Books - SAE Mobilus

SAE Books explores topics critical to the mobility industry. Our internationally acclaimed authors provide critical insight into historical, current, and emerging topics.

Items (976)
The transportation sector has an enormous demand for resources and energy, is a major contributor of emissions (i.e., greenhouse gases in particular), and is defined largely by the kind of energy it uses—be it electric cars, biofuel trucks, or hydrogen aircraft. Given the size of this sector, it has a crucial role in combating climate change and securing sustainability in its three forms: environmental, societal, and economic. In this context, there are many questions concerning energy options on the path toward a more sustainable transportation sector. Is hydrogen the fuel of the future? Is there enough electricity to power a fully electric transportation sector? What happens when millions of electric vehicle batteries need to be decommissioned? Which regulatory measures are effective and appropriate for moving the sector in the right direction? What is the “right” direction? This chapter does not aim to answer all those questions. It does, however, highlight and discuss the most
Beiker, SvenMuelaner, Jody E.
Most heavy trucks should be fully electric, using a combination of batteries and catenary electrification, but heavy trucks requiring very long unsupported range will need chemical fuels. Hydrogen is the key to storing renewably generated electricity chemically. At the scale of heavy trucks, compressed hydrogen can match the specific energy of diesel, but its energy density is five times lower, limiting the range to around 2,000 km. Scaling green hydrogen production and addressing leakage must be priorities. Hydrogen-derived electrofuels—or “e-fuels”—have the potential to scale, and while the economic comparison currently has unknowns, clean air considerations have gained new importance. The limited supply of bioenergy should be reserved for critical applications, such as bioenergy with carbon capture and storage (BECCS), aviation, shipping, and road freight in the most remote locations. Additionally, there are some reasons to prefer ethanol or methanol to diesel-type fuels as they are
Muelaner, Jody E.
With the current state of automotive electrification, very large uncertainties preclude predicting which electrification pathway is likely to be most economical over a 10- to 30-year outlook. Therefore, the development of a range of technologies should continue including statically charged battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles designed for a combination of plug-in and electric road system (ERS) supply. The most significant uncertainties are for the costs related to hydrogen supply, electrical supply, and battery life. Consequently, efforts should focus on the techno-economic analysis of these parameters. The cost of green hydrogen will depend on many factors, including electrolyzer and fuel cell costs, life spans and efficiencies, distribution and storage costs, the time-based cost of renewable electricity, and the extent to which more efficient electrolyzers with heat recovery methods can
Lin, RuiMuelaner, Jody E.Kolodziejczyk, Bart
Advanced two-dimensional (2D) materials discovered in the last two decades are now being produced at scale and contribute to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprised of a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for automotive engineering. The goal of drastically reducing greenhouse gas emissions has prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. While this chapter reviews the current state of graphene
Barkan, TerranceCoyner, KelleyBittner, JasonKolodziejczyk, BartJiang, Yuxiang
Advanced two-dimensional materials discovered in the last two decades are now being produced at scale and are contributing to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprising a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for aerospace engineering. The goals of reducing greenhouse gas emissions and creating a world that achieves net-zero emissions have prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. These aspects have
Barkan, TerranceWalthall, RhondaDixit, SunilDavid, AharonWebb, PhilipFletcher, Sarah
Maintenance, repair, and overhaul (MRO) facilities are a major contributor to the safe, reliable, and efficient service of an aircraft. Practices have continually evolved to support complex operations and enhance performance and availability while decreasing operating costs. With technological breakthroughs in electric land vehicles revolutionizing their respective industry, MRO facilities in aviation are also adopting digital technologies in their practices. Despite this drive towards digitalization, the industry is still dominated by manual labor and subjective assessments. Operations may or may not follow the exact expected profile, and that is when sensors integrated into a maintenance system can indicate that the aircraft may or may not fly another flight. Today, several technologies, processes, and practices are being championed to resolve some of these outstanding challenges. Considering this, it is important to present current perspectives regarding where the technology stands
Khan, SamirWalthall, RhondaRajamani, RaviHolland, Steve
The extent of automation and autonomy used in general aviation (GA) has been steadily increasing for decades, with the pace of development accelerating recently. This has huge potential benefits for safety given that it is estimated that 75% of the accidents in personal and on-demand GA are due to pilot error. However, an approach to certifying autonomous systems that relies on reversionary modes limits their potential to improve safety. Placing a human pilot in a situation where they are suddenly tasked with flying an airplane in a failed situation, often without sufficient situational awareness, is overly demanding. This consideration, coupled with advancing technology that may not align with a deterministic certification paradigm, creates an opportunity for new approaches to certifying autonomous and highly automated aircraft systems. The new paths must account for the multifaceted aviation approach to risk management which has interlocking requirements for airworthiness and
Dietrich, Anna MracekRajamani, Ravi
Aerospace is an industry where competition is high and the need to ensure safety and security while managing costs is foremost. Stakeholders, who gain the most by working together, do not necessarily trust each other. Changing backbone technologies that drive enterprise systems and secure historical records does not happen quickly (if at all). At best, businesses adapt incrementally, building customized applications on top of legacy systems. The complexity of these legacy systems leads to duplication of efforts and data storage, making them very inefficient. Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the aerospace industry. The industry has been slow to adopt the technology even though experts agree that it has real potential to revolutionize the global supply chain—including
Walthall, RhondaDavid, AharonFarell, JamesHann, RichardJohansen, Tor A.
There is an urgent need to decarbonize various industry sectors, including transportation; however, this is difficult to achieve when relying solely on today’s lithium-ion (Li-ion) battery technology. A lack of sufficient supply of critical materials—including lithium, nickel, and cobalt—is a major driving force behind the research, development, and commercialization of new battery chemistries that can support this energy transition. Many emerging chemistries do not face the same supply, safety, and often durability challenges associated with Li-ion technology, yet these solutions are still very immature and require significant development effort to be commercialized. This chapter identifies and evaluates various emerging battery chemistries suitable for deployment in the automotive industry and describes the advantages, disadvantages, and development challenges for each identified technology. Additionally, the chapter outlines development timelines, contending that, to benefit from
Kolodziejczyk, BartKozumplik, Brian
David, AharonMuelaner, Jody E.Rezende, Rene Nardi
Recent advancements of electric vertical take-off and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry, and many novel applications have been identified and are in development. One promising application for these innovative systems is in firefighting, with eVTOL aircraft complementing current firefighting capabilities to help save lives and reduce fire-induced damages. With increased global occurrences and scales of wildfires—not to mention the issues firefighters face during urban and rural firefighting operations daily—eVTOL technology could offer timely, on-demand, and potentially cost-effective aerial mobility capabilities to counter these challenges. Early detection and suppression of wildfires could prevent many fires from becoming large-scale disasters. eVTOL aircraft may not have the capacity of larger aerial assets for firefighting, but targeted suppression, potentially in swarm operations, could be valuable. Most
Doo, JohnnyMcQueen, BobZhang, Yangjun
The battery electric vehicle (EV) industry has experienced considerable growth over the last few years, demonstrating a clear acceleration in adoption and deployment. Recent government policies and incentives will further drive the demand for production over the next 10 years. Concurrently, the lithium-ion battery industry has grown dramatically as manufacturers look to meet demand. However, there are still many questions concerning what will happen to batteries as they reach their end of life (EOL), as EV batteries that have “aged out” can either be reused, recycled, or go to a landfill. This chapter addresses some unsettled issues around lithium-ion battery reuse and recycling. Reuse can delay battery EOL, lower costs of photovoltaic solar energy storage, and reduce the logistics emissions that would come from the recycling process. However, insufficient investment and regulations are current barriers to a robust reuse system, and safety concerns potentially hinder adoption
Bush, JuliaSouweidane, NaseebMuelaner, Jody E.
Razdan, RahulKhalighi, YaserKhalkhali, MohsenAlonso da Silva, Fabio
Eastman, BrittanyDukarski, Jennifer
This chapter delves into the field of multi-agent collaborative perception (MCP) for autonomous driving: an area that remains unresolved. Current single-agent perception systems suffer from limitations, such as occlusion and sparse sensor observation at a far distance. To address this, three unsettled topics have been identified that demand immediate attention. First, it is crucial to establish normative communication protocols to facilitate seamless information sharing among vehicles. Second, collaboration strategies need to be defined, including identifying the need for specific collaboration projects, determining the collaboration partners, defining the content of collaboration, and establishing the integration mechanism. Finally, collecting sufficient data for MCP model training is vital. This includes capturing diverse modal data and labeling various downstream tasks as accurately as possible
Chen, GuangChalmers, SethZheng, Ling
Artificial intelligence (AI)-based solutions are slowly making their way into mobile devices and other parts of our lives on a daily basis. By integrating AI into vehicles, many manufacturers are looking forward to developing autonomous cars. However, as of today, no existing autonomous vehicles (AVs) that are consumer ready have reached SAE Level 5 automation. To develop a consumer-ready AV, numerous problems need to be addressed. In this chapter we present a few of these unaddressed issues related to human-machine interaction design. They include interface implementation, speech interaction, emotion regulation, emotion detection, and driver trust. For each of these aspects, we present the subject in detail—including the area’s current state of research and development, its current challenges, and proposed solutions worth exploring
Fang, ChenRazdan, rahulBeiker, SvenTaleb-Bendiab, Amine
Connected and autonomous vehicles (CAVs) and their productization are a major focus of the automotive and mobility industries as a whole. However, despite significant investments in this technology, CAVs are still at risk of collisions, particularly in unforeseen circumstances or “edge cases.” It is also critical to ensure that redundant environmental data are available to provide additional information for the autonomous driving software stack in case of emergencies. Additionally, vehicle-to-everything (V2X) technologies can be included in discussions on safer autonomous driving design. Recently, there has been a slight increase in interest in the use of responder-to-vehicle (R2V) technology for emergency vehicles, such as ambulances, fire trucks, and police cars. R2V technology allows for the exchange of information between different types of responder vehicles, including CAVs. It can be used in collision avoidance or emergency situations involving CAV responder vehicles. The
Abdul Hamid, Umar ZakirRoth, ChristianNickerson, JeffreyLyytinen, KalleKing, John Leslie
On-road vehicles equipped with driving automation features are entering the mainstream public space. This category of vehicles is now extending to include those where a human might not be needed for operation on board. Several pilot programs are underway, and the first permits for commercial usage of vehicles without an onboard operator are being issued. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire chain of “automated vehicle, communication network, and human operator” now needs to work together safely, effectively, and practically. And as much as there are technical questions regarding network latency, bandwidth, cybersecurity, etc., aspects like human
Beiker, SvenBock, ThomasTaiber, Joachim
Lehmann, JohannesMoorehead, StewartMuelaner, Jody E.
Beiker, SvenPorcel Magnusson, CristinaWaraniak, John
The impending deployment of automated vehicles (AVs) represents a major shift in the traditional approach to ground transportation; its effects will inevitably be felt by parties directly involved with vehicle manufacturing and use (e.g., automotive original equipment manufacturers (OEMs), public transportation systems, heavy goods transportation providers) and those that play roles in the mobility ecosystem (e.g., aftermarket and maintenance industries, infrastructure and planning organizations, automotive insurance providers, marketers, telecommunication companies). The focus of this chapter is to address a topic overlooked by many who choose to view automated driving systems and AVs from a “10,000-foot perspective:” the topic of how AVs will communicate with other road users such as conventional (human-driven) vehicles, bicyclists, and pedestrians while in operation. This unsettled issue requires assessing the spectrum of existing modes of communication—both implicit and explicit
Beiker, SvenRazdan, RahulFavaro, FrancescaTaiber, JoachimSell, Raivo
On-road vehicles equipped with driving automation features are entering the mainstream public space. This category of vehicles is now extending to include those where a human might not be needed for operation on board. Several pilot programs are underway, and the first permits for commercial usage of vehicles without an onboard operator are being issued. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire chain of “automated vehicle, communication network, and human operator” now needs to work together safely, effectively, and practically. And as much as there are technical questions regarding network latency, bandwidth, cybersecurity, etc., aspects like human
Beiker, SvenMuelaner, Jody E.Razdan, Rahul
Coyner, KelleyBittner, JasonLambermont, SergeDe Boer, Niels
In the 1990s and early 2000s, the field of parallel kinematics was viewed as being potentially transformational in manufacturing, having multiple potential advantages over conventional serial machine tools and robots. Many prototypes were developed, and some reached commercial production and implementation in areas such as hard material machining and particularly in aerospace manufacturing and assembly. There is some activity limited to niche and specialist applications; however, the technology never quite achieved the market penetration and success envisaged. Yet, many of the inherent advantages still exist in terms of stiffness, force capability, and flexibility when compared to more conventional machine structures. This chapter will attempt to identify why parallel kinematic machines (PKMs) have not lived up to the original excitement and market interest and what needs to be done to rekindle that interest. In support of this, a number of key questions and issues have been identified
Muelaner, JodyWebb, Philip
Recycling of advanced composites made from carbon fibers in epoxy resins is required for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Currently, recycling and safe methods of disposal typically do not aim for full circularity, but rather separate fibers for successive downcycling while combusting the matrix in a clean burning process. Breakdown of the matrix, without damaging the carbon fibers, can be achieved by pyrolysis, fluidized bed processes, or chemical solvolysis. The major challenge is to align fibers into unidirectional tows of real value in high-performance composites
Muelaner, JodyRoye, Thorsten
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
Hayes, MichaelMuelaner, JodyRoye, ThorstenWebb, Philip
Depending on the industry and application, views on additive manufacturing (AM), or “3D printing,” range from something that will transform an industry to it being another overhyped technology that will only find niche applications. Most views fall somewhere in between, with the most common one being that it depends on the application and technology. Because of the ability to directly produce parts from a digital file, views often include dependence on when and where the part is needed. This introduces the crux of the matter, which is how to determine when the use of AM is feasible and desirable, which is made all the more complicated by the fact that not only is AM technology in general changing quickly, but also the merits of the each AM technology relative to the others are also changing. Finally, non-AM technologies are continually improving and are increasingly adding AM-like capability
Slattery, Kevin
Items per page:
1 – 50 of 976