehicle and work by converting the kinetic energy of the wheel to heat. It is essential to dissipate the generated heat for optimal working and the long life of the disc brakes. Heat generated is due to friction between the brake pad and disc. Due to overheating of brakes due to prolonged braking and heavy braking, brake fade occurs. This leads to boiling of the brake fluid, gassing, and glazing of brake pads, hence reducing braking performance. Therefore, in this study, we used computer simulations to determine the best design that allows for the most heat dissipation by analyzing four different conventional disc brake designs. It was found that the slotted disc brake design had the maximum value of heat transfer coefficient (87.2% more than that of the vented disc brake) and also correspondingly the most decrease in the maximum temperature (39.56
Arora, RishabhRao, VikramSharma, RishabChahal, RujulSingh, Manvesh
The Continuous Fluid Level and Quality Indicator (CFLQI) technology is focused on increasing the sampling frequency of brake fluid reservoir volume and detecting specific brake fluid contaminants. CFLQI targets to improve diagnostics detection range and resulting degraded vehicle operation strategies by increasing sensitivity to brake fluid loss and the addition of a fluid quality feature. The theory of CFLQI is to improve future autonomous and highly automated vehicle performance, both of which will have reduced driver input and service schedules, by providing earlier fluid level and fluid health warnings. The two technologies selected to prove theory of operation were ultra-sonic sensor and capacitive sense element technology. Both technologies show initial capability to meet fluid sensing targets with system level ASIL D ASIC design. The CFLQI compliments and improves upon current technology of brake pad wear sensors, leak detection diagnostics and brake fluid level monitoring. The
Leether, ColeNguyen, HungWeber, Steven
This SAE Recommend Practice specifies a method for measuring the deflection of friction materials and disc brake pad assemblies in a manner more consistent with classical material compressive strain testing. This SAE test method differs from SAE J2468 in the preload and maximum load applied to the test sample when deflection is measured. It adopts the material applied stress levels found in ISO 6310 (0.5 to 8.0 MPa) using a 25 mm diameter flat plunger
Brake Linings Standards Committee
The noise and vibration are directly related to the perceived quality of a vehicle and it is crucial that the manufacturers focus their efforts to reduce that. When an unusual noise appears, it is a great challenge to define an approach for understanding the phenomenon, identifying the cause and then defining a solution to reduce its effect. A “knocking noise” coming from the brake rigid pipes is perceived while driving the vehicle in a cobbled pavement at low speed and it coincides with the closure of brake system module inlet valves. When a valve closes quickly, there is a sudden change in the flow velocity, which generates a pressure transient in the brake fluid inducing vibrations in the rigid pipes. The pressure transient can be minimized by reducing the speed at which the pressure waves travel in the pipe. The bulk modulus, the density of the fluid, the velocity of valve closing, the Young’s modulus and the dimensions of the pipes, determine the wave speed. The objective of this
Guarenghi, Vinicius MendesAntunes, Diego SeveroCoutinho, IsmaelLazzari, MaurícioAnselmo, Pablo TonettiPizzi, Rafael Fortuna
The noise and vibration are directly related to the perceived quality of a vehicle and it is crucial that the manufacturers focus their efforts to reduce that. When an unusual noise appears, it is a great challenge to define an approach for understanding the phenomenon, identifying the cause and then defining a solution to reduce its effect. A “knocking noise” coming from the brake rigid pipes is perceived while driving the vehicle in a cobbled pavement at low speed and it coincides with the closure of brake system module inlet valves. When a valve closes quickly, there is a sudden change in the flow velocity, which generates a pressure transient in the brake fluid inducing vibrations in the rigid pipes. The pressure transient can be minimized by reducing the speed at which the pressure waves travel in the pipe. The bulk modulus, the density of the fluid, the velocity of valve closing, the Young’s modulus and the dimensions of the pipes, determine the wave speed. The objective of this
Garcia, Samantha A.Ferreto, ClaudioCarvalho, AdemirAmorim, Leonardo
The invention of the wheel was an important milestone in the history of mankind. With it was possible to significantly reduce the friction between an object and the ground, requiring less force to move them and making it possible to transport items of interest. The use of the wheel in vehicles brought great advantages, however, it became necessary to control the speed, to avoid accidents with the environment around it. As a result, there was a need for the development of brake systems. The main function of the brake system is the transmission of the braking torque to the wheels, through the conversion of kinetic energy into heat. However, conventional brake systems had a serious problem with the car's ability to control while braking. The ability to control the vehicle, known as handling, is dependent on the adhesion between the tire and the ground. Driving loss occurs when the wheels lock during braking. To solve this problem, the Antilock Brake System (ABS) was created, an active
Fiorentin, Thiago AntonioDe Borba, Thiago
This SAE Recommended Practice describes the recommended methods for testing flexible harness coverings for use on ground vehicle electrical distribution systems. This SAE Recommended Practice shall apply to all tapes, extruded tube, and textile tube
Harness Covering Standards Committee
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
Brake Fluids Standards Committee
This SAE Recommended Practice was prepared to provide engineers, designers, and manufacturers of motor vehicles with a set of minimum performance requirements in order to assess the suitability of silicone and other low water tolerant type brake fluids (LWTFs) for use in motor vehicle brake systems. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM). In the development of the recommended requirements and test procedures contained herein, it is concluded that the LWTFs must be functionally compatible with braking systems designed for SAE J1703 and SAE J1704 fluids. To utilize LWTFs to the fullest advantage, they should not be mixed with other brake fluids. Inadvertent mixtures of LWTFs with fluids meeting SAE J1703 are not known to have any adverse effects on performance, but not all combinations have been tested. Vehicle manufacturer’s recommendations
Brake Fluids Standards Committee
The fully decoupled brake by wire system is a complex system consisting of mechanical components such as springs and rubber and hydraulic structural components coupled together. Compared to conventional braking systems, it is characterized by the full decoupling of the brake pedal from the brake wheel cylinders in normal braking mode, and the pressure fluctuations in the wheel cylinders do not affect the pedal feel. In order to predict brake pedal feel in a passenger car, a dynamic model was developed for both normal and backup braking modes, taking into account the variation of the volume modulus of the brake fluid and the frictional forces of the master cylinder pistons. The influence of different pedal input speeds on the pedal feel characteristic curve was analyzed using static vehicle tests and the related parameters of the braking system were identified in order to correct the design data. Subsequently, a dynamic test of the vehicle pedal feel was conducted to establish a
Yin, FaguoWang, MinghuiJiang, YongfengKang, Yingzi
This article describes experimental research results of the inductive sensor of the electropneumatic clutch control system for the mechanical transmission. Inductive sensors are used to determine the position of the car body, the position of the controls and the position of the rod of the clutch control actuator. The design of the clutch pedal position sensor is proposed, which can be brought into line with the master cylinder to unify the clutch control systems. Complete unification of the automated electropneumatic clutch control system for trucks will allow creating modifications in which it is possible to completely abandon the use of brake fluid in the drive, which will improve the ergonomic and environmental performance of the vehicle. The advantages of such sensors are the ability to receive a signal in digital form without additional converters, the ability to work using only two wires, no contact between moving parts, resistance to aggressive environments and compact size. The
Mikhalevich, Mykola GrygorovychOleksandr, DziubenkoLeontiev, DmitryBogomolov, ViktorKlimenko, ValeriyYarita, AlexandrChevychelova, Olena
This test procedure outlines the necessary test equipment (test fixture, dynamometer, data acquisition system, etc.) and test sequence required to test for low-frequency brake noise (200 Hz to 1.25 kHz) on a brake noise dynamometer. It is intended to complement SAE J2521, which focuses on high-frequency brake squeal. This RP applies to passenger cars and light trucks with a gross vehicle weight rating below 4536 kg. Before using this RP for heavier vehicles, consult and agree with the test requestor and the testing facility
Brake NVH Standards Committee
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled metal
USCAR
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report
USCAR
This Recommended Practice is derived from OEM and tier-1 laboratory tests and applies to two-axle multipurpose passenger vehicles, or trucks with a GVWR above 4536 kg (10 000 pounds) equipped with hydraulic disc or drum service brakes. Before conducting testing for a specific brake sizes or under specific test conditions, review, agree upon, and document with the test requestor any deviations from the test procedure. Also, the applicable criteria for the final test results and wear rates deemed as significantly different require definition, assessment, and proper documentation; especially as this will determine whether or not Method B testing is needed. This Recommended Practice does not evaluate or quantify other brake system characteristics such as performance, noise, judder, ABS performance, or braking under extreme temperatures or speeds. Minimum performance requirements are not part of this recommended practice. Consistency and margin of pass/fail of the minimum requirements
Truck and Bus Hydraulic Brake Committee
Hydraulic brake pipes are responsible for fluid flows and as consequence the proper functionality of the most important safety system in passenger vehicles. Even so, this component has no much development since it was applied in the 1930s. In fact, the brake pipes can be particularly vulnerable components, being mainly in an exposed condition under the vehicle and near of components with relative movement. Externally it needs to survive a wide range of environmental conditions whereas internally it must withstand pressurized brake fluid. Brake pipes failures is an obvious safety hazard. Using simulations with car body, burst and corrosion bench test and multiple linear regression, this paper attempts to present, basing the pipes lifetime in the burst bench test, how the pipes are really vulnerable or not to damages caused by interference with other components, corrosion or even in frequent abrasion. As well as pipes behavior during interference, how such as corrosion in spot exposed
Ciolfi, MárcioPacheco, CelsoMathias, RodrigoSouza da Silva, AdrianoCasagrande, AndréDias, Edilson
The use of reinforced phenolic composite material in application to hydraulic pistons for brake calipers has been well established in the industry - for sliding calipers (and certain fixed calipers with high piston length to diameter ratios). For decades, customers have enjoyed lower brake fluid temperatures, mass savings, improved corrosion resistance, and smoother brake operation (less judder). However, some persistent concerns remain about the use of phenolic materials for opposed piston calipers. The present work explores two key questions about phenolic piston application in opposed piston calipers. Firstly, do opposed piston calipers see similar benefits? Do high performance aluminum bodied calipers, where the piston may no longer be a dominant heat flow path into the fluid (due to a large amount of conduction and cooling enabled by the housing), still enjoy fluid temperature reductions? Are there still benefits for judder with the much shorter length to diameter ratio the
Antanaitis, David B.Ciechoski, ChrisRiefe, Mark
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
The scope of SAE J3143 will cover non-metallic line assemblies intended for containing and circulating lubricant (PAG, POE compressor oils), liquid, and gaseous R-134a, R-152a, or R-1234yf refrigerant in automotive air-conditioning systems. SAE J3143 will also provide the necessary hose permeation values used in SAE J2727 mobile air-conditioning system refrigerant emission charts. The assembly shall be designed to minimize permeation of the refrigerant, contamination of the system, and to be functional over a temperature range of -30 to 125 °C. Specific construction details are to be agreed upon between user and supplier. Figure 1 shows a typical A/C system with TXV
Interior Climate Control MAC Supplier Committee
This practice describes recommended performance requirements of fuel tank closures used in conjunction with fuel level senders and fuel delivery systems. It provides guidelines that assure interchangeability and compatibility between fuel tanks and fuel pump/sender closure systems without specifying a specific closure system design. These systems may be used in rigid fuel tank systems made of plastic or metal. Complete details of specific designs shall be established by mutual agreement between customer and supplier. The dimensions and performance requirements are selected to optimize a The closure system, durability and reliability with respect to — Vehicle SHED measurements — Fuel system / crash integrity — LEV – II useful life b Assembly and service ease and reliability c Packaging of fuel tanks and their sending units d Interchangeability of sender closures between various fuel tank designs
Fuel Systems Standards Committee
This standard specifies a method for testing and measuring the deflection of friction materials assemblies and compressibility of friction materials. This standard applies to disc brake pad assemblies and its coupons or segments, brake shoe lining and its coupons or segments, and brake blocks segments used in road vehicles. This SAE test method is consistent in intent with the ISO 6310 and the JIS 4413
Brake Linings Standards Committee
Brake bleeding is the process of removing air bubbles present on hydraulic brake systems from the master cylinder to the calipers of a vehicle, including the brake pipes and hoses. This is very important procedure affecting on brake performance, but still has been a key issue in automobile industry for last decades because reaching best bleeding performance has a limit that there is always remaining air in brake system. In this paper, it is reported on numerical and experimental investigations into the topic of bleeding performance improvements. Compressible brake fluid turbulent flow simulation with two-phase mixture model was performed to investigate the details of the bleeding performance drop during its cycles. The rig test of the hollow cylinder was carried out in order to secure the brake consumption amount curve whose results were used for the criterion of the parametric simulations using Tait equation to estimate the property of the brake fluid with the bulk modulus of 19,535
Mo, Jang-Oh
This SAE Recommended Practice promotes uniformity in the evaluation and qualification tests conducted on GDI fuel injectors used in gasoline engine applications, where fuel pressures are typically well above 1 MPa. The document scope is limited to electrically-actuated fuel injection devices used in automotive GDI systems and is primarily restricted to bench tests
Gasoline Fuel Injection Standards Committee
Motor vehicle brake fluid must conform to the requirements of SAE J1703 or J1704, not only when manufactured, but also after extended storage in any commercial packaging container. The purpose of this SAE Information Report is to generate an awareness of the major problems involved in the storage of brake fluids and, to some extent, provide means of circumventing them. It is also the purpose of this document to relate to experience and to test data accumulated and to list certain conclusions which should aid in the proper selection of containers for brake fluid
Brake Fluids Standards Committee
In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation. The control
Bai, ManfeiXiong, LuFu, ZhiqiangZhang, Renxie
ABSTRACT Since the 1980s, the US Army has been successfully utilizing silicone brake fluid (SBF) to protect military ground vehicle brake systems from corrosion in a variety of environments. Currently, the US Army is focusing its ground vehicle brake system efforts on safety by executing a hardware technology upgrade to anti-lock braking systems (ABS). SBF has been purported by many ABS manufacturers to be incompatible with ABS; however, to date no literature exist to prove these claims. Therefore, the work therein investigated these claims by testing SBF versus traditional glycol-based brake fluid in a commercial ABS utilizing a pump and dump cycle approach to simulate ABS actuation. As expected, failure of SBF was observed at 20,000 cycles, while no failure was observed for the traditional fluid. The failure of SBF was investigated and identified to be related to the lower lubricity of SBF in relation to the traditional fluid, as well as SBF incompatibility with internal ABS
Schroeder, ZackerySebastian, TaliaYost, DouglasJeyashekar, NigilBramer, JillWatson, Daniel
This procedure is applicable to squeal type noise occurrences for passenger car and light truck type vehicles that are used under conventional operating conditions. For the purposes of this test procedure, squeal is defined as occurring between 900 and 18 000 Hz
Brake NVH Standards Committee
This SAE Recommended Practice is intended to provide basic recommended practices for aid in the development and use of safe and efficient practices for all operations involving the production, handling, and dispensing of SAE J1703 Motor Vehicle Brake Fluids and SAE J1704 Borate Ester Based Brake Fluids
Brake Fluids Standards Committee
This recommended practice provides a method, test set-up, and test conditions for brake hydraulic component flow rate measurement for high differential pressure (>5 bar) flow conditions. It is intended for hydraulic brake components which affect the brake fluid flow characteristics in a hydraulic brake circuit, that are part of a circuit for which the flow characteristics are important to system operation, and that are exposed to high operating pressure differentials (in the 5 to 100 bar range). Typical applications may include measurement of flow through chassis controls valve bodies, orifices in the brake system such as in flow bolts, junction blocks, and master cylinders, and through brake pipe configurations
Hydraulic Brake Components Standards Committee
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled
USCAR
One potential fire ignition source in a motor vehicle is the hot surfaces on the engine exhaust system. These hot surfaces can come into contact with combustible and flammable liquids (such as engine oil, transmission fluid, brake fluid, gasoline, or Diesel fuel) due to a fluid leak, or during a vehicle collision. If the surface temperature is higher than the hot surface ignition temperature of the combustible or flammable liquid in a given geometry, a fire can potentially ignite and propagate. In addition to automotive fluids, another potential fuel in post-collision vehicle fires is grass, leaves, or other vegetation. Studies of hot surface ignition of dried vegetation have found that ignition depends on the type of vegetation, surface temperature, duration of contact, and ambient conditions such as temperature and wind speed. Ignition can occur at surface temperatures as low as 300 °C, if the vegetation is in contact with the surface for 10 minutes or longer. At surface temperatures
Morse, TimothyCundy, MichaelKytomaa, Harri
An average luxury car contains more than 50 sensors connected, to over 28 microprocessors, through multiple communication networks. What makes these complex machines diagnosable at a dealership, is the ability of sophisticated diagnostics algorithms. Besides use of diagnostics in service, diagnosing a failure is also key for functional safety and vehicle availability. Safety related diagnostic functions such as loss of Brake fluid and leaky fuel system detection are critical. Once a failure is detected, Vehicle availability functions extend vehicle operation, so that one could reach the dealership without being stranded. The number of failure modes in a car could far exceed tens of thousands, thereby identifying key failure modes that require diagnostics can be a challenge. Although regulations have done a great job of enforcing key diagnostic requirements through law, it is still essential to understand the science behind diagnostics development to provide high level of serviceability
Chamarthi, Gopal K.Sarkar, AndrewBaltusis, PaulLaleman, Mark
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
Brake Fluids Standards Committee
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycolethers and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
This SAE Recommended Practice describes the recommended methods for testing flexible harness coverings for use on ground vehicle electrical distribution systems. This Recommended Practice shall apply to all tapes, extruded tube and textile tube
Harness Covering Standards Committee
This Recommended Practice applies to on-road vehicles with a GVWR below 4540 kg equipped with disc brakes
Brake Dynamometer Standards Committee
This SAE Recommended Practice provides general guidelines on the material selection, construction and qualification of components and wiring systems used to construct wiring systems for Heavy Duty Vehicles The guidelines are limited to primary wiring systems of less than 50 V and includes cable sizes American Wire Gage 20 to AWG 4 on heavy-duty on-highway trucks. The document identifies appropriate operating performances requirements. This document excludes the male to female connection of the SAE J560 connectors
Truck and Bus Electrical Systems Committee
This SAE Standard covers molded rubber boots used as end closures on drum-type wheel brake actuating cylinders to prevent the entrance of dirt and moisture, which could cause corrosion and otherwise impair wheel brake operation. The document includes performance tests of brake cylinder boots of both plain and insert types under specified conditions and does not include requirements relating to chemical composition, tensile strength, or elongation of the rubber compound. Further, it does not cover the strength of the adhesion of rubber to the insert material where an insert is used. The rubber material used in these boots is classified as suitable for operation in a temperature range of −40 to +120 °C ± 2 °C (−40 to + 248 °F ± 3.6 °F
Hydraulic Brake Components Standards Committee
This SAE Standard encompasses connectors that form the electrical interface(s) between the heavy duty lighting device(s) and the truck and truck/trailer wiring harness system. This document provides design and performance requirements based upon the mechanical, electrical and environmental conditions and covers applications of connectors for direct current electrical systems of 24 V nominal or less in heavy-duty signaling and marking devices. This standard excludes forward lighting devices (i.e., fog lamps) but includes the following list of lamps: Stop Lamps Tail Lamps Turn Signal/Hazard Warning Lamps Side Marker Lamps Clearance Lamps Identification Lamps Back Up Lamps Side-Turn Signal Lamps Work Lamps License Lamps Chassis Component Status (ABS) Lamps Identification Lamps
Heavy Duty Lighting Standards Committee
Items per page:
1 – 50 of 305