Browse Topic: Tests and Testing

Items (23,939)
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
AS-1A Avionic Networks Committee
The motion of the intake and exhaust valves plays a pivotal role in determining operational efficiency and performance, especially in high-specific power 4-stroke engines. At high rpm levels, the dynamic behavior of the valve may deviate from the kinematic model established during the design phase. This discrepancy arises due to the high accelerations and forces to which the valve and other components of the valvetrain system are subjected. Notably, under such conditions, the valve may detach from the cam profile at the conclusion of the opening stroke and can exhibit a bouncing behavior during the closing stroke. Moreover, the elasticity of all valvetrain system elements introduces additional complexities. Factors such as timing chain elongation, camshaft carrier deformation, and valve stem compression can contribute to a deviation in phase compared to the initially defined kinematics. Within this context, the direct measurement of the valves motion represents fundamental information
Grilli, NiccolòRomani, LucaRaspanti, SandroBosi, LorenzoFerrara, GiovanniTrassi, PaoloFiaschi, JacopoGuarducci, Edoardo
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Recommended Practice establishes uniform procedures for evaluating conformity between the actual and target drive speeds for chassis dynamometer and on-road testing utilizing standard fuel economy/energy consumption and emissions drive schedules.
Light Duty Vehicle Performance and Economy Measure Committee
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: Establishes uniform vehicle level test procedures Identifies target equipment, test scenarios, and measurement methods Identifies and explains the performance data of interest Does not exclude any particular system or sensor technology Identifies the known limitations of the information contained within (assumptions and “gaps”) Is intended to be a guide toward standard practice and is subject to change on pace with the technology Focuses on “Vehicle Front to Rear, In Lane Scenarios” expanded to include additional offset impacts This document describes the equipment, facilities, methods, and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, clearance gaps
Active Safety Systems Standards Committee
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
A-5A Wheels, Brakes and Skid Controls Committee
Different approaches are undertaken to mitigate the impact of the transport sector on climate change. Alongside electrifying powertrains, sustainable e-fuels such as polyoxymethylene dimethyl ethers (OME) are considered a promising bridging technology for different applications. However, this requires that the engines are optimized for the new fuels. Accordingly, this study aims to optimize the numerical spray modeling of OME in CONVERGE. Based on the KH–RT break-up model, the spray simulations of three different commercial injectors for heavy-duty applications are analyzed regarding the predictability of the liquid and gaseous penetration lengths and the total simulation time. A sensitivity analysis is conducted for the turbulence model, mesh size, and spray parameters prior to optimizing the spray model and validating it with experimental results. While each parameter individually influences the different phases of the injection event, the sensitivity analysis reveals that the break
Zepf, AndreasHärtl, MartinJaensch, Malte
Amphibious vehicles are widely used in civil and military scenarios due to their excellent driving performance in water and on land, unique application scenarios and rapid response capabilities. In the field of civil rescue, the hydrodynamic performance of amphibious vehicles directly affects the speed and accuracy of rescue, and is also related to the life safety of rescuers. In the existing research on the hydrodynamic performance of amphibious vehicles, seakeeping performance has always been the focus of research by researchers and amphibious vehicle manufacturers, but most of the existing research focuses on the navigation performance of amphibious vehicles in still water. In actual application scenarios, amphibious vehicles often face complex water conditions when performing emergency rescue tasks, so it is very important to study the navigation performance of amphibious vehicles in waves. Aiming at the goal of studying the navigation performance of amphibious vehicles in waves
Zhang, Yu
The automotive aerodynamic development relies on wind tunnel testing and Computational Fluid Dynamics (CFD), where the former provides reliable values to be used for fuel economy calculations, and the latter enables the investigation of flow features responsible for improvement/degradation of the average large-scale performances in terms of aerodynamic coefficients. The abovementioned procedure overlooks a crucial factor however: natural wind. The speed and the direction of natural wind encountered while driving alters the vehicle’s effective yaw angle. Such condition implies that the minimization of the drag coefficient at zero-yaw, commonly performed through wind tunnel and CFD simulations in an industrial context, may not yield real-world optimal shapes. While it is possible to reproduce natural wind-like conditions in a wind tunnel using flaps, for example, the input signal to the flap system must be available beforehand, and such key element is the focus of the present research
Nucera, FortunatoOnishi, YasuyukiMetka, Matt
Items per page:
1 – 50 of 23939