Browse Topic: Brake pedals
Test procedure for anti-lock brake system (ABS/anti-lock) performance for trucks, truck-tractors, and buses over 4536 kg (10000 pounds
This code is intended for commercial vehicles over 4500 kg (10 000 lb) with brake systems having typical service pressure ranges 0 to 14.1 mPa (0 to 2050 psi) hydraulic or 0 to 830 kPa (0 to 130 psi) air and is not directly applicable to vehicles with other systems. Air over hydraulic systems are to be tested as air systems
This SAE Recommend Practice specifies a method for measuring the deflection of friction materials and disc brake pad assemblies in a manner more consistent with classical material compressive strain testing. This SAE test method differs from SAE J2468 in the preload and maximum load applied to the test sample when deflection is measured. It adopts the material applied stress levels found in ISO 6310 (0.5 to 8.0 MPa) using a 25 mm diameter flat plunger
This paper introduces a new systematic workflow for the rapid evaluation of energy-efficient automated driving controls in real vehicles in controlled laboratory conditions. This vehicle-in-the-loop (VIL) workflow, largely standardized and automated, is reusable and customizable, saves time and minimizes costly dynamometer time. In the first case study run with the VIL workflow, an automated car driven by an energy-efficient driving control previously developed at Argonne used up to 22 % less energy than a conventional control. In a VIL experiment, the real vehicle, positioned on a chassis dynamometer, has a digital twin that drives in a virtual world that replicates real-life situations, such as approaching a traffic signal or following other vehicles. The real and virtual systems interact in a close-loop fashion: the automated driving control directs accelerator and brake pedals based on measurements from the real vehicle and from the perception of the digital twin’s surrounding
The braking capacity of reducing the speed or even keeping the vehicle stoped is extremely important in the design of any brake system, as more than meeting legislation requirements; it directly affects the safe operation of the vehicle and its users. A fundamental component, which requires notable attention, is the friction material, which is designed to establish a compromise between mechanical properties, friction coefficient, noise propensity, deformation, wear, among others. However, braking capacity is a combined response for several of these friction material properties, along with the performance of other brake system components, such as the brake chamber, disc and caliper. This work aims to analyze firstly the influence of the friction material deformation and secondly the brake system deformation on the total stroke of the brake chamber. To the first one, three different formulations of friction material, applied to commercial vehicles, were selected. For these materials
With the increasingly serious global environmental and energy problems, as well as the increasing number of vehicles, pure electric vehicles with its advantages of environmental protection, low noise and renewable energy, become an effective way to alleviate environmental pollution and energy crisis. Due to the current pure electric vehicle power battery technology is not perfect, the range of pure electric vehicle has a great limit. Through the braking energy recovery, the energy can be reused, the energy utilization rate can be improved, and the battery life of pure electric vehicles can be improved. In this paper, a pure electric vehicle is taken as the analysis object, and the whole vehicle analysis model is built. Through the comparative analysis, based on the driver's braking intention and vehicle running state, the braking energy recovery control strategy of double fuzzy control is proposed. The fuzzy controller of braking intention based on the brake pedal opening and the
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel. These aspects are considered while evaluating the brake system performance in
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities. The research object is the
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a b self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with
In order to improve the driving experience of drivers and the efficiency of vehicle development, a method of objective drivability for passenger car powertrain is proposed, which is based on prior knowledge, principal component analysis (PCA) and SMART principle. First, drivability parameters of powertrain for passenger cars are determined according to working principle of powertrain, including engine torque, engine speed, gearbox position, accelerate pedal, brake pedal, steering wheel angle, longitudinal acceleration and lateral acceleration, etc. The drivability quantitative index system is designed based on field test data, prior knowledge and SMART principles. Then, D-S evidence theory and sliding window method are applied to identify objective drivability evaluation conditions of powertrain for passenger cars, including static gearshift conditions, starting conditions, creep conditions, tip-in, tip out, upshift conditions, acceleration, downshift conditions and de-acceleration. In
Road traffic accidents resulting from alcohol-impaired driving are increasing globally despite several measures, currently in place, to curb the trend. For this reason, recent research aims at integrating alcohol early-detection systems and driving simulator experiments to identify intoxicated drivers. However, driving simulator experiments on drunk driving have focused mostly on male participants than female drivers whose characteristics have scarcely been explored. Hence in this paper, vehicle dynamic control inputs on steering, braking, and acceleration performance of 75 licensed female drivers with an upshot of alcohol at four different blood alcohol concentration (BAC) levels (0%, 0.03%, 0.05%, and 0.08%) were investigated. The participants completed simulated driving in a fixed-based simulator experiment coupled with real-time ecological scenarios to extract discrete responses. Vehicle dynamic characteristics data were obtained as signatures to alcohol detection based on the
A new type of electric brake booster, which can control brake pedal feeling completely with software, has been developed to explore how a brake system can be used to differentiate and personalize vehicles. In the future, vehicles may share an increasing amount of hardware and rely more heavily on software to differentiate between models. Car sharing, vehicle subscriptions, and other new business models may create a new emphasis on the personalization of vehicles that may be achieved most cost effectively by using software. This new brake booster controls the brake pedal force and brake pressure independently based on the brake pedal stroke so that the pedal feeling is completely defined by software. The booster uses two electric motors and one master cylinder. One electric motor controls the pedal force and provides an assist force that amplifies the force that the driver applies to the brake pedal. The second electric motor moves the master cylinder piston independently of the brake
One of the major discomforts while driving any medium to heavy commercial vehicle is brake judder. Brake judder can be defined as vibrations felt on steering wheel or brake pedal or cabin floor, when brakes are applied at certain speeds and pressures. The frequencies of this judder lie as high as 100 Hz to as low as 20 Hz. The brake judder is caused by a number of factors, which makes providing a universal solution difficult. Some of the causes are related to part fitment, part quality, material selection, manufacturing process, Design consideration, environmental factors, etc. This paper gives us a brief idea about resolution of judder problem in intermediate commercial vehicle by series of trials and this methodology can be applied in heavy commercial vehicles also. This paper gives reader an insight about step by step root cause analysis of brake judder on actual vehicle and an approach in resolving the judder problem
Throughout the automotive industry, the application of an integrated electronic booster (IEB) system has been actively applied following with diversify powertrain types and expand autonomous vehicles.[1, 2] Compared to the existing vacuum boosters, the performance advantages of IEB are 1) robustness against environmental changes, 2) rapid hydraulic reactivity, etc., and the advantages of cost / university are 1) flexibility for powertrain changes 2) weight saving 3) package simplification. Although IEB has a great advantage in performance and cost, it still needs a lot of research in various fields to realize the braking feeling, which is the performance of the emotional aspect, similar to the existing system. [3, 4
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc
General criteria are presented as guidelines for: control device location, resistance, and actuation of hand and foot controls by the machine’s operator. The criteria are based upon physical limitations as defined by human factors engineering principles
This study examined the effects of formalized training on driver behavior and understanding of an adaptive cruise control (ACC) system with drivers experienced with ACC. Sixteen participants drove an ACC-equipped vehicle while following a lead vehicle around a test track. Participants completed three laps, each involving different lead vehicle behaviors, such as making a lane change or stopping at a red light, that test the limitations and capabilities of ACC (i.e., boundary conditions) of the subject ACC system. Immediately before driving, half of the participants watched a training video describing how the ACC system would respond to these lead vehicle behaviors. Participants’ knowledge of the ACC system limitations was assessed by a pre- and post-test questionnaire, and participants’ interactions with the ACC system - including braking behavior, other pedal movements, and actuation of ACC via steering wheel controls - were recorded by video cameras. We did not observe differences in
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster. Firstly, introduced the working principle of Ebooster and ESP, and a suitable pressure-building circuit was selected for the dual brake actuator system; Secondly, after the BFB failure of Ebooster, the rule-based
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system. However, the principles used at the braking system level can be applied at the
This SAE Recommended Practice provides a means to observe and evaluate a towed vehicle under a variety of road conditions to determine its behavior. The drivetrain should be evaluated by conducting SAE J1144
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways
This SAE Recommended Practice presents requirements for the structural integrity of the brake system of all new trucks, buses, and combinations of vehicles designed for roadway use and falling into the following classifications: a Truck and Bus—Over 4500 kg (10 000 lb) GVWR b Combination Vehicles—Towing vehicle over 4500 kg (10 000 lb) GVWR The requirements are based on data obtained from SAE J294
Items per page:
50
1 – 50 of 372