Browse Topic: Brake calipers
This SAE Recommended Practice establishes uniform engineering nomenclature for wheels, hubs, rims, and their components used in truck, bus, and trailer applications. This nomenclature and accompanying drawings are intended to define functional truck wheel, hub, and rim designs. For nomenclature specific to “passenger-type” disc wheels, refer to SAE J1982. The International Standard (ISO) nomenclature is shown in parentheses when different than SAE J393
As technology evolves, the number of sensors and available data on vehicles grow exponentially. In this context, it is essential to use sensors for monitoring key components, increasing safety and reliability, and gathering data useful for mechanical dimensioning and control systems. This paper presents an application of strain-gauged bolts on brake calipers fixation of two electric vehicles. With this approach it was possible to evaluate the loads applied to the brake pads fixation zone and correlate them with braking behavior, therefore gaining insights on braking conditions and system state for an improved braking function control. The goal of the study is analyzing the strengths and limitations of the method and proposing developments to deploy it in real applications. This is particularly important and novel for electric vehicles, where powertrains can create positive/negative torques and generate complex interactions with braking system. Strain-gauges are a long-known technology
Recently, there’s a massive flow of change in the automotive industry with the coming era of electric vehicles and self-driving (autonomous) vehicles. The automotive braking system field is not an exception for the change and there are not only lots of new systems being developed but also demands for researches for optimizations of conventional brake systems fitting to the newly appeared systems such as E-Booster and Electric Motor Brake (EMB) Caliper. Taking the Electric Motor Brake Caliper for example, it is considered as a very important and useful system for autonomous vehicles because the motor actuator of the caliper is much easier to control with ECUs compared to the conventional hydraulic pressure system. However, easy of control is not the only thing that excites brake system engineers. Since the whole actuating mechanism of the brake systems has been changed, engineers now can see some new ways to solve chronic problems in conventional brake systems such as brake residual
According to the European Environment Agency, air pollution is the biggest environmental health risk in Europe. Since traffic is one of the main contributors of fine dust, technical solutions are necessary to reduce the particulate emission footprint of vehicles. Also, the Health Effects Institute hosted recently an international workshop on non-tailpipe emissions. Brake dust filtration concepts have proven to be a promising solution to significantly reduce fine dust emissions from brakes directly at the source. While CFD simulations for inner-ventilated brakes have become state-of-the-art, a holistic model from particle generation and emission to particle dynamics in the vicinity of the brake is not yet available. However, a good modeling approach of particle tracks is essential to predict filtration efficiencies of brake dust particle filters. Based on current literature data and models, and independent of the turbulence model, filtration efficiencies cannot be predicted with
Constant innovation in machine design, compatible materials and design software is leading additive manufacturing from the prototype shop to the production floor. While the 3D-printed vehicle remains a dream, the technology also known as additive manufacturing (AM) already has proven its ability to create impressively complex part geometries in concepts such as EDAG's ‘Light Cocoon’ (https://www.edag.com/en/innovation/concept-cars). AM enabled the exquisite 8-piston brake calipers used by Bugatti, among other boutique components, and AM machines are becoming as ubiquitous as Bridgeport mills once were for advanced-prototype builds. Low-volume series production use has arrived - see VW news below. Greater scale is on the horizon, driven by constant innovation in machine design, compatible materials and design software. 3D printing technology and applications are exploding in the mobility space, high-lighted by the following recent examples
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
This SAE recommended practice provides procedures and methods for testing service, spring applied parking and combination brake actuators for air disc brake applications. Methods and recommended samples for testing durability, function and environmental performance are listed in 1.1 and 1.2
The particulate emissions of two brake systems were characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust PN regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a section (trip-10) novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of trip-10 tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle. PM2.5 emissions of burnished pads
The objective of the research is to develop a lightweight yet stiff, 2 piston fixed brake caliper which can be used in formula student race car. To make a race car, its components need to be lighter. To stop a car with minimum stopping distance, it needs to have a sophisticated braking system with well-designed components. The designing of the caliper is carried out on the Altair Inspire software. The topology optimisation algorithm is used to minimise the weight of the caliper without compromising the stiffness. The structural analysis is also carried out on the Altair Inspire. The caliper is also tested for fatigue failure using Ansys
The research on coasting resistance is vital to electric vehicles, since the smaller the coasting resistance, the longer the coast-down distance. Vehicle coast resistance consists of rolling resistance, vehicle inner resistance and the aerodynamic drag. The vehicle inner resistance is mainly caused by driveline’s friction loss and oil splash loss. The rolling resistance is decided by tire resistance coefficient, which is influenced by tires and road conditions. And the aerodynamic drag is affected by vehicle’s shape and air. In this paper, four factors including tire pressure, road surface condition, atmosphere temperature, and recirculation on or off are examined. Experimental tests have been conducted on three different vehicles: one subcompact sedan, one compact sedan and one subcompact SUV. Then experimental results have been imported to simulation model to investigate the corresponding influence on NEDC range. The outcome shows that, when the tire pressure is 20% less, the average
Subject document is specifically intended for service brakes and service brakes when used for parking and/or emergency brakes (only) that are commonly used for automotive-type, ground-wheeled vehicles exceeding 4536 kg (10000 pounds) gross vehicle weight rating (GVWR). Subject specification provides the off-vehicle procedures, methods, and processes used to objectively determine suitability of tactical and combat ground-wheeled vehicle brake systems and selected secondary-item brake components (aka, aftermarket or spare parts), including brake “block” for commercial applications only, specifically identified within subject document. Subject specification is primarily based on known industry and military test standards utilizing brake inertia dynamometers. Targeted vehicles and components include, but may not be limited to, the following: a Civilian, commercial, military, and militarized-commercial ground-wheeled vehicles such cargo trucks, vocational vehicles, truck tractors, trailers
This Recommended Practice is derived from the FMVSS 105 vehicle test and applies to two-axle multipurpose passenger vehicles, trucks, and buses with a GVWR above 4540 kg (10000 pounds) equipped with hydraulic service brakes. There are two main test sequences: Development Test Sequence for generic test conditions when not all information is available or when an assessment of brake output at different inputs are required, and FMVSS Test Sequence when vehicle parameters for brake pressure as a function of brake pedal input force and vehicle-specific loading and brake distribution are available. The test sequences are derived from the Federal Motor Vehicle Safety Standard 105 (and 121 for optional sections) as single-ended inertia-dynamometer test procedures when using the appropriate brake hardware and test parameters. This recommended practice provides Original Equipment Manufacturers (OEMs), brake and component manufacturers, as well as aftermarket suppliers, results related to brake
This standard specifies a method for testing and measuring the deflection of friction materials assemblies and compressibility of friction materials. This standard applies to disc brake pad assemblies and its coupons or segments, brake shoe lining and its coupons or segments, and brake blocks segments used in road vehicles. This SAE test method is consistent in intent with the ISO 6310 and the JIS 4413
This document establishes best practices to measure vehicle stopping distance on dry or wet asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations for vehicles with original equipment tires. It is recommended that the test method within be adopted for all vehicles less than 4536 kg (10000 pounds) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used. Since tires play a significant role in stopping distance, this procedure covers tire types typically used as original equipment on new vehicles including all-season, summer, and all-terrain tires. This document may serve as a procedural guideline for all tire types, but the surface temperature correction formulas in this procedure were developed using all-season tires and may not be applicable to other tire types
Caused by a number of beneficial properties inherently from the zinc-nickel material, this electrodeposited alloy is used more and more for cathodically protecting layers on ferrous components like cast iron brake calipers. Direct plating from acidic solutions is the state-of-the-art solution for zinc-nickel surface finishing of these components. To contribute to the continuous improvement of the final component and reduce the finishing cost, areas for improvement have been scrutinized in a current finishing system. Areas for improvement have been identified in the uniformity of the nickel distribution within different current densities and in the handling and economy of the metallic zinc anodes used for zinc metal replenishment. While today’s acidic zinc-nickel electrolytes suit and usually exceed the requirements for an alloy containing 10-15% nickel, nickel incorporation may drop just below 12% incorporation rate in areas which are plated at high current densities. Formation of
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them. It includes a review
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
This Recommended Practice applies to on-road vehicles with a GVWR below 4540 kg equipped with disc brakes
It is well known that improving NV performance and weight saving are reciprocity. Brake squeal free is one of the top priority issues during development of brake system. To date, complex eigenvalue analysis has been utilized for prediction of brake squeal. It solves the structural instability problems by modal coupling which is the phenomenon that natural frequencies of normal modes are quite consistent. The positive real parts of complex eigenvalues are identified as instable vibration which causes brake squeal. On the other hand, the needs for light-weight brake system are higher than before due to recent trends of economizing fuel consumption and high driving performance. In order to obtain coexistence of brake squeal free with weight saving, shape optimization technique has been proposed for complex eigenvalue analysis. In this study, the real parts of eigenvalues are shifted to stable side analytically by optimization algorithm using response curved surface with minimizing mass of
Items per page:
50
1 – 50 of 144