Magazine Articles - SAE Mobilus

Items (25,828)
A pacemaker is a small device that helps control your heartbeat so you can return to your normal life. It has three main parts: a pulse generator that creates electrical signals, a controller-monitor that manages these signals, and leads that deliver the signals to the heart. One key benefit of the pacemaker is its strong titanium casing. Titanium is very strong and lightweight, and it is biocompatible, meaning it works well with the body without causing harmful reactions. This metal is highly resistant to corrosion, which helps keep the casing intact and protective even when exposed to bodily fluids.
The global satellite communications (SATCOM) sector is undergoing profound transformation. Fueled by the rapid growth of low Earth-orbit (LEO) constellations, increased government investment, and heightened demand for secure, high-throughput connectivity, the market is projected to expand from $66.75 billion in 2025 to $103.78 billion by 20291, 2. This momentum reflects a broader realignment of priorities across commercial and defense markets: a shift from reliance on legacy geostationary systems toward agile, resilient networks capable of supporting next-generation missions and applications.
In October 2024, Kongsberg NanoAvionics discovered damage to their MP42 satellite, and used the discovery as an opportunity to raise awareness on the need to reduce space debris generated by satellites. Kongsberg NanoAvionics, Vilnius, Lithuania Our MP42 satellite, which launched into low Earth orbit (LEO) two and a half years ago aboard the SpaceX Transporter-4 mission, recently took an unexpected hit from a small piece of space debris or micrometeoroid. The impact created a 6 mm hole, roughly the size of a chickpea, in one of its solar panels. Despite this damage, the satellite continued performing its mission without interruption, and we only discovered the impact thanks to an image taken by its onboard selfie camera in October of 2024. It is challenging to pinpoint exactly when the impact occurred because MP42's last selfie was taken a year and a half ago, in April of 2023.
With 2D cameras and space robotics algorithms, astronautics engineers at Stanford have created a navigation system able to manage multiple satellites using visual data only. They recently tested it in space for the first time. Stanford University, Stanford, CA Someday, instead of large, expensive individual space satellites, teams of smaller satellites - known by scientists as a “swarm” - will work in collaboration, enabling greater accuracy, agility, and autonomy. Among the scientists working to make these teams a reality are researchers at Stanford University's Space Rendezvous Lab, who recently completed the first-ever in-orbit test of a prototype system able to navigate a swarm of satellites using only visual information shared through a wireless network. “It's a milestone paper and the culmination of 11 years of effort by my lab, which was founded with this goal of surpassing the current state of the art and practice in distributed autonomy in space,” said Simone D'Amico
Engineers can now capture and predict the strength of metallic materials subjected to cycling loading, or fatigue strength, in a matter of hours, not the months or years it takes using current methods. In a new study, researchers from the University of Illinois Urbana-Champaign reported that automated high-resolution electron imaging can capture the nanoscale deformation events that lead to metal failure and breakage at the origin of metal failure.
Researchers have developed a hybrid solar energy converter that generates electricity and steam with high efficiency and low cost.
Researchers have created a 98-milligram sensor system — about one tenth the weight of a jellybean or less than one-hundredth of an ounce — that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination. Then, when a researcher sends a Bluetooth command, the sensor is released from its perch and can fall up to 72 feet — from about the sixth floor of a building — and land without breaking. Once on the ground, the sensor can collect data, such as temperature or humidity, for almost three years.
Swimming robots play a crucial role in mapping pollution, studying aquatic ecosystems, and monitoring water quality in sensitive areas such as coral reefs or lake shores. However, many devices rely on noisy propellers, which can disturb or harm wildlife. The natural clutter in these environments — including plants, animals, and debris — also poses a challenge to robotic swimmers.
Embraer São José dos Campos, Brazil embraer@ideal-axicom.com
Low-cost jelly-like materials, developed by researchers at the University of Cambridge, can sense strain, temperature, and humidity. And unlike earlier self-healing robots, they can also partially repair themselves at room temperature.
Innovators at NASA Johnson Space Center have developed a robotic system whose primary structural platform, or “orb,” can be injected into a pipe network and perform reconnaissance of piping infrastructure and other interior volumes. When deployed, this technology uses throttled fluid flow from a companion device for passive propulsion. A tethered line facilitates directional control by the orb’s operator, allowing it to navigate through various piping configurations, including 90° junctions.
Aqueous zinc-ion batteries (ZIBs) have attracted extensive attention due to their high safety, abundant reserves, and environmental friendliness. Iodine with high abundance in seawater (55 μg L-1) is highly promising for fabricating zinc-iodine batteries due to its high theoretical capacity (211 mAh g-1) and appropriate redox potential (0.54V). However, the low electrical conductivity of iodine hinders the redox conversion for an efficient energy storage process with zinc. Additionally, the formed soluble polyiodides are prone to migrate to the Zn anode, leading to capacity degradation and Zn corrosion.
In the race to meet the growing global demand for lithium, a team of researchers from Rice University’s Elimelech lab has developed a breakthrough lithium extraction method that could reshape the industry.
Thermoelectric generators that can convert waste heat to clean energy could soon be as efficient as other renewable energy sources, like solar, according to a team led by Penn State scientists. Using high-entropy materials, the researchers created more efficient thermoelectric materials than previously possible, an advancement that they said could even help make long-distance space exploration possible.
Someday, instead of large, expensive individual space satellites, teams of smaller satellites – known by scientists as a “swarm” – will work in collaboration, enabling greater accuracy, agility, and autonomy. Among the scientists working to make these teams a reality are researchers at Stanford University’s Space Rendezvous Lab, who recently completed the first-ever in-orbit test of a prototype system able to navigate a swarm of satellites using only visual information shared through a wireless network.
The global medical device manufacturing industry is undergoing a rapid transformation driven by technological innovation, automation, and increasing demands for customized, high-quality care. For engineers at the heart of medtech manufacturing, understanding the latest technologies is crucial not only for maintaining competitiveness but also for ensuring regulatory compliance, improving time to market, and optimizing production workflows.
Repartly, a startup based in Guetersloh, Germany, is using ABB’s collaborative robots to repair and refurbish electronic circuit boards in household appliances. Three GoFa cobots handle the sorting, visual inspection and precise soldering tasks enabling the company to enhance efficiency and maintain high quality standards.
The U.S. Naval Research Laboratory (NRL), in partnership with NASA’s Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA’s StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers.
It’s a game a lot of us played as children — and maybe even later in life: unspooling measuring tape to see how far it would extend before bending. But to engineers at the University of California San Diego, this game was an inspiration, suggesting that measuring tape could become a great material for a robotic gripper.
To create the new batteries needed for EVs, mobile devices, and renewable energy storage, researchers have explored new materials, new designs, new configurations, and new chemistry. But one aspect — the texture of the metals used — has been historically overlooked.
A team led by Kelsey Hatzell, Associate Professor of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, has uncovered insights that could help power a new type of battery, called an anode-free solid-state battery, past lithium-ion’s limitations.
Aitech introduced its new artificial intelligence (AI)-enabled picosatellite constellation platform, IQSat, at the 40th annual Space Symposium in April. The platform is designed to bring ready to use commercial off the shelf (COTS) embedded computing to data heavy earth imaging and pattern recognition applications enabled by AI and machine learning (ML) processing and algorithms performed onboard a constellation of IQSats. Available as an individual platform or in constellations that could include thousands of picosatellites, IQSat will become available to customers in the fourth quarter of 2025.
Physicists at the Naval Research Laboratory are collaborating with several universities throughout the U.S. to develop a small satellite that will detect the emission of short gamma-ray bursts. U.S. Naval Research Laboratory, Washington D.C. The U.S. Naval Research Laboratory (NRL), in partnership with NASA's Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA's StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers. NRL transferred the instrument to NASA on March 4 for the next phase, environmental testing. From there, the instrument will be integrated onto the spacecraft bus, followed by launch into Low Earth Orbit in 2027. StarBurst will be installed as a secondary payload via the Evolved Expendable Launch Vehicle Secondary Payload Adapter Grande interface with a
NearSpace Launch Inc. (NSL), a privately held and fully U.S.-owned aerospace company, is actively redefining the boundaries of responsive spaceflight through its development and deployment of the Train Rapid on Orbit Payload (TROOP) and ThinSat platforms. Over the past decade, NSL has launched more than 100 small satellites and over 900 flight systems and subsystems into orbit. NSL's satellites have been part of launches operated by Astra, Atlas, Delta, Firefly Aerospace, Northrop Grumman, Virgin Galactic and SpaceX among others. Headquartered in Upland, Indiana, NSL is currently the largest small satellite manufacturer in the midwestern region of the U.S., uniquely positioned to address urgent national needs for rapid space access and technology testing.
The Department of Defense (DoD) is developing technology for satellites to communicate via lasers. Laser communications could transmit data faster and more securely than traditional radio frequency communications. DoD has made progress in developing this technology, but it has also faced delays and other issues-and hasn't fully demonstrated that it works in space. Despite these challenges, DoD plans to continue to develop and launch hundreds of satellites worth billions of dollars that require the use of laser communications.
An Army-funded research project has led to the development of more efficient materials for developing thermoelectric generators that convert waste heat to clean energy for a variety of applications. The Pennsylvania State University, University Park, PA Thermoelectric generators that can convert waste heat to clean energy could soon be as efficient as other renewable energy sources, like solar, according to a team led by Penn State scientists. Using high-entropy materials, the researchers created more efficient thermoelectric materials than previously possible, an advancement that they said could even help make long-distance space exploration possible. In a study partially funded by the U.S. Army with results published in the journal Joule last year, the researchers demonstrated how thermoelectric devices - including the radioisotope thermoelectric generators that produce energy for NASA's space exploration vehicles - can convert differences in temperature to electricity. When they are
The desert landscapes of the western United States have changed since Mr. Duke and Dr. Gonzo blazed a trail across them in a drug-infused haze. But their advice to buy the ticket and take the ride is still a wise mantra - especially in the serene comfort of a modern full-size pickup. As inhospitable as southern Nevada can be outside Sin City, the amenities within the climate-controlled and leather-lined cabin of the latest Ram pickups insulate you from those realities. SAE Media was invited to sample the latest heavy haulers in Ram's portfolio, including the new 2500 and 3500 models with the high-output version of the Cummins B6.7 diesel.
Wolfe, Matt
The American Petroleum Institute's (API) Proposed Category 12 (PC-12) is currently under development. A target first license date has been set for January 2027, and industry stakeholders are currently at work on PC-12's testing requirements, limits and other criteria that will make up the final performance category. That means change is coming to the heavy-duty diesel lubricants space. The introduction of a new category provides opportunities for enhanced lubricant performance in areas such as improved drain intervals, fuel economy and engine deposit protection. However, one major area of focus for next-generation lubricants will be greater protection and enablement of aftertreatment devices, helping heavy-duty OEMs comply with stringent new emissions standards set by the U.S. Environmental Protection Agency in 2022.
Rodgers, Zachary L.
Much has been written about the challenging operating environment within the North American automotive ecosystem. Suppliers and OEMs alike were never trained in business school or past experiences for the erratic trade and legislative environment that they face today. Since late 2019 and a multi-week strike by the UAW against GM, there has been calamity after calamity impacting our industry. These include the impact of COVID on supply and demand, chip availability, labor shortages, inflation impacts and erratic trade actions that have all suppressed revenue and profits. There is one obvious dynamic impacting the industry: the lack of a stable, expected trade environment is critical to our long-term viability.
Ford has engineered the 2025 Expedition with an eye to putting it at the top of the large SUV class in which it has usually been a contender. With loads of tech that works well and is controlled easily, friendly features and a highly capable new Tremor off-road edition, it offers plenty of justifications for its pricing. SAE Media was hosted by Ford in Louisville, Kentucky, for a drive of various Expedition trim levels, including a first-hand view of the Tremor's off-road prowess. Among the useful features is the new Split Gate, of which the top 75% lifts like a traditional SUV liftgate. The utility comes in with the lower 25%, which drops like a truck tailgate and can support up to 500 pounds for your football tailgating or other purposes. And avoiding a potential user annoyance is available Open-on-Approach, which opens both gate portions by merely standing near the back of the Expedition. The design of the upper part of the Split Gate, by the way, evokes the apocryphal quote from
Clonts, Chris
Tarek Abdel-Baset, Forvia's chief engineer for hydrogen storage systems, has two decades of experience in alt-fuel transporation development, with all the ups and downs that entails. So he was a good person for SAE Media to ask about the industry vibe at the 2025 Advanced Clean Transportation Expo in Anaheim.
Clonts, Chris
Last summer, SAE Media was invited to Eaton's proving grounds in Marshall, Michigan, to test drive an electric truck the company had built in collaboration with BAE Systems. The truck was a showcase not only of BAE's powertrain control technology, but also of Eaton's new multi-speed heavy-duty EV transmission. That truck was on display at the 2025 ACT Expo, as was Eaton's transmission. SAE Media spoke with Scott Adams, SVP of technology and global products for Eaton, in Anaheim, California, about the company's portfolio of multi- and single-speed medium- and heavy-duty transmissions as well as other upcoming driveline offerings.
Wolfe, Matt
John Deere's newest combustion engines are designed to accommodate alternative fuels and evolving technologies as requirements demand. Approaching the John Deere Power Systems (JDPS) exhibit at the Bauma 2025 tradeshow in Munich, Germany, a lineup of next-generation internal combustion engines served as sentinels of sorts, greeting any visitors before they could view the other technologies on display, including new, more compact Kreisel Electric high-voltage batteries. This prominent location underscores the prominence that diesel and alternative-fueled combustion engines will maintain in the off-highway vehicle sector for years to come.
Gehm, Ryan
A team of UCLA engineers and their colleagues have developed a new design strategy and 3D printing technique to build robots in one single step. The breakthrough enabled the entire mechanical and electronic systems needed to operate a robot to be manufactured all at once by a new type of 3D printing process for engineered active materials with multiple functions (also known as metamaterials). Once 3D printed, a “meta-bot” will be capable of propulsion, movement, sensing, and decision-making.
Researchers have created a technique to turn waste polyethylene terephthalate (PET), one of the most recyclable polymers, into components of batteries.
A new bendable supercapacitor made from graphene has been developed that charges quickly and safely stores a record-high level of energy for use over a long period. The technology overcomes the issue faced by high-powered, fast-charging supercapacitors: they usually cannot hold a large amount of energy in a small space.
Innovators at the NASA Glenn Research Center have developed a toughened hybrid reinforcement material made from carbon fiber and carbon nanotube (CNT) yarn for use in polymer matrix composites (PMCs). The new material improves toughness and damping properties of PMCs, enhancing impact resistance, fatigue life, as well as structural longevity.
BlueHalo Albuquerque, NM Ashley.Young@bluehalo.com
Machine builders are under intense pressure to keep engineering time in line with shorter delivery schedules and materials, assembly, and inventory cost considerations. Machine builders are also striving to make equipment smaller, lighter, higher-performing and easier for their customers to maintain. While functionally integrated products have been available for a long time, they are more vital today than ever for machine builders and end users to improve processes and products. And there are more options available to provide solutions.
Items per page:
1 – 50 of 25828