Browse Topic: Braking systems

Items (5,413)
The global effort to reconsider transport in compliance with ecological challenges leads to a significant increase in the market share of Electric Vehicles (EVs), enlightening secondary sources of pollution. One of the most important is the particles emitted by the abrasion of braking pads. The innovative system addressed in this paper is among the most promising non-polluting solutions to ensure safety and comfort. It uses the capability of the Magneto-Rheological Fluid (MRF) to change its properties when subjected to a magnetic field, generating a braking torque between a stator and a rotor. This study focuses on characterizing the system's performance and endurance during an emergency braking situation by developing a numerical model that involves fluid and structural considerations. This model takes the form of a Finite-Element Model (FEM) that interpolates local forces determined from Computational Fluid Dynamics (CFD) and takes them as input. It enables analysis of the stresses
de Carvalho Pinheiro, HenriqueBilliant, LucasImberti1, GiovanniCarello, Massimiliana
Traction control is a critical technique to prevent wheel slip in vehicles, ensuring optimal traction force between the tire and the ground. This study proposes a system that leverages Model-based Predictive Control (MPC) to effectively manage and control longitudinal slip. The proposed system introduces constraints specifically designed to limit longitudinal slip, offering a significant improvement over traditional approaches. The system is evaluated with simulations of a single-corner model, using the Pacejka’s Magic Formula to define the tire force. The results demonstrate the effectiveness of the control in maintaining maximum traction and highlight its advancements compared to previous work.
Rosa, Tobias José Degli EsposteRodrigues, Gustavo SimãoLopes, Elias Dias Rossi
Antilock braking systems (ABS) are critical to ensuring vehicle safety, particularly in challenging off-road environments where the braking dynamics is highly complex. This study focuses on the development of an advanced ABS controller for heavy off-road vehicles to improve operational safety and reliability. For this purpose, a Model-based Predictive Control (MPC) is proposed. The predictive capabilities of MPC, which optimize control actions based on system dynamics and constraints, are highlighted as a key aspect of this approach. The controlled system is modeled and simulated using a quarter-car model and a deformable ground model, providing a realistic representation of off-road conditions. Comparative simulations are conducted to evaluate the performance of both controllers, focusing on their effectiveness in maintaining stability and improving braking efficiency.
Sawada, Fernando SatoshiSantos, Luís Guilherme CavalcanteRodrigues, Gustavo SimãoRossi Lopes, Elias Dias
Vehicle dynamic control is crucial for ensuring safety, efficiency and high performance. In formula-type electric vehicles equipped with in-wheel motors (4WD), traction control combined with torque vectoring enhances stability and optimizes overall performance. Precise regulation of the torque applied to each wheel minimizes energy losses caused by excessive slipping or grip loss, improving both energy efficiency and component durability. Effective traction control is particularly essential in high-performance applications, where maintaining optimal tire grip is critical for achieving maximum acceleration, braking, and cornering capabilities. This study evaluates the benefits of Fuzzy Logic-based traction control and torque distribution for each motor. The traction control system continuously monitors wheel slip, ensuring they operate within the optimal slip range. Then, torque is distributed to each motor according to its angular speed, maximizing vehicle efficiency and performance
Oliveira, Vivian FernandesHayashi, Daniela TiemiDias, Gabriel Henrique RodriguesAndrade Estevos, JaquelineGuerreiro, Joel FilipeRibeiro, Rodrigo EustaquioEckert, Jony Javorski
102.5
Catão, Vítor Gustavo GomesMachado, Amanda RibeiroFiorentin, Felipe KleinSilva, João Pedro AnutoBernardino, Lucas GabrielFiorentin, Thiago AntonioCarboni, Andrea Piga
The development of a high reliability brake disc is fundamental to automobility projects, considering its relevance as a safety component. In competitions such as Formula SAE, there is an increased emphasis on the need to reduce weight, which demands a detailed engineering analysis to minimize mass without compromising safety requirements. This paper proposes a finite element based computational methodology, combining thermal and structural simulations, built upon data collected from bench tests and in-competition courses such as the Autocross (AC) and endurance. The results describe the thermostructural behavior of the brake disc in practical conditions, enabling the determination of the acting tensions during a competitive scenario, and consequently, calculate safety factors and fatigue life of the component. The proposed methodology validates the brake disc resilience and durability, which allows for the study of more optimal geometries or more specific materials, reducing weight
Machado, João Pedro FariasRibeiro, Rodrigo Eustaquio
The demand for electrified vehicles has been increasing over the last few years, near to 180 thousand units were sold only in 2024, which represented around 7% of total sales of this type of vehicle in Brazil. By the year 2030, it is expected that at least 40% of sales volume will be electrified vehicles, considering mild hybrids. These results show that vehicle manufacturers are moving towards electrification and reducing carbon emission rates. Different levels of electrification are applied in their portfolio: from mild hybrid or rechargeable vehicles to fully electric vehicles. When analyzing the number of components in each automotive system, it is possible to notice a huge reduction. Electric vehicles have 90% fewer moving parts in the engine than combustion vehicles. In brake systems, the reduction can be up to 20% in hybrid and electric vehicles, which can use the same solutions. This paper aims to present the changes in the sets of braking components from combustion vehicles to
Romão, BrunoBatagini, EmersonHorschutz, Everton
The traditional hydraulic braking system with vacuum booster technology is very mature, but it is not suitable for use in electric vehicles due to the lack of a vacuum source. The brake system by wire is an innovative electronic controlled braking technology, and the Electro-Hydraulic Brake is currently the most widely used brake system by wire in electric vehicles. The classification, structure, working principle, and advantages of Electro-Hydraulic Brake as a braking system for electric automobiles and intelligent connected vehicles are studied. The structure, working principle, advantages and disadvantages of Pump-Electro - Hydraulic Brake and Integrated Electro-Hydraulic Brake are compared and analyzed.
Song, JiantongZhu, ChunhongRen, Xiaolong
If road friction coefficient can be measured in a car driving, the performance of advanced driver-assistance systems (ADAS) such as antilock braking system (ABS) and automatic braking systems can be improved. Generally, ADAS uses information obtained from wheel speed sensors, acceleration sensors, and the like. However, it is difficult to measure accurately road friction coefficients with these sensors. Therefore, many studies measured road friction coefficients from strain or deformation in the bottom of a tire (tread), which is the only place to contact with a road surface. However, a sensor installed on the bottom of a tire is easy to peel or damage because greater deformation occurs locally on the bottom of a tire. Therefore, this study develops a method of measuring the road friction coefficient from the strain induced in a tire sidewall. If the tire sidewall can be used, stable measurement can be expected because the sidewall is harder to deform locally than the bottom of a tire
Higuchi, MasahiroTachiya, Hiroshi
(TC)The paper presents a designed and evaluated optimal traction control (TC) strategy for unmanned agriculture vehicle, where onboard sensors acquire various real-time information about wheel speed, load sharing, and terrain characteristics to achieve the precise control of the powertrain by establishing an optimal control command; moreover, the developed AMT-adaptive SMC combines the AMT adaptive control algorithm and the SMC to implement the dynamic gear shifting, torque output, and driving mode switching to obtain an optimal power distribution according to different speed demand and harvest load. Based on the establishment of models of the autonomous agriculture vehicle and corresponding tire model, a MATLAB/Simulink method based on dynamic simulation is adopted to simulate the unmanned agricultural vehicle traversing different terrains conditions. The results from comparison show that the energy saving reaches 19.0%, rising from 2. 1 kWh/km to 1. 7 kWh/km, an increase in
Feng, ZhenghaoLu, YunfanGao, DuanAn, YiZhou, Chuanbo
As one of the main indexes of functional safety evaluation, controllability is of critical significance. According to ISO26262 standard, by analyzing the impact of potential faults such as unexpected torque and regenerative braking force loss on vehicle controllability under different working conditions, this paper designs a vehicle controllability test scheme under abnormal motor function under multiple scenarios such as straights, lane changes and curves, and builds a test scheme under abnormal motor function. The mapping relationship between vehicle dynamic state data and controllability level provides a new idea for quantitative analysis of vehicle controllability.
Yang, XuezhuHe, LeiLi, ChaoRen, Zhiqiang
To tackle persistent operational instability and excessive energy consumption in marine observation platforms under wave-induced disturbances, this paper introduces a novel ultra-low-power stabilization system based on pendulum dynamics. The system employs an innovative mechanical configuration to deliberately decouple the rotation axis from the center of mass, creating controlled dynamic asymmetry. In this behavior, the fixed axis serves as a virtual suspension pivot while the camera payload functions as a concentrated mass block. This configuration generates intrinsic gravitational restoring torque, enabling passive disturbance attenuation. And its passive foundation is synergistically integrated with an actively controlled brushless DC motor system. During platform oscillation, embedded algorithms detect angular motion reversals. In addition, their detection triggers an instantaneous transition from motor drive to regenerative braking mode, and transition facilitates bidirectional
Zhang, TianlinLiu, ShixuanXu, Yuzhe
The knowledge of the brake linings coefficient of friction (BLCF) is crucial for the control of the braking moment in modern vehicles equipped with electric powertrains. In the case of race vehicles equipped with carbon–carbon brakes, the coefficient of friction exhibits great variations as a function of the main influencing factors, namely the pressure, the temperature, and the sliding speed at the pad–disc interface. In this work, a Le Mans Hypercar instrumented with more than 150 sensors was adopted to perform the characterization of the BLCF from racetrack acquisitions. The front and rear left suspensions of the vehicle were instrumented with strain gauge channels and position transducers to acquire the reaction loads at the upright and the orientation of the arms. Then, the geometric matrix method was implemented for calculating the moments at the upright from which the braking torque was derived without the need to know any of the wheel inertia, nor the driveshaft torque. Data
Cortivo, DavideVendramin, MattiaDindo, Luigi
Power electronics are fundamental to sustainable electrification, enhancing energy, efficiency, integrating renewable energy sources, and reducing carbon emissions. In electric vehicles (EVs), power electronics is crucial for efficient energy conversion, management, and distribution. Key components like inverters, rectifiers, and DC-DC converters optimize power from renewable sources to meet EV system requirements. In EVs, power electronics convert energy from the lithium-ion battery to the electric vehicle motor, with sufficient propulsion and regenerative braking. Inverters is used to transfer DC power from the lithium-ion eEV battery to alternating current for the motor, while DC-DC converters manage voltage levels for various vehicle systems. These components maximize EV energy efficiency, reduce energy losses, and extend driving range. Power electronics also support fast and efficient battery charging, critical for widespread EV adoption. Advanced charging solutions enable rapid
Pipaliya, Akash PravinbhaiHatkar, Chetan
The research work elaborated the structural integrity of airvent by skipping the assembly level snap fit finite element analysis of knob to reduce computational complexity of air vent knob sliding test post stopper. During assembly, the strain based mechanical breakage prediction of airvent sliding knob snaps is investigated in non-prestressed condition. The research work proposes a FEM based analysis approach to evaluate the mechanical breakage load of airvent knob assembly for accidental sliding load. This process skips the assembly level snap insertion load case along with silicone rubber pad compression which could serve as the prerequisite simulation. This prerequisite simulation is computationally expensive and complex to solve due to polymer plasticity and silicone rubber elastomer hyper-elasticity and moving frictional contacts between parts. If the accidental sliding load case without considering pre-tension on snaps is simulated, the load causing mechanical failure in the FEM
Shah, VirenWani, DishantMiraje, Jitendra
Tippers transporting loose bulk cargo during prolonged descents are subject to two critical operational challenges: cargo displacement and rear axle lifting. Uncontrolled cargo movement, often involving loose aggregates or soil, arises due to gravitational forces and insufficient restraint systems. This phenomenon can lead to cabin damage, loss of control, and hazardous discharge of materials onto roadways. Simultaneously, load imbalances during descent can cause rear axle lift, increasing stress on the front steering axle, resulting in tire slippage and compromised maneuverability. This study proposes a dynamic control strategy that adjusts the tipper lift angle in real time to align with the descent angle of the road. By synchronizing the trailer bed angle with the slope of the terrain, the system minimizes cargo instability, maintains rear axle contact, and enhances braking performance, including engine and exhaust braking systems. Computational modelling is employed to assess the
Vijeth, AbhishekBhosle, Devidas AshokCherian, RoshniDash, Prasanjita
This paper focuses on defining the optimal length of rear axle brake lines (flexible polyamide tubes) for commercial vehicles by simulating the lines digitally by considering tube behavior and various axle articulation conditions. Currently, the length of rear axle brake lines are predominantly defined with the help of a physical mockup by articulating axle conditions in a vehicle. This approach requires actual components such as frame, axle, suspension, etc., which consumes considerable time and cost. Through technological advancements, prototyping can be reduced and convergence on digital to build can be achieved through digital simulation. This paper explores tube properties, axle configurations and definitions, and various methods of digitally simulating line articulation. Boundary conditions, space reservations and design criteria for pneumatic routing are defined for the type of line designed. Digital simulation of rear axle brake lines articulation was performed and compared
Duraiswamy, RupeshSankaran, BhargavRaj, Santhosh
Magnetorheological brakes based on MR technology are being investigated for their potential use for automotive purposes. Among the design decisions, the selection of an appropriate MR fluid for the brake application remains an unexplored key issue. This article proposes an MCDM-based framework comprising analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS) to select an appropriate MR fluid for the automotive brake application. Three commercially available MR fluids from Lord Corporation (MRF-122EG, MRF-132DG, and MRF-140CG) are assessed against six criteria, viz. density, temperature range, yield stress, viscosity, magnetic saturation limit, and solid content. Considering all the criteria, the AHP ranked MRF-140CG highest, while TOPSIS chose MRF-122EG. Excluding the temperature range, both methods converged on MRF-122EG as the optimal choice. The proposed framework can be used for the MR fluid selection problem of other MR
Powar, KanhaiyaPatil, Satyajit
This SAE Standard covers complete general and dimensional specifications for the various types of tube fittings intended for general application in the automotive, appliance, and allied fields. Refer to SAE J1131 for the performance requirements of reusable (push to connect) fittings intended for use in automotive air brake systems. Flare-type fittings shall be as specified in Figures 1 to 4 and Tables 3 to 5. Inverted flared-type fittings shall be as specified in Figures 5 to 11 and Tables 3, 6, 7, 8, and 9. Gauges and gauging procedures pertaining to inverted flared tube fittings are given in Appendix A. Tapered sleeve compression-type fittings intended for general use with annealed copper alloy tubings shall be as specified in Figures 12 to 17 and Tables 3, 10, 11, and 12. To assure satisfactory performance, spherical sleeve compression-type fitting components (refer to SAE J246) should not be intermixed with tapered sleeve compression-type fitting components when assembling
Air Brake Tubing and Tube Ftg Committee
Brake failures in the vehicles can cause hazardous accidents so having a better monitoring and emergency braking system is very important. So, this project consists of an autonomous brake failure detector integrated with Automatic Braking using Electromagnetic coil braking which detects the braking failure at the time and applied the combinations of the brakes, to overcome this kind of accidents. So, here the system comprises of IR sensor circuit, control unit and electromagnetic braking system. How it works: The IR sensor monitors the brake wire, and if the wire is broken, the control unit activates the electromagnetic brakes, stopping the vehicle in a safe manner. This system enhances vehicle safety by ensuring immediate braking action without driver intervention. Key advantages include real-time brake monitoring, reduced mechanical wear, quick response time, and an automatic failsafe mechanism. The system’s minimal reliance on hydraulic components also makes it suitable for harsh or
Raja, SelvakumarJohn, GodwinSiddarth, J PSenthilkumar, AkashMathew, AbhayR. S., NakandhrakumarNandagopal, SasikumarArumugam, Sivasankar
This study explores the application of Particleworks, a meshless CFD solver based on the Moving Particle Simulation (MPS) method, for simulating hydraulic retarders. Two distinct models were used: one for validating physical fidelity and another for conducting performance-focused design investigations. Validation results demonstrated that Particleworks closely aligns with experimental data from the reference literature, effectively capturing torque variations with rotor speed effect. A sensitivity study also emphasized the importance of particle resolution on accuracy and computational cost. Design studies using an in-house hydraulic retarder model assessed the influence of flow rate, rotor speed, working fluid, temperature, and cup geometry on braking torque. Notably, torque increased with rotor speed and steeper cup angles, while thermal effects and fluid properties significantly impacted performance trends. Comparative analysis with Star-CCM+ showed that Particleworks offers similar
Kumar, Kamal S.Chaudhari, Gunjan B.
High Performance Resistors (HPR), also known as brake resistors are used in zero emission vehicles (ZEVs) to dissipate excess electrical energy produced during regenerative braking, as heat energy. It is necessary to use a suitable cooling technique to release this heat energy into the atmosphere in a regulated manner. Currently in most of the ZEVs, liquid cooled HPR with its dedicated heat exchanger and other auxiliaries such as pump, surge tank, Coolant and coolant lines, is used which increases the cost, packaging space and assembly time. This paper presents air cooling as a substitute heat-exchanging technique for high-performance resistors which eliminates the need of auxiliaries mentioned above, resulting in space optimization and reduction in assembly time. An air cooled HPR, designed for this study consists of a heat exchanger, which accommodates a resistor wire within its tubes. The design was made to fit commercial vehicle use, specific to trucks, due to packaging constraints
Menariya, Pravin GaneshKumar, VishnuArhanth, MahimaUmesha, SathwikJagadish, Harshitha
This study proposes a novel control strategy for a semi-active truck suspension system using an integral–derivative-tilted (ID-T) controller, developed as a modification of the TID controller. The ant colony optimization (ACO) algorithm is employed to tune the controller parameters. Performance is evaluated on an eight-degrees-of-freedom semi-active suspension system equipped with MR dampers. The objective is to minimize essential dynamic responses (displacement, velocity, and acceleration) of the sprung mass, cabin, and seat. The controller also considers the nonlinear effects including suspension travel, pitch dynamics, dynamic tire loads, and seat-level vibration dose value (VDV). System performance is assessed under both single bump and random road excitations. The ACO-tuned ID-T controller is compared against passive suspension, MR passive (OFF/ON), and ACO-tuned PID and TID controllers. Simulation results demonstrate that the proposed controller achieves superior performance in
Gad, S.Metered, H.Bassiuny, A. M.
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle, such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR) or a terpolymer of ethylene, propylene, and a diene (EPDM).
Brake Fluids Standards Committee
The objective of this trial was to compare the energy efficiency and performance of battery electric and conventional diesel tractors. Controlled road tests replicating normal operations were conducted using two electric and two diesel day-cab tractors. The test protocol was based on the TMC - Type III RP 1103A and SAE J1526 test procedures. The tests were conducted on a 110 km long route that included a 59 km hilly portion with a maximum altitude difference of 307 m. The tractors were divided into test groups of two vehicles. Trailers and drivers were switched throughout the trial between the tractors in a test group. The tests found that the two electric trucks consumed 60% and 63% less energy than their counterpart diesel trucks, respectively. Considering the average emission factor for production of electricity in Canada, the electric trucks emitted on average 82% less GHG emissions than the conventional diesel-powered tractors. The two diesel trucks showed similar fuel consumption
Surcel, Marius-DorinPartington, MarkTanguay-Laflèche, MaximeSchumacher, Richard
Synchronizers are designed to provide smooth, efficient and safe transfer of torque between mechanical gears. Friction level, durability, and consistency of the fluid / friction lining system are crucial to ensuring crisp gear engagements without clashing and noise, vibration and/or harshness (NVH) for the life of the transmission. Excellent wear control of gears, synchronizer ring and cone surfaces is also critical to protecting the life of moving mechanical parts. The SSP-180 synchronizer rig measures friction durability and wear up to 100,000 engagements, using a variety of fluids and friction materials. Methodology for the development of a synchronizer durability procedure using the SSP-180 rig is presented for qualifying fluids for dry dual clutch (DCT) and manual transmission (MT) applications for General Motors. It will be shown that the new DEXRON® SSP-180 Synchronizer Durability Test in Appendix C of the GMW 16612 fluid specification [1] satisfies four key conditions for new
Glasgow, Michael B.Zreik, KhaledEzanno, Philippe NicolasShelton, Robert W.
Items per page:
1 – 50 of 5413