SAE Edge™ Research Reports - SAE Mobilus

SAE Edge™ Research Reports provide state-of-the-art and state-of-industry examinations of the most significant topics facing the mobility industry today. With a dedicated focus on emerging topics in new mobility, they offer a structured framework and methodical approach for thinking about and working with rapidly shifting technologies.

Items (156)
Many organizations are falling far short of achieving the lifecycle potential of their new product designs. One major source of this suboptimal business performance stems from underleveraging key Systems Engineering and Design Engineering principles in the early phases of the design process. If these are being poorly applied, the following will likely occur: Inefficient use of engineering (and other cross-functional) resources Unnecessarily high product development costs Delayed time-to-market Subpar launch quality Poor system-level safety Suboptimal lifecycle sustainability-related performance Compromised design innovation This report addresses these challenges and articulates how Systems Design Engineering provides nonburdensome and quickly applied methods for overcoming these shortcomings, placing a dedicated focus on the three high-level principles that govern lifecycle product design success. Excellent and efficient performance against each of them is needed to achieve a new
Genter, David Paul
Multi-sensor fusion (MSF) is believed to be a promising tool for vehicular localization in urban environments. Due to the differences in principles and performance of various onboard vehicle sensors, MSF inevitably suffers from heterogeneous sources and vulnerability to cyber-attacks. Therefore, an essential requirement of MSF is the capability of providing a consumer-grade solution that operates in real-time, is accurate, and immune to abnormal conditions with guaranteed performance and quality of service for location-based applications. In other words, an MSF algorithm depends heavily on data synchronization, cost, an accurate process model, a prior knowledge of covariance matrices, integrity assessments, and security against cyber-attacks. Multi-sensor Fusion-based Vehicle Localization addresses trending technologies in MSF-based vehicle localization and outlines some insights into the unsettled issues and their potential solutions. The discussions and outlook are presented as a
Guo, GeLiu, JiagengLiu, Guangheng
In recent years, battery electric vehicles (BEVs) have experienced significant sales growth, marked by advancements in features and market delivery. This evolution intersects with innovative software-defined vehicles, which have transformed automotive supply chains, introducing new BEV brands from both emerging and mature markets. The critical role of software in software-defined battery electric vehicles (SD-BEVs) is pivotal for enhancing user experience and ensuring adherence to rigorous safety, performance, and quality standards. Effective governance and management are crucial, as failures can mar corporate reputations and jeopardize safety-critical systems like advanced driver assistance systems. Product Governance and Management for Software-defined Battery Electric Vehicles addresses the complexities of SD-BEV product governance and management to facilitate safer vehicle deployments. By exploring these challenges, it aims to enhance internal processes and foster cross
Abdul Hamid, Umar Zakir
US transportation infrastructure is dominated by the automobile form factor. Alternative modalities of movement, such as bikes, golf carts, and other micromobility options, have existed but are decidedly at a lower tier of importance. Even pedestrian access ways are not overly emphasized in the US transportation system. This lack of prioritization matches the reality that the vast majority of people and commerce moves through the motor vehicle infrastructure, with micromobility sitting in the periphery. Additionally, given the current lack of commercial applications, there are limited direct fee-based funding mechanisms connected to micromobility form factors. Micromobility and the Next Infrastructure Wave discusses how recent technological innovations in electrification, e-commerce, and autonomy are enabling a new class of micromobility devices which offer palpable value to consumers and enable significant commercial applications. Unlike the past, these micromobility devices now have
Razdan, Rahul
Paris, June 18, 1914: Crowds gathered at the “Concours de la Sécurité en Aéroplane” to witness 21-year-old Lawrence Sperry demonstrate his newly invented gyroscopic stabilizer. With his hands in the air, the device flew his Curtiss C-2 flying boat. Only a decade after the Wright brothers’ initial flight, the first n “autopilot” made its public debut. As impressive as this public demonstration was, it was merely a humble, although spectacular moment of foreshadowing. Even today—110 years later—the process of automating aspects of flight has not yet fully concluded, leading to deteriorating insight into the automatic behavior of aircraft systems, and even the waning of human instincts and intuition. Controlling Aircraft—From Humans to Autonomous Systems: Rise of the Machines covers the distancing of humans from their flying machines through more than a century-long process of “assisting” systems introduction, the positive and negative consequences of this process, and mitigation
David, Aharon
As the world looks to net-zero emissions goals, hybrid electric vehicles may play an increasingly important role. For passenger electric vehicles (EVs) that predominantly make short journeys but occasionally need to make longer trips, electrofuel range extension may be more cost effective than either hydrogen or rapid charging. Micro gas turbines and catalytic combustion show significant potential to deliver low-cost, low-maintenance, lightweight engines with virtually no emissions, and hydrocarbon consuming solid oxide fuel cells show even greater potential in these areas. Aditioanlly, sodium-ion batteries for EVs, dispatachable vehicle-to-grid power and buffering, and variable intermittent renewable energy could also play key roles. The Role of Hybrid Vehicles in a Net-zero Transport System explores the costs, considerations, and challenges facing these technologies. Click here to access the full SAE EDGETM Research Report portfolio
Muelaner, Jody E.
The deployment of autonomous urban buses brings with it the hope of addressing concerns associated with safety and aging drivers. However, issues related autonomous vehicle (AV) positioning and interactions with road users pose challenges to realizing these benefits. This report covers unsettled issues and potential solutions related to the operation of autonomous urban buses, including the crucial need for all-weather localization capabilities to ensure reliable navigation in diverse environmental conditions. Additionally, minimizing the gap between AVs and platforms during designated parking requires precise localization. Next-gen Urban Buses: Autonomy and Connectivity addresses the challenge of predicting the intentions of pedestrians, vehicles, and obstacles for appropriate responses, the detection of traffic police gestures to ensure compliance with traffic signals, and the optimization of traffic performance through urban platooning—including the need for advanced communication
Hsu, Tsung-Ming
ML approaches to solving some of the key perception and decision challenges in automated vehicle functions are maturing at an incredible rate. However, the setbacks experienced during initial attempts at widespread deployment have highlighted the need for a careful consideration of safety during the development and deployment of these functions. To better control the risk associated with this storm of complex functionality, open operating environments, and cutting-edge technology, there is a need for industry consensus on best practices for achieving an acceptable level of safety. Navigating the Evolving Landscape of Safety Standards for Machine Learning-based Road Vehicle Functions provides an overview of standards relevant to the safety of ML-based vehicle functions and serves as guidance for technology providers—including those new to the automotive sector—on how to interpret the evolving standardization landscape. The report also contains practical guidance, along with an example
Burton, Simon
While weaponizing automated vehicles (AVs) seems unlikely, cybersecurity breaches may disrupt automated driving systems’ navigation, operation, and safety—especially with the proliferation of vehicle-to-everything (V2X) technologies. The design, maintenance, and management of digital infrastructure, including cloud computing, V2X, and communications, can make the difference in whether AVs can operate and gain consumer and regulator confidence more broadly. Effective cybersecurity standards, physical and digital security practices, and well-thought-out design can provide a layered approach to avoiding and mitigating cyber breaches for advanced driver assistance systems and AVs alike. Addressing cybersecurity may be key to unlocking benefits in safety, reduced emissions, operations, and navigation that rely on external communication with the vehicle. Automated Vehicles and Infrastructure Enablers: Cybersecurity focuses on considerations regarding cybersecurity and AVs from the
Coyner, KelleyBittner, Jason
Liquid hydrogen (LH2) is playing a key role in decarbonization of the global energy landscape. Its large-scale continuous use in the space industry provides a foundation for transitioning state-of-the-art capabilities to other sectors. Key advancements in materials, cryogenics, and system optimization are being applied to reduce costs and increase performance for various mobile and stationary use cases. However, some unsettled topics remain to be addressed related to production, liquefaction, storage, distribution, safety, and economics. The optimal solutions to these unsettled topics will vary depending on the region, industry sector, and application. Decarbonizing Mobility with Liquid Hydrogen provides a brief and balanced assessment of the relevant technologies, established practices, system operations, emerging trends, strategic considerations, and economic drivers. Addressing these unsettled topics is tied to the evolving economic strategies of governmental policies, public and
Moran, Matthew
Semi-automated computational design methods involving physics-based simulation, optimization, machine learning, and generative artificial intelligence (AI) already allow greatly enhanced performance alongside reduced cost in both design and manufacturing. As we progress, developments in user interfaces, AI integration, and automation of workflows will increasingly reduce the human inputs required to achieve this. With this, engineering teams must change their mindset from designing products to specifying requirements, focusing their efforts on testing and analysis to provide accurate specifications. Generative Design in Aerospace and Automotive Structures discusses generative design in its broadest sense, including the challenges and recommendations regarding multi-stage optimizations. Click here to access the full SAE EDGETM Research Report portfolio
Muelaner, Jody Emlyn
What are the differences between the traditional automotive companies and “new mobility” players—and even more importantly, who will win? Those are the questions that this report discusses, taking a particular focus on engineering aspects in the automotive/mobility sector and addressing issues regarding innovation, business, market, and regulation Two Approaches to Mobility Engineering was developed with input from nearly 20 industry experts from new and established companies to gain an overview of the intricacies of newcomers and incumbents, to see where the industry stands, and to provide an outlook on where the sector is headed. It provides recommendations as to what respective players should do to master their future and stay at the forefront of mobility innovation. Click here to access the full SAE EDGETM Research Report portfolio
Beiker, Sven
The integration of software-defined approaches with software-defined battery electric vehicles brings forth challenges related to privacy regulations, such as European Union’s General Data Protection Regulation and Data Act, as well as the California Consumer Privacy Act. Compliance with these regulations poses barriers for foreign brands and startups seeking entry into these markets. Car manufacturers and suppliers, particularly software suppliers, must navigate complex privacy requirements when introducing vehicles to these regions. Privacy for Software-defined Battery Electric Vehicles aims to educate practitioners across different market regions and fields. It seeks to stimulate discussions for improvements in processes and requirements related to privacy aspects regarding these vehicles. The report covers the significance of privacy, potential vulnerabilities and risks, technical challenges, safety risks, management and operational challenges, and the benefits of compliance with
Abdul Hamid, Umar Zakir
Hydrogen has gained global recognition as a crucial energy resource, holding immense potential to offer clean, efficient, cost-effective, and environmentally friendly energy solutions. Through water electrolysis powered by green electricity, the production of decarbonized “green hydrogen” is achievable. Hydrogen technology emerges as a key pathway for realizing the global objective of “carbon neutrality.” Among various water electrolysis technologies, proton exchange membrane water electrolysis (PEMWE) stands out as exceptionally promising. It boasts high energy density, elevated electrolysis efficiency, and the capacity for high output pressure, making it a frontrunner in the quest for sustainable hydrogen production. The Application of Proton Exchange Membrane Water Electrolysis delves into the challenges and trends ahead of PEMWE—from fundamental research to practical application—and briefly describes its relative characteristics, key components, and future targets. The cost
Lin, Rui
Data privacy questions are particularly timely in the automotive industry as—now more than ever before—vehicles are collecting and sharing data at great speeds and quantities. Though connectivity and vehicle-to-vehicle technologies are perhaps the most obvious, smart city infrastructure, maintenance, and infotainment systems are also relevant in the data privacy law discourse. Facial Recognition Software and Privacy Law in Transportation Technology considers the current legal landscape of privacy law and the unanswered questions that have surfaced in recent years. A survey of the limited recent federal case law and statutory law, as well as examples of comprehensive state data privacy laws, is included. Perhaps most importantly, this report simplifies the balancing act that manufacturers and consumers are performing by complying with data privacy laws, sharing enough data to maximize safety and convenience, and protecting personal information. Click here to access the full SAE EDGETM
Eastman, Brittany
Sustainability is both an ethical responsibility and business concern for the aerospace industry. Military and commercial avionics developers have pushed toward a common standard for interfaces, computing platforms, and software in hopes of having “reusability” and reducing weight with backplane computing architectures which, in theory, would support commonality across aircraft systems. The integrated modular avionics (IMA) and military Future Airborne Capability Environment (FACE) standards are two such examples. They emerged to support common computing architectures for reuse and sustainability concepts, from the beginning of aircraft development to the sundown or mortality phase. Pitfalls of Designing, Developing, and Maintaining Modular Avionics Systems in the Name of Sustainability looks at technological, organizational, and cultural challenges making reuse and IMA platform models difficult to fully realize their sustainability goals. Additionally, it considers the certification
Reeve, Tammy
Given the rapid advancements in engineering and technology, it is anticipated that connected and automated vehicles (CAVs) will soon become prominent in our daily lives. This development has a vast potential to change the socio-technical perception of public, personal, and freight transportation. The potential benefits to society include reduced driving risks due to human errors, increased mobility, and overall productivity of autonomous vehicle consumers. On the other hand, the potential risks associated with CAV deployment related to technical vulnerabilities are safety and cybersecurity issues that may arise from flawed hardware and software. Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. This report also highlights the importance of establishing robust cybersecurity protocols and fostering
Ahmed, QadeerRenganathan, Vishnu
Quantum computing and its applications are emerging rapidly, driving excitement and extensive interest across all industry sectors, from finance to pharmaceuticals. The automotive industry is no different. Quantum computing can bring significant advantages to the way we commute, whether through the development of new materials and catalysts using quantum chemistry or improved route optimization. Quantum computing may be as important as the invention of driverless vehicles. Emergence of Quantum Computing Technologies in Automotive Applications: Opportunities and Future Use Cases attempts to explain quantum technology and its various advantages for the automotive industry. While many of the applications presented are still nascent, they may become mainstream in a decade or so. Click here to access the full SAE EDGETM Research Report portfolio
Kolodziejczyk, Bart
The world is on a “take-make-waste,” linear-growth economic trajectory where products are bought, used, and then discarded in direct progression with little to no consideration for recycling or reuse. This unsustainable path now requires an urgent call to action for all sectors in the global society: circularity is a must to restore the health of the planet and people. However, carbon-rich textile waste could potentially become a next-generation feedstock, and the mobility sector has the capacity to mobilize ecologically minded designs, supply chains, financing mechanisms, consumer education, cross-sector activation, and more to capitalize on this “new source of carbon.” Activating textile circularity will be one of the biggest business opportunities to drive top- and bottom-line growth for the mobility industry. Textile Circularity and the Sustainability Model of New Mobility provides context and insights on why textiles—a term that not only includes plant-based and animal-based
Lee-Jeffs, AnnSafi, Joanna
Curbs are as key to automated driving system (ADS) navigation, operation, and safety as they are for human driven vehicles. The design, maintenance, and management of curbs and adjacent infrastructure can make the difference in whether ADS vehicles can pick up and deliver passengers and goods safely, efficiently, and effectively. Curbs may also be key to integrating ADS services with other forms of active and human-driven transportation. Benefits from accessibility, reduced emissions, and strong supply chains require that ADS vehicles be able to dock curbside in a manner that does not disrupt traffic or impede safe movement of people walking, biking, or using a mobility device. Automated Vehicles and Infrastructure Enablers: Curbs and Curbside Management addresses considerations regarding the curb with respect to pick up and drops for passengers and freight, as well as managing and designing both sides of the curb with respect to automated vehicles and other types of shared mobility
Coyner, KelleyBittner, Jason
The automobile is undergoing the biggest transformation of its 100-year history. Motivated by consumer desire for automobiles to integrate with their digital life and inspired by new electric vehicles (EVs) that routinely receive over-the-air software updates, traditional automakers are embarking on a journey to re-engineer the vehicle as a platform defined by software. The foundation of the shift is a complete re-design from a mechanical hardware-centric system to a cloud-connected, software-centric ecosystem where each function is executed via a service-oriented architecture. This is the basis of the software-defined vehicle (SDV). The Software-defined Vehicle and its Engineering Evolution: Balancing Issues and Challenges in a New Paradigm of Product Development examines the complex journey ahead for traditional manufacturers as they transition to this new software-defined system. The shift will literally impact every facet of the industry, from organizational culture, tools, and
Goswami, Partha
A suite of recent policy and legislative initiatives are prioritizing a shift towards electrification of the personal-use vehicle fleet. This agenda is intimately tied to another complex issue: the sustainability of the primary transportation funding source (i.e., the gas tax—also known as the motor fuel tax). What makes this particularly hard is that gasoline consumption is only a proxy for “amount of travel.” With diversification in fuel sources and a concerted movement towards non-fossil fuel sources to power vehicles, any specific fuel source would be (at best) a weak or (at worst) grossly inequitable representation for amount of travel. Toward an Integrated Transportation Pricing Approach Using Vehicle-based Technologies will focus on some of the larger questions for an integrated pricing system based on miles driven that are measured directly using vehicle-based or in-vehicle technology communicating directly with infrastructure systems. Click here to access the full SAE EDGETM
Sethi, Sonika S.
The adoption of metallic additive manufacturing (AM) for heat exchangers offers significant thermal management benefits that range from optimized heat energy transfer to supporting integrated designs that can reduce weight, size, and component numbers. The benefits offered by utilizing AM for heat exchangers transcend industries and have relevance within the aerospace and automotive industries, where new mobility requirements result in the need for efficient energy systems, increasingly efficient component design, and higher temperatures. Additive Manufacturing of Thermal Management Components in Mobility Applications examines the critical unsettled issues, such as lack of understanding regarding metal AM material performance in high-temperature applications and the absence of significant standardization that goes beyond the material grades, printing process parameters, and characterization processes for performance reliability. The report also delves into design, regulation, and
Phillips, Paul
With the increased use of devices requiring the Internet of Things (IoT) to enable “New Mobility,” the demand for satellite-enabled IoT is growing steadily, owing to the extensive coverage provided by satellites (over existing ground-based infrastructure). Satellite-based IoT provides precise and real-time vehicle location and tracking services, large-scale geographical vehicle and/or infrastructure monitoring, and increased coverage for remote locations where it may not be possible to install ground-based solutions. The Application of Satellite-based Internet of Things for New Mobility discusses satellite-based IoT topics that still need addressing, which can be broadly classifieds into two areas: (1) affordable technology and (2) network connectivity and data management. While recent innovations are driving down the cost of satellite-based IoT, it remains relatively expensive, and widespread adoption is still not as high as terrestrial, ground-based systems. Security concerns over
Phillips, Paul
“New Space" is reshaping the economic landscape of the space industry and has far-reaching implications for technological innovation, business models, and market dynamics. This change, aligned with the digitalization in the world economy, has given rise to innovations in the downstream space segment. This “servitization” of the space industry, essentially, has led to the transition from selling products like satellites or spacecraft, to selling the services these products provide. This also connects to applications of various technologies, like cloud computing, artificial intelligence, and virtualization. Redefining Space Commerce: The Move Toward Servitization discusses the advantages of this shift (e.g., cost reduction, increased access to space for smaller organizations and countries), as well as the challenges, such as maintaining safety and security, establishing standardization and regulation, and managing risks. The implications of this may be far-reaching, affecting not only
Khan, Samir
Growing levels of complexity and integration coupled with the current period of automotive innovation are necessitating the adoption of Systems approaches and Systems Engineering (SE) practices. For the automotive industry to navigate this transformative period successfully, we need Systems approaches to bridge all elements of vehicle development and engage and align all parts of the business. Yet, the industry has lagged in comprehensive SE adoption, persistently retaining organizational silos and outdated paradigms for vehicle design development teams. It still structures itself around physical components of vehicles, despite having the significant majority of functionality and features derived from software and communications. The State of Systems Engineering Adoption in the Automotive Industry captures the unresolved aspects of more comprehensively adopting Systems approaches and practices and seeks to enable industry leaders to more effectively navigate the complexity and
O'Neil, Anne
Automated vehicles, in the form we see today, started off-road. Ideas, technologies, and engineers came from agriculture, aerospace, and other off-road domains. While there are cases when only on-road experience will provide the necessary learning to advance automated driving systems, there is much relevant activity in off-road domains that receives less attention. Implications of Off-road Automation for On-road Automated Driving Systems argues that one way to accelerate on-road ADS development is to look at similar experiences off-road. There are plenty of people who see this connection, but there is no formalized system for exchanging knowledge. Click here to access the full SAE EDGETM Research Report portfolio
Eley, T.C.King, John LeslieLyytinen, KalleNickerson, Jeffrey
Traditional physical infrastructure increasingly relies upon software. Yet, 75% of software projects fail in budget by 46% and schedule by 82%. While other systems generally have a “responsible-in-charge” (RIC) professional, the implementation of a similar system of accountability in software is not settled. This is a major concern, as the consequences of software failure can be a matter of life-or-death. Further, there has been a 742% average annual increase in software supply chain attacks on increasingly used open-source software over the past three years, which can cost up to millions of dollars per incident. Developing the Role of the System Software Integrator to Mitigate Digital Infrastructure Vulnerabilities discusses the verification, validation, and uncertainty quantification needed to vet systems before implementation and the continued maintenance measures required over the lifespan of software-integrated assets. It also proposes a certified System Software Integrator role
Kemper, Bart
Electrical vertical takeoff and landing (eVTOL) vehicles for urban air mobility (UAM) are garnering increased attention from both the automotive and aerospace industries, with use cases ranging from individual transportation, public service, cargo delivery, and more. Distributed electric propulsion systems are their main technical feature; they determine vehicle size and propulsion efficiency and provide distributed thrust to achieve attitude control. Considering the intended role of eVTOL vehicles, ducted-fan systems are ideal choice for the propulsor, as the duct provides a physical barrier between the rotating blades and the human, especially during the take-off and landing phases. Key Technology Challenges of Electric Ducted Fan Propulsion Systems for eVTOL introduces the main bottlenecks and key enablers of ducted-fan propulsion systems for eVTOL applications. Based on the introduction and discussion of these important issues, this report will help eVTOL engineers understand the
Qian, YupingZhang, YangjunZHUGE, WEILIN
The agricultural sector is responsible for a large share of anthropogenic greenhouse gases. At the same time, methods such as targeted land use change can reduce emissions from landscape elements and sequester carbon from the atmosphere in the soil. This process, also known as carbon farming, has not been uniformly defined, and faces challenges regarding establishing new requirments for agricultural vehicles and technology, creating profitable business models (that preclude “greenwashing”), and developing governmental frameworks and industry acceptance. Carbon Farming and Its Impact on Agricultural Technology discusses the large development gap for carbon farming methods, especially with regard to agricultural technology. In addition to the new hardware requirements arising from land use change, there is also a need for the further development of software. The establishment of suitable interfaces and solutions that are interoperable with existing technologies is also crucial at this
Lehmann, JohannesDwerlkotte, Nina
The importance of decarbonizing mobility to slow climate change is already a common goal worldwide. However, there is a lack of alignment on which technological routes to take. While the electrification of mobility assumes dominance in some markets, it is essential to consider specificities of each region so that different applications of transport modes can be concretely evaluated. Decarbonization Routes for Global Road Mobility and Regional Challenges discusses regional approaches, such as those from Brazil and India, that can offer more representative participation in global decarbonization processes. These routes leverage these countries’ domestic talent and regional potential instead of simply copying the solutions coming from developed countries. Biofuels, biomass, and green hydrogen can be very effective ways of reducing global warming for these countries and others with similar economic characteristics, bringing more opportunities for market development and competitive
Adas, Camilo Abduch
To many, a digital twin offers “functionality,” or the ability to virtually rerun events that have happened on the real system and the ability to simulate future performance. However, this requires models based on the physics of the system to be built into the digital twin, links to data from sensors on the real live system, and sophisticated algorithms incorporating artificial intelligence (AI) and machine learning (ML). All of this can be used for integrated vehicle health management (IVHM) decisions, such as determining future failure, root cause analysis, and optimized energy performance. All of these can be used to make decisions to optimize the operation of an aircraft—these may even extend into safety-based decisions. The Adoption of Digital Twins in Integrated Vehicle Health Management, however, still has a range of unsettled topics that cover technological reliability, data security and ownership, user presentation and interfaces, as well as certification of the digital twin’s
Phillips, Paul
Recent rapid advancement in machine learning (ML) technologies have unlocked the potential for realizing advanced vehicle functions that were previously not feasible using traditional approaches to software development. One prominent example is the area of automated driving. However, there is much discussion regarding whether ML-based vehicle functions can be engineered to be acceptably safe, with concerns related to the inherent difficulty and ambiguity of the tasks to which the technology is applied. This leads to challenges in defining adequately safe responses for all possible situations and an acceptable level of residual risk, which is then compounded by the reliance on training data. The Path to Safe Machine Learning for Automotive Applications discusses the challenges involved in the application of ML to safety-critical vehicle functions and provides a set of recommendations within the context of current and upcoming safety standards. In summary, the potential of ML will only
Burton, Simon
Like the shift from horse drawn carriages to cars, the emergence of delivery robots marks a shift from driverless vehicles to automated logistics vehicles where form follows function. On paper, the business cases are compelling and the use cases seemingly unbounded. Vehicles may be conventional in the form of trucks and industrial equipment of all types, or as purpose-built vehicles on with widely varying cargo capacities. Proof of concepts and pilots are moving forward on roadways, sidewalks, and doorsteps, as well as in low altitude airways, ports, and even inside of buildings. Automated Vehicles and Infrastructure Enablers: Logistics and Delivery addresses the current state of the industry, benefits of ADVs, challenges, and expanding use. It also touches on opportunities to design, modify, and expand infrastructure—both digital and physical—to supports safe and equitable usage. The report draws on experience and research on these topics in North America, the United Kingdom, the
Coyner, KelleyBittner, Jason
Now that metal additive manufacturing (MAM), also known as “metal 3D printing,” has seen its first successful implementations across the mobility industry, the question is whether it will continue to grow beyond these initial applications or remain a niche manufacturing process. Moving to broader applications will require overcoming several barriers, namely cost and rate, size, and criticality limitations. Recent progress in MAM indicates that these barriers are beginning to come down, pointing to continued growth in applications for MAM through the end of the decade and beyond. Metal Additive Manufacturing in the Mobility Industry: Looking into 2033 discusses the obstacles to future MAM growth, how they can be conquered, and what its role in the mobility industry will look like in 2033. Click here to access The Mobility Frontier: Metals, Polymers, or Composites Click here to access the full SAE EDGETM Research Report portfolio
Slattery, KevinCoyne, Jennifer
Advancements in electric vertical takeoff and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry. One particularly promising application involves on-demand, rapid-response use cases to broaden first responders, police, and medical transport mission capabilities. With the dynamic and varying public service operations, eVTOL aircraft can offer potentially cost-effective aerial mobility components to the overall solution, including significant lifesaving benefits. The Use of eVTOL Aircraft for First Responder, Police, and Medical Transport Applications discusses the challenges need to be addressed before identified capabilities and benefits can be realized at scale: Mission-specific eVTOL vehicle development Operator- and patient-specific accommodations Detect-and-avoid capabilities in complex and challenging operating environments Autonomous and artificial intelligence-enhanced mission capabilities Home-base charging systems
Doo, Johnny
Recycling of advanced composites made from carbon fibers in epoxy resins is essential for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Recyclability and Embodied Energy of Advanced Polymer Matrix Composites discusses current recycling and disposal methods—which typically do not aim for full circularity, but rather successive downcycling—and addresses the major challenge of aligning fibers into unidirectional tows of real value in high-performance composites. Click here to access the full SAE EDGETM Research Report portfolio
Muelaner, Jody Emlyn
To grow the application space of polymer additive manufacturing (AM), the industry must provide an offering with improved mechanical properties. Several entities are working towards introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. Introduction of Continuous Fiber Reinforced Polymer: A New Additive Manufacturing Path for Aerospace examines a couple of unsettled issues that are beginning to come to light regarding these materials and focuses on the ability to design and provide robust structural analysis for continuous fiber reinforced polymer AM—unsung aspects that can make or break this new technology as it finds its way into the aerospace market. Without solutions to them, adoption by the aerospace industry will be limited to point design applications, thus constraining
Hayes, Michael
This report delves into the field of multi-agent collaborative perception (MCP) for autonomous driving: an area that remains unresolved. Current single-agent perception systems suffer from limitations, such as occlusion and sparse sensor observation at a far distance. Multi-agent Collaborative Perception for Autonomous Driving: Unsettled Aspects addresses three unsettled topics that demand immediate attention: Establishing normative communication protocols to facilitate seamless information sharing among vehicles Defining collaboration strategies, including identifying specific collaboration projects, partners, and content, as well as establishing the integration mechanism Collecting sufficient data for MCP model training, including capturing diverse modal data and labeling various downstream tasks as accurately as possible Click here to access the full SAE EDGETM Research Report portfolio
Chen, Guang
While being the first to fly, the Wright Brothers were also the first and last complete “one stop shop” of aviation: the only case in human flight in which the same individuals personally carried out the research, development, testing, manufacturing, operation, maintenance, air control, flight simulation, training, setup, operation, and more. Since then, these facets gradually fragmented and drifted away from the aircraft. This report discusses the phenomenon of aircraft operation’s “fading humans,” including the development of flight instruments to support it, its growing automation, the emerging artificial intelligence paradigm, and the lurking cyber threats that all over the place. Controlling Aircraft – From Humans to Autonomous Systems: The Fading Humans examines the “fading” process itself, including its safety aspects, current mitigation efforts, ongoing research, and the unsettled topics that still remain. Click here to access The Mobility Frontier: Cybersecurity on the Air
David, Aharon
Micromobility is often discussed in the context of minimizing traffic congestion and transportation pollution by encouraging people to travel shorter (i.e., typically urban) distances using bicycle or scooters instead of single-occupancy vehicles. It is also frequently championed as a solution to the “first-mile/last-mile” problem. If the demographics and intended users of micromobility vary largely by community, surely that means we must identify different reasons for using micromobility. Micromobility, User Input, and Standardization considers potential options for standardization in engineering and public policy, how real people are using micromobility, and the relevant barriers that come with that usage. It examines the history of existing technologies, compares various traffic laws, and highlights barriers to micromobility standardization—particularly in low-income communities of color. Lastly, it considers how engineers and legislators can use this information to effectively
Eastman, Brittany
Thousands die or are injured each year in automobile crashes. Reducing the number of these tragedies requires reframing our approach to vehicle- and human-based transportation mobility and depends on whether the mobility industry and individual human drivers take a more aggressive approach to saving lives and preventing injuries. Bringing automated driving systems technologies into the advanced driver assist systems (ADAS) and connected vehicle space will help humans drive more safely and better prepare us for automated vehicles (AVs). Reducing Human Driver Error and Setting Realistic Expectations with Advanced Driver Assistance Systems discusses the recent Partnership for Analytics Research in Traffic Safety report which shows that ADAS can indeed work. The path forward requires combining ADAS and ADS implementation with infrastructure engineering, law enforcement, education, emergency response, and public policy, with the goal of reaching zero deaths and serious injuries. It also
Chalmers, Seth
Do connected vehicle (CV) technologies encourage or dampen progress toward widespread deployment of automated vehicles? Would digital infrastructure components be a better investment for safety, mobility, and the environment? Can CVs, coupled with smart infrastructure, provide an effective pathway to further automation? Highly automated vehicles are being developed (albeit slower than predicted) alongside varied, disruptive connected vehicle technology. Automated Vehicles and Infrastructure Enablers: Connectivity looks at the status of CV technology, examines the concerns of automated driving system (ADS) developers and infrastructure owners and operators (IOOs) in relying on connected infrastructure, and assesses lessons learned from the growth of CV applications and improved vehicle-based technology. IOOs and ADS developers agree that cost, communications, interoperability, cybersecurity, operation, maintenance, and other issues undercut efforts to deploy a comprehensive connected
Coyner, KelleyBittner, Jason
Drop-in replacement biofuels and electrofuels can provide net-zero CO2 emissions with dramatic reductions in contrail formation. Biofuels must transition to second-generation cellulosic feedstocks while improving land and soil management. Electrofuels, or "e-fuels,” require aggressive cost reduction in hydrogen production, carbon capture, and fuel synthesis. Hydrogen has great potential for energy efficiency, cost reduction, and emissions reduction; however, its low density (even in liquid form) combined with it’s extremely low boiling temperature mean that bulky spherical tanks will consume considerable fuselage volume. Still, emerging direct-kerosene fuel cells may ultimately provide a superior zero-emission, energy-dense solution. Decarbonized Power Options for Civil Aviation discusses the current challenges with these power options and explores the economic incentives and levers vital to decarbonization. Until common and enforceable global carbon pricing arrives, targeted national
Muelaner, Jody E.
Success in metal additive manufacturing (AM) relies on the optimization of a large set of process parameters to achieve materials whose properties and performance meet design and safety requirements. Despite continuous improvements in the process over the years, the quality of AM parts remains a major concern for manufacturers. Today, researchers are starting to move from discrete geometry-dependent build parameters to continuously variable or dynamically changing parameters that are geometry- and scan-path aware. This approach has become known as “feedforward control.” Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing discusses the origins of feedforward control, its early implementations in AM, the current state of the art, and a path forward to its broader adoption. Click here to access the full SAE EDGETM Research Report portfolio
King, Wayne
Modern in-vehicle experiences are brimming with functionalities and convenience driven by automation, digitalization, and electrification. While automotive manufacturers are competing to provide the best systems to their customers, there is no common ground to evaluate these in-vehicle experiences as they become increasingly complex. Existing automotive guidelines do not offer thresholds for cognitive distraction, or—more appropriately—“disengagement.” What can researchers can do to change this? Evaluation of the In-vehicle Experience discusses acceptable levels of disengagement by evaluating the driving context and exploring how system reliability can translate to distraction and frustration. It also covers the need to test systems for their complexity and ease of use, and to prevent users from resorting to alternative systems while driving (e.g., smartphones). It highlights the value in naturalistic data generation using vehicles already sold to customers and the issues around
Roth, Christian
Recently, there has been a slight increase in interest in the use of responder-to-vehicle (R2V) technology for emergency vehicles, such as ambulances, fire trucks, and police cars. R2V technology allows for the exchange of information between different types of responder vehicles, including connected and automated vehicles (CAVs). It can be used in collision avoidance or emergency situations involving CAV responder vehicles. The benefits of R2V are not limited to fully autonomous vehicles (e.g., SAE Level 4), but can also be used in Level 2 CAV scenarios. However, despite the potential benefits of R2V, discussions on this topic are still limited. Responder-to-Vehicle Technologies for Connected and Autonomous Vehicles aims to provide an overview of R2V technology and its applications for CAV systems, particularly in the context of collision avoidance features. The responder vehicles in question can be autonomous or non-autonomous. It is hoped that it will provide valuable information
Abdul Hamid, Umar Zakir
There is an urgent need to decarbonize various industry sectors, including transportation; however, this is difficult to achieve when relying solely on today’s lithium-ion (Li-ion) battery technology. A lack of sufficient supply of critical materials—including lithium, nickel, and cobalt—is a major driving force behind research, development, and commercialization of new battery chemistries that can support this energy transition. Many emerging chemistries do not face the same supply, safety, and often durability challenges associated with Li-ion technology, yet these solutions are still very immature and require significant development effort to be commercialized. Emerging Automotive Battery Chemistries: Hedging Market identifies and evaluates various chemistries suitable for deployment in the automotive industry and describes advantages, disadvantages, and development challenges for each identified technology. Additionally, it outlines development timelines, contending that, to
Kolodziejczyk, Bart
With technological breakthroughs in electric land vehicles revolutionizing their respective industry, maintenance, repair, and overhaul (MRO) facilities in aviation are also adopting digital technologies in their practices. But despite this drive towards digitalization, the industry is still dominated by manual labor and subjective assessments. Today, several technologies, processes, and practices are being championed to resolve some of these outstanding challenges. Considering this, it is important to present current perspectives regarding where the technology stands today and how we can evaluate capabilities for autonomous decision support systems that prescribe maintenance activities. Overlooking some of these unsettled domain issues can potentially undermine any benefits in speed, process, and resilience promised by such systems. Towards MRO 4.0: Challenges for Digitalization and Mapping Emerging Technologies provides some understanding of specific motivating factors by focusing on
Khan, Samir
Most heavy trucks should be fully electric, using a combination of batteries and catenary electrification, but heavy trucks requiring very long unsupported range will need chemical fuels. At the scale of heavy trucks, compressed hydrogen can match the specific energy of diesel, but its energy density is five times lower, limiting range to around 2,000 km. Scaling green hydrogen production and addressing leakage must be priorities. Hydrogen-derived electrofuels—or “e-fuels”—have the potential to scale, and while the economic comparison currently has unknowns, clean air considerations have gained new importance Decarbonized Power Options for Long-haul Commercial Vehicles discusses these energy sources as well as the caveats related to bioenergy usage, and reasons to prefer ethanol or methanol to diesel-type fuels. Click here to access the full SAE EDGETM Research Report portfolio
Muelaner, Jody Emlyn
Items per page:
1 – 50 of 156