Browse Topic: Brake lines

Items (229)
This document establishes recommended practices to validate acceptable corrosion performance of metallic components and assemblies used in medium truck, heavy truck, and bus and trailer applications. The focus of the document is methods of accelerated testing and evaluation of results. A variety of test procedures are provided that are appropriate for testing components at various locations on the vehicle. The procedures incorporate cyclic conditions including corrosive chemicals, drying, humidity, and abrasive exposure. These procedures are intended to be effective in evaluating a variety of corrosion mechanisms as listed in Table 1. Test duration may be adjusted to achieve any desired level of exposure. Aggravating conditions such as joint rotation, mechanical stress, and temperature extremes are also considered. This document does not address the chemistry of corrosion or methods of corrosion prevention. For information in these areas, refer to SAE J447 or similar standard.
Truck and Bus Total Vehicle Steering Committee
This Recommended Practice covers air braked trucks, truck-tractors, trailers and buses. It enumerates the identification and installation of the air brake components not covered in other SAE recommended practices and standards.
Truck and Bus Brake Systems Committee
The noise and vibration are directly related to the perceived quality of a vehicle and it is crucial that the manufacturers focus their efforts to reduce that. When an unusual noise appears, it is a great challenge to define an approach for understanding the phenomenon, identifying the cause and then defining a solution to reduce its effect. A “knocking noise” coming from the brake rigid pipes is perceived while driving the vehicle in a cobbled pavement at low speed and it coincides with the closure of brake system module inlet valves. When a valve closes quickly, there is a sudden change in the flow velocity, which generates a pressure transient in the brake fluid inducing vibrations in the rigid pipes. The pressure transient can be minimized by reducing the speed at which the pressure waves travel in the pipe. The bulk modulus, the density of the fluid, the velocity of valve closing, the Young’s modulus and the dimensions of the pipes, determine the wave speed. The objective of this
Guarenghi, Vinicius MendesAntunes, Diego SeveroCoutinho, IsmaelLazzari, MaurícioAnselmo, Pablo TonettiPizzi, Rafael Fortuna
The noise and vibration are directly related to the perceived quality of a vehicle and it is crucial that the manufacturers focus their efforts to reduce that. When an unusual noise appears, it is a great challenge to define an approach for understanding the phenomenon, identifying the cause and then defining a solution to reduce its effect. A “knocking noise” coming from the brake rigid pipes is perceived while driving the vehicle in a cobbled pavement at low speed and it coincides with the closure of brake system module inlet valves. When a valve closes quickly, there is a sudden change in the flow velocity, which generates a pressure transient in the brake fluid inducing vibrations in the rigid pipes. The pressure transient can be minimized by reducing the speed at which the pressure waves travel in the pipe. The bulk modulus, the density of the fluid, the velocity of valve closing, the Young’s modulus and the dimensions of the pipes, determine the wave speed. The objective of this
Garcia, Samantha A.Ferreto, ClaudioCarvalho, AdemirAmorim, Leonardo
This SAE Recommended Practice is intended to provide design, interchangeable dimensions, testing procedures, performance requirements, and minimum identification for gladhand-type air line couplers used to connect the brake systems of trucks, truck-tractors, trailers, and dollies when these vehicles are joined to operate as a combination unit.
Truck and Bus Brake Supply and Control Components Committee
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed.
Brake Fluids Standards Committee
Hydraulic brake pipes are responsible for fluid flows and as consequence the proper functionality of the most important safety system in passenger vehicles. Even so, this component has no much development since it was applied in the 1930s. In fact, the brake pipes can be particularly vulnerable components, being mainly in an exposed condition under the vehicle and near of components with relative movement. Externally it needs to survive a wide range of environmental conditions whereas internally it must withstand pressurized brake fluid. Brake pipes failures is an obvious safety hazard. Using simulations with car body, burst and corrosion bench test and multiple linear regression, this paper attempts to present, basing the pipes lifetime in the burst bench test, how the pipes are really vulnerable or not to damages caused by interference with other components, corrosion or even in frequent abrasion. As well as pipes behavior during interference, how such as corrosion in spot exposed
Ciolfi, MárcioPacheco, CelsoMathias, RodrigoSouza da Silva, AdrianoCasagrande, AndréDias, Edilson
This SAE Recommended Practice is intended to provide design, interchangeable dimensions, testing procedures, performance requirements, and minimum identification for gladhand-type air line couplers used to connect the brake systems of trucks, truck-tractors, trailers, and dollies when these vehicles are joined to operate as a combination unit.
Truck and Bus Brake Supply and Control Components Committee
This SAE standard specifies a method for testing and measuring a normalized elastic constant of brake pad assemblies using ultrasound. This document applies to disc brake pad assemblies and its coupons or segments used in road vehicles.
Brake Linings Standards Committee
This SAE Recommended Practice establishes a method of evaluating the structural integrity of the parking brake system of all new trucks, buses, and combination vehicles designed for roadway use in the following classifications: TRACTOR, TRAILER, TRUCK, AND BUS: over 4500 kg (10 000 lb) GVWR.
Truck and Bus Foundation Brake Committee
This SAE Recommended Practice provides a test method and instructions for measuring performance of parking brakes on air- or hydraulic-braked vehicles equipped with in-wheel or drive-line parking brakes. This procedure applies to truck-tractors, trailers, trucks, and buses.
Truck and Bus Brake Systems Committee
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways.
Truck and Bus Brake Systems Committee
This SAE Recommended Practice provides the test procedure and methods to calculate the effectiveness of brake blocks, using an inertia dynamometer. To minimize testing variability, and to optimize standardization and correlation, a single, high volume size of brake block is specified (FMSI No. 4515E) and evaluated in a reference S-cam brake assembly of 419 mm x 178 mm (16.5 in x 7.0 in) size, using a specified brake drum.
Truck and Bus Foundation Brake Committee
This Recommended Practice applies to commercial vehicles equipped with air disc brakes and above 4536 kg of Gross Vehicle Weight Rating. Other assessments on the friction material or rotor related to wear, durability, correlation to product life, noise, judder, compliance to specific regulations, etc., are not part of this RP (Recommended Practice).
Truck and Bus Foundation Brake Committee
This SAE Recommended Practice is intended to provide a uniform means of identification which may be used to classify the friction coefficient of brake linings, based on data obtained from tests conducted in accordance with SAE J661 Brake Lining Quality Test Procedure and SAE J2975 Measurement of Copper and other elements in Brake Friction Materials. NOTE: It is emphasized that this document does not establish friction requirements for brake linings, nor does it designate significant characteristics of brake linings which must be considered in overall brake performance. Due to other factors that include brake system design and operating environment, the friction codes obtained from this document cannot reliably be used to predict brake system performance.
Brake Linings Standards Committee
This Recommended Practice provides a common method to measure wear of friction materials (brake pad assemblies and brake shoes) and their mating parts (brake disc or brake drum). These wear measurements apply to brakes fitted on passenger cars and light trucks up to 4536 kg of Gross Vehicle Weight Rating under the Federal Motor Vehicle Safety Standard (FMVSS), or vehicles category M1 (passenger cars up to nine occupants, including the driver) under the European Community’s ECE Regulations.
Brake Dynamometer Standards Committee
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The trailer holding or sliding on the grade, fully loaded, or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and upgrade directions.
Truck and Bus Brake Systems Committee
This Recommended Practice applies to commercial vehicles equipped with air disc brakes and above 4536 kg of Gross Vehicle Weight Rating. Other assessments on the friction material or rotor related to wear, durability, correlation to product life, noise, judder, compliance to specific regulations, etc., are not part of this RP (Recommended practice).
Truck and Bus Foundation Brake Committee
This SAE Recommended Practice covers equipment capabilities and the test procedure to quantify and qualify the shear strength between the friction material and backing plate or brake shoe for automotive applications. This SAE Recommended Practice is applicable to: bonded drum brake linings; integrally molded disc brake pads; disc brake pads and backing plate assemblies using mechanical retention systems (MRS); coupons from drum brake shoes or disc brake pad assemblies. The test and its results are also useful for short, semi-quantitative verification of the bonding and molding process. This Recommended Practice is applicable during product and process development, product verification and quality control. This Recommended Practice does not replicate or predict actual vehicle performance or part durability.
Brake Linings Standards Committee
This SAE Recommended Practice is intended for qualification testing for brake drums used on highway commercial vehicles with air brakes using an inertia-dynamometer procedure. This Recommended Practice consists of two distinct tests: Part A - durability and speed maintenance test, and Part B - heat check drag sequence test. Each test can be considered to be an independent evaluation of the brake drum which tests different properties.
Truck and Bus Foundation Brake Committee
Keeping it simple is a key component in turning around the fortunes of Kettering University's Formula SAE team. KETTERING UNIVERSITY HAS A LONG-STANDING HISTORY with deep ties to the automotive industry. Formerly known as General Motors Institute (GMI), the university is known for developing engineers with an automotive focus, and the students of the Formula SAE team on campus take that to heart. They are passionate about cars, and having the chance to design, build, and compete their own product is a learning experience unlike any other. As of late, Kettering University Formula SAE has been going through a sort of transition. In the 2016 season, there was a large gap between young and old members; the team was predominately graduating seniors and incoming freshmen, with few class ranks in between. The interest was there, but there was a lot of knowledge that needed to be transferred in a very short amount of time. This created a very foggy outlook for a program that has had success in
This SAE Standard specifies a method for testing and measuring elastic constants in friction materials by precise ultrasonic velocity measurements. Measurement methods are also described for measurement of the out-of-plane modulus as a function of pre-load as well as the measurement of engineering constants as a function of temperature. Finally, methods are formulated to produce all engineering constants as a function of pre-load and temperature.
Brake Linings Standards Committee
This procedure is applicable to squeal type noise occurrences for passenger car and light truck type vehicles that are used under conventional operating conditions. For the purposes of this test procedure, squeal is defined as occurring between 900 and 18 000 Hz.
Brake NVH Standards Committee
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
Brake Linings Standards Committee
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer. Specific gravity alone shows nothing about a materials in use performance. The specific gravity of sintered metal powder friction materials, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376.
Brake Linings Standards Committee
This SAE Information report defines the thermal transport properties important in the assessment of heat management capability of brake lining, shoe, disc and drum materials. The report discusses thermal diffusivity, specific heat capacity, thermal conductivity and thermal expansion. Measurement techniques for the appropriate ASTM standards are identified. The thermal transport properties discussed are material sample properties, not the properties of entire components such as pad assemblies.
Brake Linings Standards Committee
Hydraulic Load sensing brake valves are used in vehicles from a long time in the market. They proportionate the rear brake line pressure according to the rear axle load in order to avoid the rear wheel lock during braking. During the actual test of the Hydraulic load sensing valve on a subject vehicle, there was drop in performance against its expected peak brake performance. In the current work a detailed analysis is made to understand the sensitivity of the load sensing valve & its effect on the vehicle performance. The parameters affecting the valve sensitivity along with vehicle level factors affecting the performance are analysed during the work.
Prasad, Arun KumarShinde, BabasahebGopalakrishn, V A
This Recommended Practice covers air braked trucks, truck-tractors, trailers and buses. It enumerates the identification and installation of the air brake components not covered in other SAE recommended practices and standards.
Truck and Bus Brake Systems Committee
This SAE Recommended Practice establishes uniform test procedures for friction based parking brake components used in conjunction with hydraulic service braked vehicles with a gross vehicle weight rating greater than 4500 kg (10 000 lb). The components covered in this document are the primary actuation and the foundation park brake. Various peripheral devices such as application dashboard switches or indicators are not included. These test procedures include the following: a Brake Related Tests 1 Brake Functional Performance 2 Brake Dynamic Torque Performance 3 Brake Corrosion Resistance 4 Brake Endurance with Torque 5 Brake Endurance without Torque 6 Vibration Resistance 7 Brake Ultimate Static Load 8 Brake Lining Wear Adjuster Function b Actuation Related Tests 1 Mechanical Actuator Functional Performance 2 Mechanical Actuator Endurance 3 Mechanical Actuator Quick Release 4 Mechanical Actuator Ultimate Load 5 Spring Apply Actuator Functional Performance 6 Spring Apply Actuator
Truck and Bus Hydraulic Brake Committee
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed.
Brake Fluids Standards Committee
The transient thermo-mechanical coupling dynamic model of ventilated disc brake with asymmetrical outer and inner thickness was established by means of Msc-marc software. In the model, pad backplate is simplified as a rigid surface with the same shape of brake lining and is bonded together with brake lining. Control node is associated with the rigid surface and the equivalent force that replaces the pressure is applied on the control nodes, of which the degrees of freedom in radial and rotational directions are constrained. With distribution characteristics of disc temperature field, normal stress field and lateral thermo-elastic deformation and thickness for the evaluation, the impacts of brake pad constraints on brake thermomechanical coupling characteristics were analyzed. The simulation results show that the brake pad back plate is an important structure in brake thermo-mechanical coupling analysis, which can’t be ignored in simulation computing. The brake pad constraints can
Meng, DejianZhang, LijunYu, Zhuoping
This specification covers general design and performance requirements for the mobility of towed ground support equipment. The complete mobility requirements for an item of towed aerospace ground equipment not specified herein shall be specified in the individual equipment specification (see 6.4).
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Standard covers minimum requirements for two types of metallic tubing and pipe as used in automotive air brake systems. It includes material and performance specifications, corrosion precautions, and installation recommendations. Copper tubing is designated Type 1, and galvanized steel pipe Type 2.
Air Brake Tubing and Tube Ftg Committee
The brake wear contribution to the environmental pollution has been extensively discussed, with major focus on asbestos and heavy metals released to the environment. Only limited attention was paid to released organic compounds generated during friction processes, although the organic and carbonaceous components are not the minor part in brake lining formulations. Friction processes in brakes are associated with relatively high temperatures and high pressures on the friction surfaces which relates to the thermal decomposition of the organic components in friction materials and to brake lining thermal fade. Thus, this study focuses on the identification of organic compounds released from a model low metallic brake material. Several methods were used for the analysis: GC/MS screening of brake pad samples, brake wear debris and carbonaceous raw materials used in formulations of model pads; GC/MS screening of brake pad samples pyrolyzed at 300, 750, and 1000°C, respectively, and FTIR
Plachá, DanielaPeikertova, PavlinaKukutschova, JanaLee, Poh WahČabanová, KristinaKaras, JiříKuchařová, JanaFilip, Peter
Brake linings have complex microstructure and consist of different components. Fast growing automotive industry requires new brake lining materials to be developed at considerably shorter time periods. The purpose of this research was to generate the knowledge for optimizing of brake friction materials formula with mathematical methods which can result in minimizing the number of experiments/test, saving development time and costs with optimal friction performance of brakes. A combination of processing methods, raw materials and testing supported with the Artificial Neural Network (ANN) and Taguchi design of experiment (DOE) allowed achieving excellent results in a very short time period. Friction performance and wear data from a series of Friction Assessment and Screening Test (FAST) were used to train an artificial neural network, which was used to optimize the formulations. The averaged COF, COF variation and wear were used as the output parameters. Weight percentage of raw
Daei, Amir RezaDavoudzadeh, NimaFilip, Peter
In engineering development, simulation methods are frequently used to perform thermal and mechanical stress components analysis. In brake systems, where the components are exposed to mechanical and thermal loads, the numerical analysis is very helpful. Once a numerical model for brake assembly is available, it will be possible to understand the effects of successive brake applications on the temperature distribution in drum brake’s friction materials. This is a fundamental aspect to determine, for instance, the thermal stress distribution which is related to the warming and cooling of the brakes. In this work, an analytical solution to calculate stabilized temperature was used to establish a heat flux through a pneumatic S cam drum brake’s friction material applied to a numerical model in a finite element analysis. After including the effects of the riveting process and the warming in one of the 17 t bus front brake lining, areas where the stresses vary with considerable amplitudes
Travaglia, Carlos Abílio PassosAmorim, Gustavo BorgesLopes, Luiz Carlos RolimRodrigues, Adan Araujo
This SAE Recommended Practice establishes a method of testing the structural integrity of the brake system of all new trucks, buses, and combination vehicles designed for roadway use and falling in the following classifications: a Truck and Bus—Over 4500 kg (10 000 lb) GVWR b Combination vehicle—Towing vehicle over 4500 kg (10 000 lb) GVWR The test consists of two distinct tests: a Structural Endurance Test followed by a Structural Ultimate Strength Test. NOTE—These two tests originated from separate procedures, and were combined in this Recommended Practice. Each test can be considered to be an independent evaluation of the service brake’s structure. Based on time available, cost limitations, and the desired evaluation and historical data available, either of these tests could be considered as a complete evaluation of the brake’s structure.
Truck and Bus Foundation Brake Committee
In engineering development, simulation methods are frequently used to perform thermal and mechanical stress components analysis. In brake systems, where the components are exposed to mechanical and thermal loads, the numerical analysis is very helpful. Once a numerical model for brake assembly is available, it will be possible to understand the effects of successive brake applications on the temperature distribution in drum brake's friction materials. This is a fundamental aspect to determine, for instance, the thermal stress distribution which is related to the warming and cooling of the brakes. In this work, an analytical solution to calculate stabilized temperature was used to establish a heat flux through a pneumatic S cam drum brake's friction material applied to a numerical model in a finite element analysis. After including the effects of the riveting process and the warming in one of the 17 t bus front brake lining, areas where the stresses vary with considerable amplitudes
Travaglia, Carlos Abílio PassosRodrigues, Adan AraujoLopes, Luiz Carlos Rolim
The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found. Unstable mode prediction results using parameters before
Du, YongchangGao, PuWang, YujianLv, Yingping
This SAE Recommended Practice provides instructions and test procedures for air braked trailers and dollies used in single and multiple trailer combinations on highway. This document is not intended for off-highway application.
Truck and Bus Brake Systems Committee
This SAE Recommended Practice establishes a method of evaluating the structural integrity of the parking brake system of all new trucks, buses, and combination vehicles designed for roadway use in the following classifications: TRACTOR, TRAILER, TRUCK, AND BUS: over 4500 kg (10 000 lb) GVWR.
Truck and Bus Foundation Brake Committee
Items per page:
1 – 50 of 229