Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 156

Recent Books

Browse All 972

Recently Published

Browse All
This study investigated the contact pressure distribution of three combustion seal designs for fuel injectors using both experimental techniques and finite element analysis (FEA). The designs tested included the baseline seal (Design #1), a conical seal (Design #2), and the current production seal (Design #3). In phase 1, a 2D axisymmetric FEA was conducted under worst-case torque conditions (67.8 Nm) to simulate contact pressure, with an axial load of 10 kN and combustion pressure of 21.3 MPa applied to the injector assembly. Phase 2 employed Fuji films to measure the pressure distribution at higher torques (89.5 and 115.2 Nm) in a more realistic scenario, incorporating challenges such as misalignment and eccentric loading. During this phase, Fuji film shearing was a significant challenge, complicating the accurate assessment of pressure profiles. Design #1 failed to maintain the minimum threshold contact pressure of 70 MPa over a 1 mm length, leading to potential leakage. Design #2
Kaliyanda, Aneesh
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways
Truck and Bus Brake Systems Committee
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above −40 °C (−40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly. The applicable SAE standards should be referenced when designing liquid-carrying and/or vapor-carrying
Fuel Systems Standards Committee
This specification covers a shampoo type carpet cleaner in the form of a liquid
AMS J Aircraft Maintenance Chemicals and Materials Committee
Direct water injection inside the cylinder is a promising technique to enhance the upper load limit and reduce nitrogen oxides emissions. The advantage of water injection depends on the percentage of water evaporated inside the cylinder. The percentage of water evaporation depends upon the water injection parameters. Hence, a computational fluid dynamics analysis is done to determine the effect of water injection temperature, water spray cone angle, nozzle hole diameter, and number of nozzle holes on in-cylinder distribution and percentage of water evaporation, engine performance, and emissions of a homogeneous charge compression ignition engine. This analysis considers water injection temperature from 295 K to 385 K, water spray cone angle from 8° to 24°, nozzle hole diameter from 0.14 mm to 0.205 mm, and number of nozzle holes from 4 to 7. The computational fluid dynamics models used are validated from the available experimental data in the literature for the engine considered. Here
Naik, BharatMallikarjuna, J. M.
This recommended practice shall apply to all on-highway trucks and truck-tractors equipped with air brake systems and having a GVW rating of 26 000 lb or more
Truck and Bus Human Factors Committee
This specification covers insecticides for use in disinsection of aircraft as required on international passenger flights
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers disinfectants or chemicals for use in disinfecting aircraft after carrying livestock
AMS J Aircraft Maintenance Chemicals and Materials Committee
In this work, we evaluated computational fluid dynamics (CFD) methods for predicting the design trends in flow around a mass-production luxury sport utility vehicle (SUV) subjected to incremental design changes via spoiler and underbody combinations. We compared Reynolds-averaged Navier–Stokes (RANS) using several turbulence models and a delayed detached eddy simulation (DDES) to experimental measurements from a 40% scale wind tunnel test model at matched full-scale Reynolds number. Regardless of turbulence model, RANS was unable to consistently reproduce the design trends in drag from wind tunnel data. This inability of RANS to reproduce the drag trends stemmed from inaccurate base pressure predictions for each vehicle configuration brought on by highly separated flow within the vehicle wake. When taking A-B design trends, many of these errors compounded together to form design trends that did not reflect those measured in experiments. On the other hand, DDES proved to be more
Aultman, MatthewDisotell, KevinDuan, LianMetka, Matthew
This standard covers the requirements for spherical, self-aligning, self-lubricating bearings that are for use in the ambient temperature range of -65 to +160 °F (-54 to +71 °C) at high cyclic speeds. The scope of the standard is to provide a liner system qualification procedure for helicopter sliding bearings defined and controlled by source control drawings. Once a liner system is qualified, the source controlled bearings may be further tested under application conditions
ACBG Plain Bearing Committee
This SAE Aerospace Recommended Practice (ARP) establishes safety recommendations for lavatories in transport category airplanes
S-9B Cabin Interiors and Furnishings Committee
This SAE Aerospace Standard (AS) provides the minimum design and performance requirements for individual, inflatable life preservers, divided into six categories: “Adult,” “Adult-Child,” “Child,” “Infant-Small Child,” “Adult-Child-Infant-Small Child,” and “Demonstration
S-9A Safety Equipment and Survival Systems Committee
This SAE Information Report is primarily to familiarize the designer of hydraulic powered machinery with the necessity for oil filtration in the hydraulic power circuit, the degree of system cleanliness required, types of filtration and filters available, and their location and maintenance in the hydraulic circuit
CTTC C1, Hydraulic Systems
This foundation specification (AMS3050) and its associated category specifications (AMS3050/1 through AMS3050/9) cover anti-seize compounds for use on threads of nuts, studs, bolts, and other mating surfaces, including those of superheated steam installations, at temperatures up to 1050 °F (566 °C). Compounds containing PTFE are limited to 600 °F (315 °C) maximum. Materials for nuts, studs, bolts, and other mating surfaces include, but are not limited to: steel, nickel alloys, stainless steel, and silver-coated materials. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.3.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or
AMS M Aerospace Greases Committee
To describe laboratory methods for determining and reporting the contaminant level of the wetted portion of hydraulic fluid power components, parts, subsystems and systems, and of fill fluids. For each type of item, it provides a method of obtaining the liquid sample and the contamination level thereof. It also includes procedures for establishing a sampling plan and guidelines for establishing levels of acceptance, but does not set those levels
CTTC C1, Hydraulic Systems
This specification covers an aluminum alloy in the form of hand forgings up to 5.000 inches (127.00 mm), inclusive, in nominal thickness at the time of heat treatment, procured to inch/pound dimensions (see 8.6
AMS D Nonferrous Alloys Committee
Increased use of advanced composite structural materials on aircraft has resulted in the need to address the more demanding quality and nondestructive testing procedures. Accordingly, increased utilization of solid laminate composites is driving changes to airline NDI/NDT training requirements and greater emphasis on the application of accurate NDI/NDT methods for composite structures. Teaching modules, including an introduction to composite materials, composite NDI/NDT theory and practice, special cases and lessons learned, are included in this document as well as various hands-on NDI/NDT exercises. A set of proficiency specimens containing realistic composite structures and representative damage are available to reinforce teaching points and evaluate inspector’s proficiency. Extensive details of the guidance modules, hands-on exercises, and proficiency specimens are all presented in this document. This document does not replace OEM guidance as may be specific to material, process
AMS CACRC Commercial Aircraft Composite Repair Committee
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523
AMS CE Elastomers Committee
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications
AGE-3 Aircraft Ground Support Equipment Committee
This specification establishes the requirements for dyed anodic coatings on aluminum alloys
AMS B Finishes Processes and Fluids Committee