Browse Topic: Certification
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
In the domain of aircraft certification, Development Assurance is what some would call a useful tool to gain confidence in the development of complex systems, and what others would call a necessary evil. But what does it actually do? Why is it necessary for certification of modern aircraft? What, epistemologically, does it bring to the table? This paper aims to show how Development Assurance (DA) activities, at all levels from aircraft to item, close the epistemological holes created when complex systems are chosen for implementation. It will map the different sources and types of uncertainty encountered in system and aircraft verification and explain how each type is dealt with within a certification context, working from simple mechanical systems up to complex and highly integrated systems using software and airborne electronic hardware and beyond. It will show that Development Assurance, far from being an arbitrary set of activities, systematically brings personal and corporate
Performing highly representative tests of aircraft equipment is a critical feature for gaining utmost confidence on their ability to perform flawlessly in flight under the entire spectrum of operating conditions. This can also contribute to accelerate the certification process of a new equipment. A research project (E-LISA) was performed in recent years, as part of the European funded Clean Sky 2 framework, with the objective of building an innovative facility for testing an electrically actuated landing gear and brake for a small air transport. The project eventually led to the development and construction of an Iron Bird able to reproduce in a realistic and comprehensive way a full variety of landing test cases consistent with certification specifications and landing histories available in the repository of the airframer. The Iron Bird that was eventually developed is a multi-functional intelligent and easy reconfigurable facility integrating hardware and software allowing to perform
Airworthiness certification of aircraft requires an Airworthiness Security Process (AWSP) to ensure safe operation under potential unauthorized interactions, particularly in the context of growing cyber threats. Regulatory authorities mandate the consideration of Intentional Unauthorized Electronic Interactions (IUEI) in the development of aircraft, airborne software, and equipment. As the industry increasingly adopts Model-Based Systems Engineering (MBSE) to accelerate development, we aim to enhance this effort by focusing on security scope definitions – a critical step within the AWSP for security risk assessment that establishes the boundaries and extent of security measures. However, our findings indicate that, despite the increasing use of model-based tools in development, these security scope definitions often remain either document-based or, when modeled, are presented at overly abstract levels, both of which limit their utility. Furthermore, we found that these definitions
Demonstrating deadline adherence for real-time tasks is a common requirement in all safety norms. Timing verification has to address two levels: the code level (worst-case execution time) and the scheduling level (worst-case response time). Determining which methodology is suited best depends on the characteristics of the target processor. All contemporary microprocessors try to maximize the instruction-level parallelism by sophisticated performance-enhancing features that make the execution time of a particular instruction dependent on the execution history. On multi-core systems, the execution time additionally is influenced by interference effects on shared resources caused by concurrent activities on the different cores, which are not controlled by the scheduling algorithm. In the avionics domain, the new FAA AC 20-193 / EASA AMC 20-193 guidance documents formalize predictability aspects of multi-core systems and derive adequate measures for timing verification. Timing verification
Headquartered in San Juan, Puerto Rico, Unusual Machines describes itself as a “classic American technology company born from garage tinkerers and hobbyists, focused on serving the emerging drone industry with unique and innovative products.” The company recently launched a new low-cost flight controller for drones, the Riot Brave F7, that achieved “Blue UAS” certification from the Department of Defense's (DoD) Defense Innovation Unit (DIU) in August. The Riot Brave F7 - just $58 - features a STMF722RET6 processor equipped with Bosch accelerometer and barometer, and has 16Mb of built in Blackbox Memory. While the company developed Riot Brave F7 primarily as a low cost flight controller option for FPV drones, there are broader possibilities for it, including military applications.
On December 13, 2024, the U.S. Food and Drug Administration (FDA) notified the Medical Device Innovation Consortium (MDIC) of their final approval of the MDIC Report on the MedAccred Accreditation and Audit Program for Contract Sterilizers (Final Report). FDA inspections of firms, such as contract sterilizers, are pursuant to Title 21-Food and Drugs, Chapter 9 – Federal Food, Drug, and Devices, Part A-Drugs and Devices, Section 21 USC 360: Registration of producers of drugs or devices, Subsection (h) Inspections.1 The FDA notification is the culmination of a pilot study initiated by the Performance Review Institute (PRI) in 2023 in collaboration with MDIC and the FDA to evaluate PRI’s MedAccred Sterilization Audit and Accreditation Program of contract sterilizers. The agency confirmed that MedAccred is as an acceptable audit approach that may be leveraged for regulatory purposes as well as supplier oversight.
This SAE Recommended Practice supersedes SAE J1930 MAR2017 and is technically equivalent to ISO 15031-2. This document is applicable to all light-duty gasoline and diesel passenger vehicles and trucks, and to heavy-duty gasoline vehicles. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair databases, underhood emission labels, and emission certification applications. This document should be used in conjunction with SAE J1930DA Digital Annexes, which contain all of the information previously contained within the SAE J1930 tables. These documents focus on diagnostic terms applicable to electrical/electronic systems, and therefore also contain related mechanical terms, definitions, abbreviations, and acronyms. Even though the use and appropriate updating of these documents is strongly encouraged, nothing in these documents should be construed as prohibiting the introduction of a term, abbreviation, or
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined. Absolute and
The extent of automation and autonomy used in general aviation (GA) has been steadily increasing for decades, with the pace of development accelerating recently. This has huge potential benefits for safety given that it is estimated that 75% of the accidents in personal and on-demand GA are due to pilot error. However, an approach to certifying autonomous systems that relies on reversionary modes limits their potential to improve safety. Placing a human pilot in a situation where they are suddenly tasked with flying an airplane in a failed situation, often without sufficient situational awareness, is overly demanding. This consideration, coupled with advancing technology that may not align with a deterministic certification paradigm, creates an opportunity for new approaches to certifying autonomous and highly automated aircraft systems. The new paths must account for the multifaceted aviation approach to risk management which has interlocking requirements for airworthiness and
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system. However, the principles used at the braking system level can be applied at the
As model-based systems engineering is proliferating throughout the aerospace industry as a method to manage the development of complex cyber-physical systems, opportunities to leverage formal methods for verification and validation purposes are significant. As a system model described in SysML can contain the level of semantics required to define strict system requirements, it is possible to create a translation tool to generate SRL (SADL (Semantic Application Design Language) Requirements Language) to leverage ASSERT™ (Analysis of Semantic Specifications and Efficient generation of requirements-based Tests) for verification and validation of the system requirements. SADL [13] is a controlled English grammar that translates directly into OWL (Web Ontology Language) [14]. As part of the validation of the SRL requirements, ASSERT™ leverages a theorem prover to look for conflict and completeness errors. For verification, ASSERT™ uses a Satisfiability Modulo Theories (SMT) solver for the
Advanced flight control system, aviation battery and motor technologies are driving the rapid development of eVTOL to offer possibilities for Urban Air Mobility. The safety and airworthiness of eVTOL aircraft and systems are the critical issues to be considered in eVTOL design process. Regarding to the flight control system, its complexity of design and interfaces with other airborne systems require detailed safety assessment through the development process. Based on SAE ARP4754A, a forward architecture design process with comprehensive safety assessment is introduced to achieve complete safety and hazard analysis. The new features of flight control system for eVTOL are described to start function capture and architecture design. Model-based system engineering method is applied to establish the functional architecture in a traceable way. SFHA and STPA methods are applied in a complementary way to identify the potential safety risk caused by failure and unsafe control action. PSSA with
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the development of aircraft and systems, taking into account aircraft functions and operating environment. It provides practices for ensuring the safety of the overall aircraft design, showing compliance with regulations, and assisting a company in developing and meeting its own internal standards. These practices include validation of requirements and verification of the design implementation for safety, certification, and product assurance. The guidelines in this document were developed in the context of U.S. Title 14 Code of Federal Regulations (14 CFR) Part 25 and European Union Aviation Safety Agency (EASA) Certification Specification (CS) CS-25. They may be applicable in the context of other regulations, such as 14 CFR Parts 23, 27, 29, 33, and 35, and CS-23, CS-27, CS-29, CS-E, and CS-P. This document addresses the development cycle for aircraft and systems that implement aircraft and system functions. It
This specification covers the requirements for qualification, requalification, and certification of etch inspectors.
ARP4761A and its EUROCAE counterpart, ED-135, present guidelines for performing safety assessments of civil aircraft, systems, and equipment. They may be used when addressing compliance with certification requirements (e.g., 14 CFR/CS Parts 23, 25, 27, and 29 and 14 CFR Parts 33, 35, CS-E, and CS-P). ARP4761A/ED-135 may also be used to assist a company in meeting its own internal safety assessment standards. While the safety assessment processes described are primarily associated with civil aircraft, systems, and equipment, these processes may be used in many other applications. The guidelines herein identify a systematic safety assessment process, but other processes may be equally effective. The processes described herein are usually applicable to the new designs or to existing designs that are affected by changes to design or functions. In the case of the implementation of existing design(s) in a derivative application, complementary means such as service experience in a similar
In an application first, the physics of why the sky is blue is used to measure gas flows without obstructive sensors. A longstanding industry partnership between Virginia Polytechnic Institute and State University (Virginia Tech) and Pratt & Whitney has resulted in a new laser-optical technology that aims to revolutionize in-flight thrust measurement.
Items per page:
50
1 – 50 of 1556