Browse Topic: Braking systems
For mature virtual development, enlarging coverage of performances and driving conditions comparable with physical prototype is important. The subjective evaluation on various driving conditions to find abnormal or nonlinear phenomena as well as objective evaluation becomes indispensable even in virtual development stage. From the previous research, the road noise had been successfully predicted and replayed from the synthesis of system models. In this study, model based NVH simulator dedicated to virtual development have been implemented. At first, in addition to road noise, motor noise was predicted from experimental models such as blocked force and transfer function of motor, mount and body according to various vehicle conditions such as speed and torque. Next, to convert driver’s inputs such as acceleration and brake pedal, mode selection button and steering wheel to vehicle’s driving conditions, 1-D performance model was generated and calibrated. Finally, the audio and visual
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: Establishes uniform vehicle level test procedures Identifies target equipment, test scenarios, and measurement methods Identifies and explains the performance data of interest Does not exclude any particular system or sensor technology Identifies the known limitations of the information contained within (assumptions and “gaps”) Is intended to be a guide toward standard practice and is subject to change on pace with the technology Focuses on “Vehicle Front to Rear, In Lane Scenarios” expanded to include additional offset impacts This document describes the equipment, facilities, methods, and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, clearance gaps
This SAE Recommended Practice covers minimum requirements for air brake hose assemblies made from reinforced elastomeric hose and suitable fittings for use in automotive air brake systems, including flexible connections from frame to axle, tractor to trailer, trailer to trailer, and other unshielded air lines with air pressures up to 1 MPa, that are exposed to potential pull or impact. This hose is not to be used where temperatures, external or internal, fall outside the range of -40 to +100 °C. Provisions for extreme low temperature performance testing to -54 °C are included in the document.
The use of drum brakes in Battery Electric Vehicles (BEVs) offers numerous benefits, including energy efficiency, reduced brake dust emissions, and reliable performance under challenging weather conditions. The capability of regenerative braking reduces the friction brake application frequency in BEVs and therefore the brakes can be prone to corrosion and performance degradation especially considering conventional disc brake systems. The closed design of a drum brake prevents corrosion of the friction-components by sealing out water, dirt or snow. A common sealing concept is performed with a labyrinth between the gap of the rotating drum and the axle mounted backplate. A hermetical isolation of water and snow ingress into the drum cannot be achieved with this concept, so additional aerodynamic measures are necessary to deflect the air/water path and protect the inner brake components. Additionally, interfaces like wheel cylinders, electric park brake parts, brake shoe pins, and axle
This recommended practice covers the attachment of bonded anti-noise brake pad shims only. Mechanically attached shims (those without bonding) are not covered by this procedure.
Items per page:
50
1 – 50 of 5373