Journal Articles - SAE Mobilus
SAE journals provide rigorously peer-reviewed, archival research by subject matter experts--basic and applied research that is valuable to both academia and industry.
This study introduces an innovative intelligent tire system capable of estimating the risk of total hydroplaning based on water pressure measurements within the tread grooves. Dynamic hydroplaning represents an important safety concern influenced by water depth, tread design, and vehicle longitudinal speed. Existing intelligent tire systems primarily assess hydroplaning risk using the water wedge effect, which occurs predominantly in deep water conditions. However, in shallow water, which is far more prevalent in real-world scenarios, the water wedge effect is absent at higher longitudinal speeds, which could make existing systems unable to reliably assess the total hydroplaning risk. Groove flow represents a key factor in hydroplaning dynamics, and it is governed by two mechanisms: water interception rate and water wedge pressure. In both the shallow water and deep water cases, the groove water flow will increase as a result of increasing the longitudinal speed of the vehicle for a
Letter from the Guest Editors
Letter from the Guest Editors
In this article we examine the behavior of oil in the lubrication channel between the main bearing and the connecting rod bearing in the crankshaft of an internal combustion engine. The requirement for high service life and proper operation of these bearings, while minimizing input power of the lubrication system, lead to the need to understand the function of these structural parts in detail. To simulate and visualize this process, an experimental device was created. The device allows the experimenters to change individual parameters such as rotation speed, oil pressure, oil temperature, and aeration, while simultaneously visualizing the process with the help of a special rotating camera. These parameters are then obtained by image processing. In this way, the following influences are investigated here: at oil temperatures of 30, 50, and 80°C, relative oil pressures of 1, 2, 3, and 4 bar, at undissolved air in the oil of 5 and 10 vol% and crankshaft station speeds from 0 to 6000 1/min
Items per page:
50
1 – 50 of 10624