Journal Articles - SAE Mobilus
SAE journals provide rigorously peer-reviewed, archival research by subject matter experts--basic and applied research that is valuable to both academia and industry.
With rising environmental concerns, developing lead-free solders is crucial for sustainable electronics. Traditional lead-based solders, while effective, pose health and environmental risks, prompt a shift to safer alternatives that retain reliability. Sn-9Zn alloys, when alloyed with elements such as cerium (Ce) and chromium (Cr), show enhanced mechanical and thermal properties suited for modern electronics. This study examines the effects of Ce and Cr, and their combination in Sn-9Zn solder alloy, analyzing improvements in microstructure, thermal, wettability, and hardness properties. Microstructural analysis reveals that Ce and Cr additions refine the alloy’s structure, benefiting performance. Wettability testing shows that Sn-9Zn-0.05Ce achieves the lowest wetting angle, while Sn-9Zn-0.05Ce-0.1Cr displays a balanced angle between Sn-9Zn-0.05Ce and Sn-9Zn-0.1Cr. Differential scanning calorimetry (DSC) results indicate that Sn-9Zn-0.05Ce has the lowest melting temperature, while Sn
This study presents an analysis of 364 motorcycle helmet impact tests, including standard certified full-face, open-face, and half-helmets, as well as non-certified (novelty) helmet designs. Two advanced motorcycle helmet designs that incorporate technologies intended to mitigate the risk of rotational brain injuries (rTBI) were included in this study. Results were compared to 80 unprotected tests using an instrumented 50th percentile Hybrid III head form and neck at impact speeds ranging from 6 to 18 m/s (13 to 40 mph). Results show that, on average, the Head Injury Criterion (HIC) was reduced by 92 percent across certified helmets, compared to the unhelmeted condition, indicating substantial protection against focal head and brain injuries. However, findings indicate that standard motorcycle helmets increase the risk of AIS 2 to 5 rotational brain injuries (rTBI) by an average of 30 percent compared to the unprotected condition, due to the increased rotational inertia generated by
This article introduces a comprehensive cooperative navigation algorithm to improve vehicular system safety and efficiency. The algorithm employs surrogate optimization to prevent collisions with cooperative cruise control and lane-keeping functionalities. These strategies address real-world traffic challenges. The dynamic model supports precise prediction and optimization within the MPC framework, enabling effective real-time decision-making for collision avoidance. The critical component of the algorithm incorporates multiple parameters such as relative vehicle positions, velocities, and safety margins to ensure optimal and safe navigation. In the cybersecurity evaluation, the four scenarios explore the system’s response to different types of cyberattacks, including data manipulation, signal interference, and spoofing. These scenarios test the algorithm’s ability to detect and mitigate the effects of malicious disruptions. Evaluate how well the system can maintain stability and avoid
Items per page:
50
1 – 50 of 10749