Standards - SAE Mobilus
SAE standards are internationally recognized as some of the most trusted collections of scientific data to globally optimize the processes, practices, and products that advance technology in our industry and are vital to ensure safety, quality, and reliability. Over 40,000+ current documents available within the aerospace, automotive, and commercial vehicle industries.
This Aerospace Standard (AS) provides the general requirements for hydraulic components that are used in military aircraft and missile hydraulic systems.
This SAE Recommended Practice is applicable to all heat exchangers used in vehicle and industrial cooling systems. This document outlines the tests to determine the heat transfer and pressure drop performance of heat exchangers under specified conditions. This document has been reviewed and revised by adding several clarifying statements to Section 4.
This document is a guideline for format, structure and content for ground support equipment (GSE) technical manuals. This document focuses on requirements specific to the GSE industry and does not cover general technical publication practices. Additional standards for GSE and for manufacturer’s publications exist and may add requirements beyond what is covered in this standard. This may include EU Directive 2006/42/EC. This document is written in specific terms by intention, and conforms to recognized practices in the industry. When the word SHALL is used in this standard, it indicates a requirement that must be adhered to in total and does not allow for variance. When the word SHOULD is used, it indicates a recommended practice which allows the manual writer to use discretionary judgment. This document does not apply to electronic test equipment.
This SAE Aerospace Recommended Practice (ARP) specifies dimensional and physical requirements of tow bar connections to tractor and aircraft (see Figure 1). It is applicable to all types of commercial transport category aircraft tow bar. The purpose of this SAE Aerospace Recommended Practice (ARP) is to standardize tow bar attachments to airplane and tractor according to the mass category of the towed aircraft, so that one tow bar head with different shear levels can be used for all aircraft that are within the same mass category and are manufactured in compliance with AS1614 or ISO 8267.
This SAE Aerospace Standard (AS) specifies the interface requirements for tow bar attachment fittings on the nose gear (when towing operations are performed from the nose gear) of conventional tricycle type landing gears of commercial civil transport aircraft with a maximum ramp weight higher than 50,000 kg (110,000 pounds), commonly designated as “main line aircraft”. Its purpose is to achieve tow bar attachment fittings interface standardization by aircraft weight category (which determines tow bar forces) in order to ensure that one single type of tow bar with a standard connection can be used for all aircraft types within or near that weight category, so as to assist operators and airport handling companies in reducing the number of different tow bar types used.
This document provides information on the preparation and use of video for operational and maintenance training of qualified personnel associated with GSE.
This Aerospace Information Report (AIR) is intended to be concerned with fleet programs rather than programs for individual units. Technical and administrative considerations in developing an approach to a program will be suggested. Organization of material possibly wanted in the form of a detailed specification for airline rebuilder communication is reviewed.
This SAE Aerospace Information Report (AIR) is intended as a source of comparative information and is subject to change to keep pace with experience and technical advances. This document describes currently used fuels and fuels which may be used in the future. Conventional gasoline and diesel fuels are intentionally omitted from this document.
The purpose of this SAE Standard is to establish the specific minimum equipment performance requirements for recovery and recycling of HFC-134a that has been directly removed from, and is intended for reuse in, mobile air-conditioning (A/C) systems. It also is intended to establish requirements for equipment used to recharge HFC-134a to an accuracy level that meets Section 9 of this document and SAE J2099. The requirements apply to the following types of service equipment and their specific applications: Recovery/recycling equipment Recovery/recycling - refrigerant charging Refrigerant recharging equipment only
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/ maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
This SAE Recommended Practice applies to mobile cranes when used in lifting crane service that are equipped with boom length indicating devices.
This SAE Aerospace Standard defines a typical coupling (with different fitting end styles), which is used in typical cone connection fittings installed in high-pressure (up to 3000 psi) oxygen systems for the purpose of mating to applicable oxygen equipment. Dimensions are developed from AND10089 and AS4375.
This SAE Recommended Practice provides test procedures, requirements, and guidelines for high-mounted stop lamps and high-mounted turn signal lamps intended for use on vehicles 2032 mm or more in overall width. This document applies to trucks, motor coaches, van type trailers, and other vehicles with permanent structure greater than 2800 mm high. This document does not apply to school buses, truck tractors, pole trailers, flat-bed trailers, pick-up trucks with dual wheels, and trailer converter dollies. The purpose of the high-mounted stop lamp(s) and high-mounted turn signal lamp(s) is to provide a signal to the driver of following (approaching a signaling vehicle from the rear) or oncoming (approaching a signaling vehicle from the front) vehicles over intervening vehicles.
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.020 to 0.500 inch (0.508 to 12.70 mm), inclusive, in thickness, supplied in the -T361 temper (see 8.5).
AMS4269C has been declared “STABILIZED” by SAE AMS Committee D Nonferrous Alloys and will no longer be subjected to periodic reviews for currency. Users are responsible for verifying references and continued suitability of technical requirements. Newer technology may exist.
This specification covers one type of copper-beryllium alloy in the form of sheet, strip, and plate (see 8.6).
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, and stock for forging of any size (see 8.7).
This specification covers an aluminum alloy in the form of sheet and plate, alclad both sides, supplied in the -T361 temper.
This document provides vehicle-level data collection, data analysis, and data verification procedures that may be used to verify that an instrument under test (IUT) satisfies the vehicle-level requirements specified in SAE J3161/1. For the purposes of this report, “vehicle-level requirements” primarily consist of those requirements which can be verified external to the vehicle. The IUT for these procedures is a configured LTE-V2X vehicle-to-vehicle (V2V) device as defined in SAE J3161/1 and is installed on a vehicle of class 2, 3, 4, or 5. While the IUT is conceptually separated from the vehicle it is installed on, the tests outlined in this document are primarily vehicle level, so the terms “vehicle” and “IUT” can generally be considered interchangeable. Additionally, non-vehicle-level complementary tests, not included in this document, are required to verify that the entire set of requirements specified in SAE J3161/1 is satisfied. This document also includes a Traceability Matrix to
This SAE Standard provides test procedures for air and air-over-hydraulic disc or drum brakes used for on-highway commercial vehicles over 4536 kg (10000 pounds) GVWR. This recommended practice includes the pass/fail criteria of Federal Motor Vehicle Safety Standard No. TP-121D-01.
SCOPE IS UNAVAILABLE.
SCOPE IS UNAVAILABLE.
This specification covers a coating consisting of tungsten disulfide without binders and does not require a curing process.
This specification covers a magnesium alloy in the form of extruded bars, rods, wire, tubing, and profiles.
This specification covers an aluminum alloy in the form of hand forgings up to 8 inches (203 mm), inclusive, in nominal thickness and a cross-sectional area not over 256 square inches (1652 cm2) and rolled rings up to 3.5 inches (89 mm), inclusive, in nominal thickness and with an OD to wall thickness ratio of 10:1 or greater (see 8.6).
This specification covers a titanium alloy in the form of bars up through 3.000 inches (76.20 mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 10 square inches (64.5 cm2) and forging stock of any size (see 8.7).
This specification covers a magnesium alloy in the form of plate 0.250 to 2.000 inches (6.35 to 50.80 mm), inclusive, in nominal thickness (see 8.5).
This SAE Aerospace Standard (AS) covers miniature, composite, high density, threaded coupling, self-locking, circular, environment-resistant, electrical connectors utilizing removable crimp contacts, and associated hardware, which are capable of continuous operation within a temperature range of -65 to +175 °C (-85 to 347 °F). These connectors are supplied under an AS9100 reliability assurance program. See 6.1 for intended use and applications.
This specification covers an aluminum alloy in the form of rolled or forged rings up to 6 inches (152 mm), inclusive, in nominal thickness at the time of heat treatment and having an OD to wall thickness ratio of 10 or greater (see 8.6).
This SAE Aerospace Recommended Practice (ARP) defines lightning strike zones and provides guidelines for locating them on particular aircraft, together with examples. The zone definitions and location guidelines described herein are applicable to Parts 23, 25, 27, and 29 aircraft. The zone location guidelines and examples are representative of in-flight lightning exposures.
This SAE Recommended Practice provides minimum performance requirements and uniform procedures for fatigue testing of wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles. For heavy truck wheels and wheels intended to be used as duals, refer to SAE J267. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. These minimum performance requirements apply only to wheels made of materials included in Tables 1 to 4. The minimum cycles noted in Tables 1 through 4 are to be used on individual test and a sample of tests conducted, with Weibull Statistics using two parameter, median ranks, 50% confidence level, and 90% reliability, typically noted as B10C50.
This SAE lab test procedure should be used when performing the following specialized weathering tests for wheels; Florida Exposure, QUV, Xenon and Carbon Weatherometer. In addition to these procedures, some additional post-weathering tests may be specified. Please refer to customer specifications for these requirements.
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Glass and materials inclusive to the light source are not in scope for this method.
These general guidelines and precautions apply to personnel operating directional drilling tracking equipment when used with horizontal directional drilling (HDD) machines as defined in ISO 21467:2023.
Items per page:
50
1 – 50 of 50156