Browse Topic: Tests and Testing

Items (23,412)
The Front Axle wheel end assembly is a critical component of Vehicle functionality, comprising a wheel hub positioned to rotate smoothly on an Axle spindle. This rotational movement is enabled by bearings positioned between the hub and the spindle, allowing for frictionless rotation. The Front Axle wheel ends’ temperature typically depends on several factors such as type of Vehicle, Load & driving conditions and health of the components involved. In general, the wheel ends can become warm during normal operation owing to friction generated by the rotation of the wheels and the interaction of various mechanical components such as Bearings and Brakes. However, if the temperature of the wheel ends becomes excessively hot, it could indicate potential issues such as Overheating brakes, Wheel bearing problems, improperly inflated tyres, and faulty components. As temperature rise, materials tend to expand. This expansion can affect the dimensions of critical components in the Front Axle wheel
Pandiyan, MahendranJayaraman, KarthikR, SabariB, EllavarasanBhanja, Subrat Kumar
With the introduction of the Euro 7 regulation, non-exhaust emissions – particularly those arising from brake and tire abrasion – will be regulated and subject to emission limits for the first time. This presents significant challenges not only for OEMs striving to meet these targets within the given timeframe, but also for suppliers, who must develop innovative solutions for the precise measurement, analysis, and mitigation of these emissions. To address this, it is essential to establish and industrialize new testing methodologies as structured, scalable, and cost-efficient processes. Beyond pure measurement capability, service providers in this domain are increasingly expected to serve as feedback mechanisms – identifying process limitations, proposing targeted improvements, and thereby enabling continuous development in line with evolving technical and regulatory requirements. In this context, AVL is pursuing a holistic development strategy that integrates brake emission
Grojer, Bernd
Pin-on-disk tribometers are used to determine the frictional behaviour and boundary layer dynamics of material pairings. Material pairings are examined under defined conditions in order to reason about the friction behaviour and wear. Pairings for real brake systems with larger pad sizes can be tested on flywheel mass test rigs in order to provide proof of suitability. This is mainly due to a lack of knowledge about the scaling behaviour of friction linings. The Department of Machinery System Design at TU Berlin has combined the classic approach of a pin-on-disk tribometer with a flywheel mass test rig (up to 12.78 kgm2) and thus set up a laboratory brake on which material pairings with different pad shapes and sizes (up to 48 cm2) can be examined. The flywheel mass test rig consists of an adjustable DC-motor that drives a shaft on which variable flywheel masses and brake disks can be installed. The variability allows for different kinetic energies at different friction speeds. The
Heuser, Robert MichaelRosenthal, Tobias RichardWiest, Daniel ChristianMeyer, Henning Jürgen
The effective reduction of particulate emissions from modern vehicles has shifted the focus toward emissions from tire wear, brake wear, road surface wear, and re-suspended particulate emissions. To meet future EU air quality standards and even stricter WHO targets for PM2.5, a reduction in non-exhaust particulate (NEP) emissions seems to be essential. For this reason, the EURO 7 emissions regulation contains limits for PM and PN emissions from brakes and tire abrasion. Graz University of Technology develops test methods, simulation tools and evaluates technologies for the reduction of brake wear particles and is involved in and leads several international research projects on this topic. The results are applied in emission models such as HBEFA (Handbook on Emission Factors). In this paper, we present our brake emission simulation approach, which calculates the power at the wheels and mechanical brakes, as well as corresponding rotational speeds for vehicles using longitudinal dynamics
Landl, LukasKetan, EnisHausberger, StefanDippold, Martin
In order to predict the durability characteristics of the brake judder, it is determined by analyzing the brake DTV (Disc Thickness Variation) and BTV(Brake Torque Variation) through the durability evaluation of the brake system or the vehicle. However, this method requires the real products and takes a long time to derive the result. When judder problems occur due to durability, there are many difficulties in deriving improvement plans through test methods. Therefore, in this study, CAE was used to derive the initial wear amount of the disc, and a method of predicting DTV after durability was developed using the results.
Hwang, JaekeunKim, SunghoKim, JeongkyuKang, Donghoon
In recent years, motorsport has increasingly focused on environmental concerns, leading to the rise of hybrid and fully electric competitions. In this scenario, electric motors and batteries take a crucial role in reducing the environmental impact by recovering energy during braking. However, due to inherent limitations, motors and battery cannot fully capture all braking power, necessitating the use of standard friction brakes. To achieve an efficient balance between electric motors and friction brakes, the brake pressure can no longer be directly controlled by the driver. Instead, it must be computed by the Vehicle Control Unit (VCU) and sent to a smart actuator, i.e. the Brake-By-Wire (BBW), which ensures that the required pressure is applied. The standard approach to achieve precise pressure control is to design a nested Proportional-Integral-Derivative (PID) control architecture, which requires an accurate nominal model of the system dynamics to meet the desired tracking
Gimondi, AlexDubbini, AlbertoRiva, GiorgioCantoni, Carlo
As the pressure increases to move to renewable carbon-neutral fuel sources, especially in heavy-duty diesel engine applications, hydrotreated vegetable oil (HVO) has shown to be an attractive alternative fuel to fossil diesel. Therefore, this study investigated the impacts of HVO used as a drop-in fuel on performance and emissions of a nonroad heavy-duty diesel engine by running back-to-back D2 ISO 8178 cycles with ultra-low sulfur diesel (ULSD) and HVO. The measurement results showed that brake specific fuel consumption with respect to mass reduced by 1.1%–3.6% switching from ULSD to HVO due to greater heating values of HVO, which is supported by 0.7%–3.5% lower CO2 emissions recorded with HVO. Conversely, brake specific fuel consumption with respect to volume increased by 0.3%–2.9% with HVO because of its smaller density. Combustion analysis revealed that combustion of both fuels is comparable at high loads while HVO ignites earlier at low power. Thus, lesser reductions in NOx
Duva, Berk CanAbat, BryanEngelhardt, Jens
Developing innovative ignition technologies offers a crucial opportunity to improve the performance of internal combustion engines while significantly reducing harmful emissions, contributing to a more sustainable future. The replacement of the standard spark plug with a pre-chamber igniter is a well-known combustion accelerator for externally ignited engines for passenger vehicles. An increase in engine efficiency, especially at high loads, can be realized. However, pre-chamber ignition technology has not yet been widely adopted in the market, primarily due to the difficulty of achieving stable operation at lower engine loads. A better understanding of the flow and mixture conditions is needed to improve the combustion stability with the pre-chamber igniter in low-load operating conditions. The gas exchange in the passive pre-chamber was studied using a combination of numerical modelling and experimental methods. Accessing those parameters experimentally requires a high effort in test
Fellner, FelixHärtl, MartinJaensch, MalteD'Elia, MatteoBurgo Beiro, MarcosNambully, Suresh KumarRothbauer, Rainer
In this article, the authors present the various choices made to design a magnet free and directly recyclable pure synchro-reluctant (Pure-SynRel) machine with asymmetrical poles operating at a maximum speed of ~21,000 rpm dedicated to automotive. This project focused on identifying design levers and optimizing the magnetic circuit to address three well-known challenges of this topology that limit its application as an automotive traction machine. These challenges include: maximizing the power factor to reduce inverter rating and cost, minimizing sources of NVH (noise, vibration, and harshness) and torque ripples, and ultimately maximizing efficiency to bridge the performance gap with magnet-based technologies (PMaSynRel). The sizing of stator components—such as the choice of winding (concentric or distributed, full or fractional pitch, round or hairpin wire)—and rotor components (e.g., the number of pole pairs, shape, and number of barriers) are explained. Additionally, the
Applagnat-Tartet, AntoineMilosavljevic, MisaDelpit, Pierre
The mechanical components of drive systems for electric vehicles are less complex than those of conventional drives and are therefore generally less prone to faults. On the other hand, a challenge lies in the relatively limited experience in dealing with faults in the electric drivetrain and their effects on driving dynamics compared to conventional drives. To meet these challenges, this paper presents a method to simulate faults in the electric powertrain of a real demonstrator vehicle on a full vehicle test bench and to evaluate the influence on driving dynamics. For this purpose, the demonstrator vehicle was modeled in detail in a co-simulation between the driving dynamics simulation software CarMaker and the real-time solution for simulating and testing electrical components Typhoon HIL. This enabled the investigation of the vehicle’s behavior in the event of a fault. Subsequently, tests with the vehicle were performed on the Vehicle-in-the-Loop full vehicle test bench and the
Rautenberg, PhilipKonzept, AnjaHitz, ArneFrey, MichaelReick, Benedikt
This study investigated a novel nozzle orifice design to improve thermal efficiency. The offset orifice nozzle has holes drilled offset of less than 0.5 mm from the radial center of the nozzle. Engine performance test and in-cylinder combustion observation were carried out by means of a heavy-duty diesel engine. The experimental results demonstrated that the offset orifice nozzle achieved significant improvements in both heat loss and thermal efficiency, regardless of the compression ratio and operating load conditions. However, the underlying mechanisms have not been revealed yet. Therefore, investigation into the mechanisms behind heat loss reduction and thermal efficiency improvements with the offset orifice geometry is the purpose for establishing design guidelines for optimization. It was revealed by the combustion visualization that the flame tip length of the offset orifice nozzle was shortened with significantly wider flame cone angle from very close to the orifice exit even
Mukayama, TomoyukiUchida, Noboru
The debate over synthetic fuels is intense especially in sectors with a high energy demand like maritime [1, 2]. Hydrogen production from renewable sources is growing, but immediate measures for decarbonization are needed [3, 4]. In this context, the project MethMag was funded, and a gas engine for methane combustion with an innovative cooling concept and a purged prechamber (PC) spark plug was virtually developed [5, 6]. Validation with data from the test bench demonstrates that the simulations accurately represent the operating conditions [7, 8]. This combustion process is adapted for ammonia, which is being considered as a climate-friendly fuel of the future, particularly in maritime transportation [4, 9]. This fuel faces significant combustion challenges and is therefore mostly considered in complex, bivalent systems [10]. In particular, the prechamber is examined regarding the ignitability of ammonia. The overarching objective is to eliminate the necessity for a secondary fuel
Rothe, PaulBikas, GeorgiosMauss, Fabian
Tire and road wear particles (TRWP) have emerged as air quality hazardous matters and significant sources of airborne microplastic pollution, contributing to environmental and human health concerns. Regulatory initiatives, such as the Euro 7 standards, emphasize the urgent need for standardized methodologies to quantify TRWP emissions accurately. Despite advancements in measuring tire abrasion rates, critical gaps persist in the characterization of airborne TRWP, particularly regarding the influence of collection system design and influencing parameters on measurement accuracy and repeatability. This study addresses these challenges by designing a controlled methodological framework that aims to minimize the influencing effects and ensure comparability in TRWP emission quantification results. At the German Aerospace Center (DLR) dynamometer testbench in Stuttgart, Germany, a methodical framework was established to ensure the repeatability and comparability of TRWP measurements
Celenlioglu, Melis SerenEpple, FabiusReijrink, NinaLöber, ManuelReiland, SvenVecchi, RobertaPhilipps, Franz
In Diesel engines, charge motion usually consists of swirl and squish flow patterns. Traditionally, swirl generation is controlled through the design of the intake ports, presenting a trade-off between swirl and mass flow rate. An alternative approach to generate swirl is to use vortex-generating jets in the intake port. As a comparative basis for this approach a Pareto front was established between swirl and mass flow rate based solely on geometric variations. A new fully parametric geometry was deployed, with two intake ports per cylinder adhering to some constraints. Stationary flow-bench test setup was modeled, where a blower draws air through the intake ports at a constant pressure difference. The Pareto front was generated using semi-randomly selected geometries in combination with automated unsteady RANS (URANS) simulations, while scale adaptive simulations (SAS) were also employed on select geometries. These turbulence modeling approaches were explored using the OpenFOAM
Kahraman, Ali BerkRitter, JohannEilts, PeterScholz, Peter
The need to reduce pollutant emissions has pushed the automotive industry towards sustainable mobility promoting new technological solutions, among which the use of hybrid powertrains stands out. The development of a hybrid architecture is very complex and demands proper components sizing and the determination of optimized power-split strategies among different power sources, for example: Internal Combustion Engine (ICE), electric generator/motor and batteries. Moreover, the experimental analysis regarding performance and emissions requires that the whole propulsive system must be set up on the test bench, hence, negatively affecting the cost of the entire design phase. In this scenario, an optimum design and sizing approach for a series-hybrid electric vehicle (S-HEV) is proposed aiming at a design cost reduction. The presented procedure relies on numerical modelling of the hybrid powertrain and on the optimization of the fuel consumption and the driving range. The series-hybrid
Lisi, LeonardoSaponaro, GianmarcoEpiscopo, DomenicoTorresi, MarcoCamporeale, Sergio Mario
The search for alternative solutions for vehicle electrification, while reducing the carbon footprint during the transition to green mobility, leads to the investigation of electro-fuels (e-fuels) in conventional internal combustion engines. Leveraging previous research, the present study focuses on the optimisation of a Compression Ignition (CI) engine combustion control in response to the use of the Oxymethylene Dimethyl Ethers (OMEx) blended with conventional diesel. The selected e-fuel is the OME3, which is expected to be used as a drop-in solution and to easily achieve a reduction in soot emissions due to both its high oxygen content and lack of direct carbon bonds in its molecular structure. To verify its potential, a 1D single-cylinder CI multi-zone engine model has been exploited to simulate various diesel/OME3 blends in a wide engine operating range. The first step deals with the evaluation of performance and emissions to demonstrate the differences, particularly in terms of
Foglia, AntonioCervone, DavideFrasci, EmmanueleArsie, IvanPolverino, PierpaoloPianese, Cesare
This article details the experimental and testing activities of the EU project AeroSolfd, with a particular focus on the project's efforts to reduce combustion-based nanoparticle emissions in exhaust gases for the European fleet of vehicles by developing a GPF retrofit solution. The technical activities undertaken the process of developing such a retrofit are examined in this article. The findings illustrate the viability of reducing nanoparticle levels in gasoline-powered vehicles with the utilization of appropriate GPFs. For this purpose, in addition to a fleet, four vehicles were examined in great detail and underwent the process of obtaining component approval for the particulate filter. The vehicles were measured in a preliminary state, then following the installation of the GPF, and subsequently after several months of continuous field operation. A total of four vehicles were selected for evaluation as a representative subgroup of a larger test fleet of vehicles in the project
Engelmann, DaniloMayer, AndreasComte, PierreRubino, LaurettaLarsen, Lars
Research on hydrogen-fueled internal combustion engines has gained growing attention as a carbon-neutral solution to reducing emissions in the transport sector. However, challenges remain, with the risk of abnormal combustion being one of the major criticalities. This paper aims to clarify the ignition process of a hydrogen-air mixture caused by lubricant oil droplets and soot deposition. To achieve this, high-speed imaging methods were applied with a Rapid Compression Expansion Machine under engine-like conditions. Direct imaging and OH* chemiluminescence were captured simultaneously on the engine head to visualize the ignition point and flame propagation. Different operating conditions were tested to evaluate the influence of lambda, intake pressure, and soot quantity on ignition occurrence. For each test bench configuration, ten successive tests were conducted to assess the probability of ignition. The presence of soot was ensured through a preliminary run with diesel injection. The
Tempesti, ClarettaYukitani, TakumiHoribe, NaotoRomani, LucaFerrara, GiovanniKawanabe, Hiroshi
The electrification of the transportation sector relies on extensive research and data availability to accelerate technological advancements. However, for certain key components such as electric machines, detailed operational information remains scarce, which in turn limits the development of accurate system-level models for electrified powertrains. As a contribution to addressing this challenge, this study presents an experimental benchmark of the electric machine in the second-generation Toyota Mirai, a fuel cell hybrid electric vehicle (FCHEV) featuring a variable DC voltage bus, which was tested on a roller test bench. The proposed methodology aims to characterize the electric machine with minimal instrumentation and prior knowledge of the machine’s configuration, by identifying electrical and geometric parameters that are relevant for a steady-state model of the machine, applicable to system-level studies, with the objective of providing a methodology that can be used in future
Carlos Da Silva, DanielKefsi, LaidSciarretta, Antonio
In the rapidly advancing field of EV applications, the design of high-efficient inverters is one of the key factors in improving overall vehicle performance. This paper presents the design of a three-level (3-L) automotive inverter based on GaN technology, aimed at enhancing the performance and efficiency of electric vehicles (EVs). GaN components, sourced from Cambridge GaN Devices (CGD), are utilized to leverage their superior switching characteristics and efficiency. The work is supported by both simulation and experimental results, which confirm the advantages of integrating GaN components and the 3-L inverter topology. The findings demonstrate improved performance, lower losses, and enhanced overall efficiency, making this design a promising solution for the future of EV power electronics.
Battiston, AlexandreAghaei Hashjin, SaeidFindlay, JohnHaje Obeid, NajlaSiad, Ines
Remote monitoring of commercial vehicles is taking an increasingly central position in automotive companies, driven by the growth of the on-road freight transportation sector. Specifically, telematics devices are increasingly gaining importance in monitoring powertrain operability, performance, reliability, sustainability, and maintainability. These systems enable real-time data collection and analysis, offering valuable support in resolving issues that may occur on the road. Moreover, the fault codes, called Diagnostic Trouble Codes (DTCs), that arise during actual road driving constitute fundamental information when combined with several engine parameters updated every second. This integration provides a more accurate assessment of vehicle conditions, allowing proactive maintenance strategies. The principal goal is to deliver an even faster response for resolving sudden issues, thus minimizing vehicle downtime. High-resolution data transmission and failure event information
D'Agostino, ValerioCardone, MassimoMancaruso, EzioRossetti, SalvatoreMarialto, Renato
The ongoing shift toward electrification, particularly in the transport and energy sectors, has intensified the deployment of lithium-ion batteries (LIBs). While LIBs offer high energy density and efficiency, their increasing use also brings significant safety challenges—most critically, the risk of thermal runaway (TR) in confined environments. This study presents a fast and structured zero-dimensional/one-dimensional (0D/1D) methodology for estimating key parameters associated with TR events in sealed volumes. The model integrates empirical correlations, energy-based mass estimation approaches, and simplified combustion simulations to assess pressure and temperature rise during TR. Experimental vented mass and gas composition data—obtained through sealed canister testing—serve as the basis for the simulation inputs. A numerical procedure combining mixing dynamics and adiabatic combustion is used to predict critical outcomes such as maximum overpressure and peak temperature
Garcia, AntonioMicó, CarlosMarco-Gimeno, JavierGómez-Soriano, Alejandro
This paper presents an integrated methodology for the analysis of hydrogen-fueled 2-Stroke engines, combining experimental data, 1D-CFD simulations, and 3D-CFD combustion calculations. The proposed approach aims to enhance the understanding of scavenging, injection, and combustion processes in a 50 cm3 loop-scavenged engine with low-pressure direct hydrogen injection, experimentally studied on a test bench. The hydrogen-fueled engine was capable of achieving a maximum power output of 3.1 kW, using a slightly lean air-to-fuel ratio (lambda = 1.3). The maximum engine speed for stable combustion without knocking was achieved at wide open throttle at 7119 RPM. The developed 1D-CFD model, based on the engine layout at the test bench, was calibrated using average experimental data and specific full load operating points. 3D-CFD simulations were performed for one full load operating point, focusing on combustion dynamics and fuel distribution within the chamber, with combustion model
Caprioli, StefanoFerretti, LucaScrignoli, FrancescoFiaschi, MatteoD'Elia, MatteoOswald, RolandSchoegl, OliverNambully, Suresh KumarRothbauer, RainerMattarelli, EnricoKirchberger, RolandRinaldini, Carlo
Turbocharging technique is a key technology for the development of hydrogen engines, allowing high lambda values to reach low NOx emissions. In ultra-lean mixture conditions, the thermal management of the lubricating oil and its cold condition becomes a crucial aspect that cannot be neglected. Accordingly, the impact of different lubricating oils and different lubricant thermal conditions is highlighted referring to the performance of a turbocharging system for automotive application. To this aim, an experimental campaign is conducted at the test bench for components of propulsion systems of the University of Genoa. Tests are performed on a turbocharger equipped with a variable geometry turbine under both steady and unsteady flow conditions, considering different positions of the turbine regulating device. A 4-cylinder engine head was coupled to the turbocharger in order to reproduce the pulsating flow related to the opening and closing of the engine valves. The influence of the
Marelli, SilviaUsai, VittorioCordalonga, Carla
Hydrogen direct injection is a promising strategy for enabling high-efficiency, low-emission powertrains. However, challenges related to mixture stratification and jet modeling persist, particularly under engine representative conditions. This study numerically investigates a simplified injector model, focusing on the downstream hydrogen jet behavior from of a hydrogen low-pressure direct-injection jet-forming cap under both constant-volume chamber (CVC) and engine conditions. The primary objective is to evaluate numerical methodologies and explore model simplification strategies that remain computationally feasible while preserving physical fidelity—particularly relevant for early-stage hydrogen injector development. Experimental data serve as validation benchmarks across operating regimes. In the CVC platform, large eddy simulations (LES) provide turbulence-resolving insights that inform the refinement of Reynolds-averaged Navier–Stokes (RANS) models. RANS simulations are then
Menaca, RafaelLiu, XinleiSilva, MickaelWu, HaoBen Houidi, MoezMohan, BalajiCenker, EmreAlRamadan, AbdullahSyed, IlteshamPei, YuanjiangRoberts, WilliamIm, Hong G.
This paper deals with the hydrogen-to-helium jets comparison within the framework of the assessment of helium as a potential hydrogen surrogate. The comparison is centred on the assessment of the combined action of pressure ratio with gas properties on the dynamics of the jet exiting an outward-opening injector. The shots are performed at injection pressures and backpressures ranging from 21 to 36 bar and from 1.2 to 5 bar, respectively. The Schlieren technique is deployed to capture the jets images. The study demonstrates that at certain pressure ratios helium is an appealing solution bridging the lab safety with fidelity to hydrogen-like jet behaviour. Decreasing pressure ratio minimizes the hydrogen-to-helium difference in axial penetration and area, enabling helium to yield a hydrogen-like development. The findings underscore the impact of the pressure ratio on how the gas properties, such as density and diffusivity, dictate the evolution of the axial propagation and area
Coratella, CarloTinchon, AlexisHespel, CamilleDober, GavinFoucher, Fabrice
This article presents a novel mechanical model for simulating the behavior of pavement deflection measuring systems (PDMS). The accuracy of the model was validated by comparing the acceleration of the new model with the data achieved through experimental tests fusing a deflection measurement system mounted on a Ford F-150 truck. The experimental test for the PDMS is carried out on a random road profile, generated by an inertial profiler, over a 7.4-mile (12 km) loop around a lake near Austin, Texas. Integrating a reliability-based optimization (RBO) algorithm in a PDMS aims to optimize system parameters and reduce vibrations effectively. The PDMS noises and uncertainties make it crucial to use a robust system to ensure the stability of the system. This article presents a robust algorithm for considering the uncertainties of PDMS parameters, including the damping coefficients and spring stiffness of the supporting brackets. Moreover, it considers the variation of system parameters, such
Yarmohammadisatri, SadeghSandu, CorinaClaudel, Christian
Items per page:
1 – 50 of 23412