Browse Topic: Brake cylinders

Items (96)
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed. The upper layer employs a three-stage cascaded proportional integral controller
Lu, AoLi, RunfengYinggang, XuNie, ZexinLi, PeilinTian, Guangyu
The Anti-Lock Braking System (ABS) is a safety critical feature primarily used to control slipping of wheels, to maximize available traction and minimize stopping distance. Regulatory authorities of many countries have mandated implementation of an ABS as a compulsory safety feature to be present in all road legal automobiles. Hence, apart from avoiding wheel lock-up, an ABS must also ensure that the vehicle maintains its handling stability and steerability while braking. Thus, it is important that the ABS controller modulate and apply adequate amount of brake cylinder pressure. This paper suggests the use of a Tire Force based algorithm to analyze vehicle behavior and accordingly a control law is employed to modulate the wheel brake pressure. A comparison study has been performed among control methods such as Step Gain Reduced Order Model (SGROM) developed using Machine Learning techniques and Linear Quadratic Regulator (LQR) to determine an optimal control law for brake pressure
Shaikh, Parvez ShagirMehta, Harshal PiyushMallikarjunaiah, UmeshKamble, VijayMaurya, Mithilesh
If a car is braked frequently or at high speed, the thermal decay of brake system performance appears, which reduces the braking performance of the car. To compensate brake moment reduction during braking at thermal decay of brake system, a compensation strategy of brake moment is designed by using “feedforward +PID feedback” to pressure at wheel braking cylinder. The trigger and exit conditions of the strategy for the wheel cylinder pressure are proposed based on the threshold. A vehicle model consisting braking system is established if a vehicle runs at straight line, and the braking distance and braking acceleration are estimated, the results shown that the thermal decay compensation control strategy proposed in this paper can reduce the braking distance and braking time. A braking system experiment if a car runs at straight line is carried out, it demonstrates that if temperature of a disc brake is higher than 300°C, the thermal decay will occur, and friction coefficient decreases
Tan, Zhi-FangKang, YingziShangguan, WenbinWang, WeiweiJiang, Kaihong
In general, automatic braking uses an electric stability control (ESC) hydraulic unit that can automatically increase the hydraulic pressure in the wheel cylinder (hereinafter called wheel pressure), independent of the driver’s braking operation. The hydraulic unit should have sufficient pressure response to apply autonomous emergency braking (AEB). It was necessary for the hydraulic unit to have a high flow rate for the pressure response. To satisfy the performance requirements of the AEB, a brushless motor, which has a high maximum rotational speed and good response, is adopted for the hydraulic unit. Furthermore, sensorless control, which does not require a rotation angle sensor, has been developed so that the motor size can be small and common to conventional units. The developed sensorless control can switch the driving methods in three states: pre-rotation, low speed, and high speed. In the pre-rotational state, the magnetic poles are judged to quickly determine the initial
Kawamura, HikaruKokubo, KoichiNaito, MasayukiIida, TakanoriTakahashi, AtsushiTakahashi, Tomoya
The SAE J2521 procedure applies to high-frequency squeal noise occurrences for on-road passenger cars and light trucks below 4540 kg of GVWR. The procedure incorporates high-temperature and low-temperature test matrixes but does not fully account for the effects of the environment on brake squeal. For this test procedure, squeal occurs when the peak noise level is at least 70 dB(A) between 1.25 kHz and 16 kHz for tests using full suspension corners or full axle assemblies or between 2 kHz and 16 kHz for brakes not using a full suspension corner. Before using this recommended practice for chassis dynamometer testing, review in detail the specifics related to at least (a) instrumentation, including in-cabin microphones, (b) threshold levels for noise detection, (c) temperature control priority between the front and rear axles, (d) vehicle loading and load distribution, (e) cooling air and environmental conditioning, and (f) detailed nomenclature and labeling of channels and sensors
Brake NVH Standards Committee
To solve the contradiction between model complexity and the warning accuracy of the algorithm of the vehicle rollover warning, a rollover state warning method based on the secondary predictive zero-moment point position for vehicles is proposed herein. Taking a sport utility vehicle(SUV) as the research object, a linear three-degrees-of-freedom vehicle rollover dynamics model is established. On the basis of the model, the lateral position of the zero-moment point and its primary and secondary rates of change are calculated. Then, the theoretical solution of time-to-rollover of the vehicles is deduced from the lateral position of the secondary predictive zero-moment point. When the rollover warning index, the lateral position of the zero-moment point, is greater than the set threshold, the active anti-rollover control system will be triggered. The active anti-rollover braking control system adopts a hierarchical control strategy. Taking the rollover warning index as the control target
Wang, HaiyangHou, LimingShangguan, Wen-Bin
With the development of the automobile industry, the requirements of quick response and high performance are put forward for the brake system. Since the traditional brake system cannot achieve these, the international brake parts manufacturers put forward an integrated electro-hydraulic brake system -the 1-Box. It can realize active brake through the servo motor. In addition, by controlling the pressure of the servo cylinder and working with solenoid valves, the wheel cylinder pressure can be controlled. However, it has some problems, such as hydraulic hysteresis disturbance and complex friction obstruction, which cause obstacles to the accurate control of wheel cylinder pressure. In this paper, the active braking pressure control strategy of wheel cylinders is designed based on 1-Box. First, introduce the configuration and the working principle of wheel cylinder pressure control; Next, design the servo cylinder active braking pressure control strategy composed of servo loop and
Zhang, JianLi, LinrunJiang, HongweiLiu, QiuzhengWang, YuYuan, WenjianWu, JianZhang, XuhanChen, Zhicheng
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
Brake Fluids Standards Committee
In this current fast-paced world, releasing a defect free product on time is of utmost importance in the automotive domain. The automobile powertrain is designed with a fine balance of weight and power. Clutch, an intermediate part between engine & transmission in manual transmission vehicle plays crucial role for vehicle smooth drive & functionality. Hydraulic clutch slave cylinder (CSC) which is a part of clutch release system was observed with one failure mode in one of the vehicles during internal road validation. It facilitates to actuate the clutch diaphragm in order to disengage the clutch when clutch pedal is pressed and to re-engage the clutch back when the clutch pedal is released. CSC failure directly disconnects the response of leg to clutch and thus driver may lose vehicle control and can possibly cause a severe vehicle crash. After investigation and dismantling the failed part, wear marks were observed on anti-rotation pin (which locks CSC hydraulic chamber against
Kathrecha, DevanshuChakraborty, AbhirupSebastian, JobinJha, BhaskarM, Sudhan
The fully decoupled brake by wire system is a complex system consisting of mechanical components such as springs and rubber and hydraulic structural components coupled together. Compared to conventional braking systems, it is characterized by the full decoupling of the brake pedal from the brake wheel cylinders in normal braking mode, and the pressure fluctuations in the wheel cylinders do not affect the pedal feel. In order to predict brake pedal feel in a passenger car, a dynamic model was developed for both normal and backup braking modes, taking into account the variation of the volume modulus of the brake fluid and the frictional forces of the master cylinder pistons. The influence of different pedal input speeds on the pedal feel characteristic curve was analyzed using static vehicle tests and the related parameters of the braking system were identified in order to correct the design data. Subsequently, a dynamic test of the vehicle pedal feel was conducted to establish a
Yin, FaguoWang, MinghuiJiang, YongfengKang, Yingzi
This test procedure outlines the necessary test equipment (test fixture, dynamometer, data acquisition system, etc.) and test sequence required to test for low-frequency brake noise (200 Hz to 1.25 kHz) on a brake noise dynamometer. It is intended to complement SAE J2521, which focuses on high-frequency brake squeal. This RP applies to passenger cars and light trucks with a gross vehicle weight rating below 4536 kg. Before using this RP for heavier vehicles, consult and agree with the test requestor and the testing facility
Brake NVH Standards Committee
This SAE Standard establishes a uniform testing procedure and performance requirements for a snowmobile brake control systems
Snowmobile Technical Committee
This Recommended Practice is derived from OEM and tier-1 laboratory tests and applies to two-axle multipurpose passenger vehicles, or trucks with a GVWR above 4536 kg (10 000 pounds) equipped with hydraulic disc or drum service brakes. Before conducting testing for a specific brake sizes or under specific test conditions, review, agree upon, and document with the test requestor any deviations from the test procedure. Also, the applicable criteria for the final test results and wear rates deemed as significantly different require definition, assessment, and proper documentation; especially as this will determine whether or not Method B testing is needed. This Recommended Practice does not evaluate or quantify other brake system characteristics such as performance, noise, judder, ABS performance, or braking under extreme temperatures or speeds. Minimum performance requirements are not part of this recommended practice. Consistency and margin of pass/fail of the minimum requirements
Truck and Bus Hydraulic Brake Committee
In view of the inability of traditional constant spacing policy to maximize the fuel saving rate of the truck platoon when choosing the smaller desired vehicle spacing as the control target, a new control strategy is proposed in this article. This strategy dramatically reduces the fuel consumption of the truck platoon from the start to the formation of a stable platoon, thus greatly increasing the fuel saving rate of the platoon. To prove the effectiveness of the strategy, this article carried out the longitudinal dynamics modeling of the truck and the modeling of the fuel consumption model of engine first. Longitudinal dynamics modeling establishes the dynamic equations for truck braking and nonbraking. The fuel consumption model of engine is built using a three-dimensional map. Second, the design of the controller is described. The controller calculates the desired acceleration of the following vehicle based on the speed error and the following distance error. The longitudinal
Zheng, HongyuWu, JianjunPan, KaiqiangMeng, WanjiaLi, Rui
This SAE Recommended Practice is intended to provide the minimum acceptable criteria for snowmobile hand brake control systems. This recommendation is not intended to cover competition vehicles, nor is it intended to limit development of new and/or improved technology in controls. Although these recommendations are primarily addressed to hand control systems using an outer flexible conduit with a multiple strand inner cable or hydraulic type brake control system, the basic requirements of freedom of movement, strength, material, etc., will apply to any system
Snowmobile Technical Committee
A general principle scheme of IEHB (Integrated Electro-Hydraulic Brake system) is proposed, and the working principle of the system is simply introduced in this paper. Considering the structure characteristics of the hydraulic control unit of the system, a kind of time-sharing control strategy is adopted to realize the purpose of independent and precise hydraulic pressure regulation of each wheel brake cylinder in various brake conditions of a vehicle. Because of the strong nonlinear and time varying characteristics of the dynamic brake pressure regulation processes of IEHB, its comprehensive brake performance is mainly affected by temperature, humidity, load change, the structure and control parameters of IEHB, and so on. Under certain temperature, humidity and load conditions, whether the matching of the structure and the control parameters of IEHB is appropriate or not, the brake performance of a vehicle would be affected directly and severely, and then the safe driving of a vehicle
Yang, XiongLi, JingMiao, HuiShi, Zheng Tang
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
Brake Fluids Standards Committee
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics-of-Failure analysis. In addition the report describes the process used to validate the computer simulation models
G-41 Reliability
This SAE Standard covers molded rubber boots used as end closures on drum-type wheel brake actuating cylinders to prevent the entrance of dirt and moisture, which could cause corrosion and otherwise impair wheel brake operation. The document includes performance tests of brake cylinder boots of both plain and insert types under specified conditions and does not include requirements relating to chemical composition, tensile strength, or elongation of the rubber compound. Further, it does not cover the strength of the adhesion of rubber to the insert material where an insert is used. The rubber material used in these boots is classified as suitable for operation in a temperature range of −40 to +120 °C ± 2 °C (−40 to + 248 °F ± 3.6 °F
Hydraulic Brake Components Standards Committee
Desired mechanical properties including wear resistance at affordable price are the key parameters for which ductile cast irons are widely selected. Particularly, in many automobile applications like brake cylinders, camshafts, connecting rods, gears, pistons and yokes ductile iron is used. Traditionally surface heat treatments like induction hardening and in recent times electron beam and laser hardening are used to improve wear and fatigue resistance of ductile irons. However, the laser surface hardening has a lot of advantages over others such as low distortion due to high power density, flexibility, accuracy, lack of quenching medium and limited grain growth. In this work, laser surface hardening of Ferrito pearlitic ductile iron grade has been carried out. Hardening was performed with a 400W continuous wave fiber laser with the objective to investigate the effect of local tempering in continuous laser multi-pass laser surface hardening on hardness profile of the specimen
Rathod, M. J.Deore, H. A.
To evaluate driver perception of a vehicle powertrain a moving base simulator is a well-established technique. We are connecting the moving base simulator Sim III, at the Swedish National Road and Transport Research Institute with a newly built chassis dynamometer at Vehicular Systems, Linköping University. The purpose of the effort is to enhance fidelity of moving base simulators by letting drivers experience an actual powertrain. At the same time technicians are given a new tool for evaluating powertrain solutions in a controlled environment. As a first step the vehicle model from the chassis dynamometer system has been implemented in Sim III. Interfacing software was developed and an optical fiber covering the physical distance of 500 m between the facilities is used to connect the systems. Further, a pedal robot has been developed that uses two linear actuators pressing the accelerator and brake pedals. The pedal robot uses feedback loops on accelerator position or brake cylinder
Andersson, AndersNyberg, PeterSehammar, HåkanÖberg, Per
The paper describes an algorithm, which estimates the mass of large buses and axle load distribution using pedal position, wheel speed and the wheel cylinder pressure sensors. This algorithm is allowed to achieve the purpose without additional sensors by using the rotational speed sensors from ABS system and air pressure sensors in brake cylinders form ESP system. The axle load distribution algorithm mainly consists of three steps. Firstly, deceleration of the bus is estimated and then the mass of the bus is estimated. After that, the position of the mass centre is estimated. Taking account of the tire nonlinear characteristics under longitudinal forces and vertical forces, mass estimation, deceleration and the position of the mass centre of buses is corrected by the coefficient, which is determined by the wheel cylinder pressure, the wheel speed and mass estimation. When the deceleration, mass of the large bus and the mass center of the whole bus are completely estimated, load of each
Nie, ZhigenZong, ChangfuWan, Ying
This SAE Recommended Practice is intended to provide the minimum acceptable criteria for snowmobile hand brake control systems. This recommendation is not intended to cover competition vehicles nor is it intended to limit development of new and/or improved technology in controls. Although these recommendations are primarily addressed to hand control systems using an outer flexible conduit with a multiple strand inner cable or hydraulic type brake control system, the basic requirements of freedom of movement, strength, material, etc., will apply to any system
Snowmobile Technical Committee
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
Brake Fluids Standards Committee
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics-of-Failure analysis. In addition the report describes the process used to validate the computer simulation models
Ground Vehicle Reliability Committee
This SAE Recommended Practice covers the application of hydraulic brake hose (as defined by current issue of SAE J1401) as used to provide a flexible hydraulic connection between wheel end or axle brake system components on motor vehicles
Automotive Brake and Steering Hose Standards Comm
This SAE Recommended Practice was prepared by the Motor Vehicle Brake Fluids Subcommittee of the SAE Hydraulic Brake Actuating Systems Committee to provide engineers, designers, and manufacturers of motor vehicles with a set of minimum performance standards in order to assess the suitability of silicone and other low water tolerant type brake fluids (LWTF) for use in motor vehicle brake systems. These fluids are designed for use in braking systems fitted with rubber cups and seals made from natural rubber (NR), styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM). In the development of the recommended requirements and test procedures contained herein, it is concluded that the LWTFs must be functionally compatible with existing motor vehicle brake fluids conforming to SAE J1703 and with braking systems designed for such fluids. To utilize LWTFs to the fullest advantage, they should not be mixed with other brake fluids. Inadvertent mixtures of LWTFs
Brake Fluids Standards Committee
This document covers military aircraft wheel and brake equipment
A-5A Wheels, Brakes and Skid Controls Committee
This document specifies minimum performance and durability requirements for satisfactory vehicle usage, and it is applicable to wheel cylinder assemblies from commercial production, after production shipment, shelf storage, and remanufacture (factory rebuild
Hydraulic Brake Components Standards Committee
This SAE Information Report is the listing of recommendations for shelf storage for hydraulic brake components. Included in brake components are wheel cylinders, master cylinders, combination valves, and disc brake caliper assemblies. This document is not a specification. This document embodies the analyses and experiences of many users and manufacturers. Where specific manufacturers' recommendations are made, those recommendations shall supersede the recommendations of this document. This document lists the successful procedures and practices associated with brake components based on long experience of a wide cross section of manufacturers and users. The practices are expected to be applied to all brake components where SAE standards are applicable
Hydraulic Brake Components Standards Committee
This SAE Recommended Practice is intended to provide the minimum acceptable criteria for snowmobile hand brake control systems. This recommendation is not intended to cover competition vehicles nor is it intended to limit development of new and/or improved technology in controls. Although these recommendations are primarily addressed to hand control systems using an outer flexible conduit with a multiple strand inner cable or hydraulic type brake control system, the basic requirements of freedom of movement, strength, material, etc., will apply to any system
Snowmobile Technical Committee
This SAE Standard documents dimensional metric specifications for hydraulic brake system tubing with flared ends, threaded ports, and male tube nuts for the interconnection of major components in automotive hydraulic brake systems. The purpose of this document is to recommend preferred metrically dimensioned components (including alternative choices), that are intended to be functionally compatible with International Organization for Standardization Specification, ISO 4038. Some applications may require sizes of forms other than those shown herein, and this document does not preclude such other details when they are required
Automotive Brake and Steering Hose Standards Comm
This SAE Recommended Practice covers the application of hydraulic brake hose (as defined by current issue of SAE J1401) as used to provide a flexible hydraulic connection between brake system components on motor vehicles
Automotive Brake and Steering Hose Standards Comm
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed
Brake Fluids Standards Committee
The materials defined by this SAE Standard are glass-fiber-reinforced, mineral-filled phenolic molding compounds suitable for compression molding. Preforms may be radio frequency preheated or screw preheated slugs. Compound for use in hydraulic disc brake caliper pistons
Hydraulic Brake Components Standards Committee
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from natural rubber (NR), styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
This SAE Recommended Practice was prepared to provide engineers, designers, and manufacturers of motor vehicles with a set of minimum performance standards which covers the next level of performance properties above those of the present SAE J1703 brake fluid standard. These fluids are not intended for use under arctic conditions or in braking systems requiring the use of mineral oil based hydraulic fluid. These fluids are designed for use in braking systems fitted with rubber cups and seals made from natural rubber (NR), styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM). These fluids are not designed to operate in a pumped or a clutch braking system, especially those hydraulic systems requiring a mineral oil based fluid
Brake Fluids Standards Committee
This SAE Recommended Practice establishes an inertia dynamometer test procedure, using exemplar caliper disc or drum brakes, to characterize the effectiveness of brake friction products for passenger cars and light trucks, up to and including 3500 kg GVW. SAE J2430 provides a method of characterizing friction material effectiveness, using vehicle specific brake hardware and test conditions that approximate those for U.S. mandated new vehicle brake tests
Brake Dynamometer Standards Committee
This SAE Information Report is the listing of recommendations for shelf storage for hydraulic brake components. Included in brake components are wheel cylinders, master cylinders, combination valves, and disc brake caliper assemblies. This document is not a specification. This document embodies the analyses and experiences of many users and manufacturers. Where specific manufacturers' recommendations are made, those recommendations shall supersede the recommendations of this document. This document lists the successful procedures and practices associated with brake components based on long experience of a wide cross section of manufacturers and users. The practices are expected to be applied to all brake components where SAE standards are applicable
Hydraulic Brake Components Standards Committee
These specifications cover molded cups 51 mm (2 in) in diameter and under, compounded from high temperature resistant rubber for use in hydraulic actuating cylinders employing motor vehicle brake fluid conforming to the requirements specified in SAE J1703 and SAE J1705. These specifications cover the performance tests of hydraulic brake cups under specified conditions and do not include requirements relating to chemical composition, tensile strength, and elongation of the rubber compound. Disc brake seals are not covered by this document
Hydraulic Brake Components Standards Committee
This SAE Recommended Practice is intended to provide the minimum acceptable criteria for snowmobile hand brake control systems. This recommendation is not intended to cover competition vehicles nor is it intended to limit development of new and/or improved technology in controls. Although these recommendations are primarily addressed to hand control systems using an outer flexible conduit with a multiple strand inner cable or hydraulic type brake control system, the basic requirements of freedom of movement, strength, material, etc., will apply to any system
Snowmobile Technical Committee
This SAE Recommended Practice was prepared by the Motor Vehicle Brake Fluids Subcommittee of the SAE Hydraulic Brake Actuating Systems Committee to provide engineers, designers, and manufacturers of motor vehicles with a set of minimum performance standards in order to assess the suitability of silicone and other low water tolerant type brake fluids (LWTF) for use in motor vehicle brake systems. These fluids are designed for use in braking systems fitted with rubber cups and seals made from natural rubber (NR), styrenebutadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM). In the development of the recommended requirements and test procedures contained herein, it is concluded that the LWTFs must be functionally compatible with existing motor vehicle brake fluids conforming to SAE J1703 and with braking systems designed for such fluids. To utilize LWTFs to the fullest advantage, they should not be mixed with other brake fluids. Inadvertent mixtures of LWTFs
Brake Fluids Standards Committee
This SAE Standard describes the performance and part requirements for elastomeric seals used in highway vehicle disc brake calipers. Seals covered by this specification may be the solid section type (square, rectangular, O-ring, etc.) mounted stationary in the cylinder bore or on the movable piston. The specification contains the following major sections: a Resistance to Fluid at Elevated Temperature—Physical Stability [loose parts in 120 °C ± 2 °C (248 °F ± 3.6 °F) brake fluid for 70 h] b Resistance to Fluid at Elevated Temperature—Precipitation Characteristics [loose parts in 120 °C ± 2 °C (248 °F ± 3.6 °F) brake fluid for 70 h] c Resistance to Elevated Temperatures in Dry Air [loose parts in 175 °C ± 2 °C (347 °F ± 3.6 °F) air for 22 h] d Ambient Temperature Stroking Test [tested in brake assembly for 500 000 cycles to 7 MPa ± 0.3 MPa (1000 psi ± 50 psi)] e High Temperature Stroking Test [tested in brake assembly for 70 h (70 000 strokes) at 120 °C ± 2 °C (248 °F ± 3.6 °F) to 7 MPa
Automotive Brake and Steering Hose Standards Comm
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from natural rubber (NR), styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM
Brake Fluids Standards Committee
Items per page:
1 – 50 of 96