Browse Topic: Certification

Items (1,556)
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
Driving Skills Standards Committee
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
Freeman, ToddEngels, BretThuesen, Ben
In the domain of aircraft certification, Development Assurance is what some would call a useful tool to gain confidence in the development of complex systems, and what others would call a necessary evil. But what does it actually do? Why is it necessary for certification of modern aircraft? What, epistemologically, does it bring to the table? This paper aims to show how Development Assurance (DA) activities, at all levels from aircraft to item, close the epistemological holes created when complex systems are chosen for implementation. It will map the different sources and types of uncertainty encountered in system and aircraft verification and explain how each type is dealt with within a certification context, working from simple mechanical systems up to complex and highly integrated systems using software and airborne electronic hardware and beyond. It will show that Development Assurance, far from being an arbitrary set of activities, systematically brings personal and corporate
Laflin, Cory R.
Performing highly representative tests of aircraft equipment is a critical feature for gaining utmost confidence on their ability to perform flawlessly in flight under the entire spectrum of operating conditions. This can also contribute to accelerate the certification process of a new equipment. A research project (E-LISA) was performed in recent years, as part of the European funded Clean Sky 2 framework, with the objective of building an innovative facility for testing an electrically actuated landing gear and brake for a small air transport. The project eventually led to the development and construction of an Iron Bird able to reproduce in a realistic and comprehensive way a full variety of landing test cases consistent with certification specifications and landing histories available in the repository of the airframer. The Iron Bird that was eventually developed is a multi-functional intelligent and easy reconfigurable facility integrating hardware and software allowing to perform
De Martin, AndreaBertolino, AntonioJacazio, Giovanni
Airworthiness certification of aircraft requires an Airworthiness Security Process (AWSP) to ensure safe operation under potential unauthorized interactions, particularly in the context of growing cyber threats. Regulatory authorities mandate the consideration of Intentional Unauthorized Electronic Interactions (IUEI) in the development of aircraft, airborne software, and equipment. As the industry increasingly adopts Model-Based Systems Engineering (MBSE) to accelerate development, we aim to enhance this effort by focusing on security scope definitions – a critical step within the AWSP for security risk assessment that establishes the boundaries and extent of security measures. However, our findings indicate that, despite the increasing use of model-based tools in development, these security scope definitions often remain either document-based or, when modeled, are presented at overly abstract levels, both of which limit their utility. Furthermore, we found that these definitions
Hechelmann, AdrianMannchen, Thomas
Demonstrating deadline adherence for real-time tasks is a common requirement in all safety norms. Timing verification has to address two levels: the code level (worst-case execution time) and the scheduling level (worst-case response time). Determining which methodology is suited best depends on the characteristics of the target processor. All contemporary microprocessors try to maximize the instruction-level parallelism by sophisticated performance-enhancing features that make the execution time of a particular instruction dependent on the execution history. On multi-core systems, the execution time additionally is influenced by interference effects on shared resources caused by concurrent activities on the different cores, which are not controlled by the scheduling algorithm. In the avionics domain, the new FAA AC 20-193 / EASA AMC 20-193 guidance documents formalize predictability aspects of multi-core systems and derive adequate measures for timing verification. Timing verification
Kaestner, DanielGebhard, GernotHuembert, ChristianPister, MarkusWegener, SimonFerdinand, Christian
Aircraft cabin management is characterized by operational and business processes. Both are defined as a logical sequence of activities that occur during the flight. While the operational process includes activities to ensure flight safety, such as take-off, cruise and landing, the business process activities are related to adding value to the customer, i.e. the passenger. They are to be certified by the authority as a part of the aircraft type certification. These processes are defined by the airline and are described as part of the airline’s business model. While the scope of operational processes for passenger safety within the aircraft cabin should remain as unchanged as possible, the increasing competitive pressure on airlines is leading to a constantly rising number of services in the cabin. To prevent compromising cabin safety from increased cabin crew workload during the cruise phase, there is a growing trend toward digitizing operational and business processes. The digitized
Hintze, HartmutBlecken, MarvinGod, RalfPereira, Daniel
The authors have witnessed a notable surge in the number of designs and in the guidance material for electric and hybrid aircraft. FAA and EASA have continued to evaluate the safety of Propulsion Battery Systems (PBS), with a focus on thermal runaway containment testing. As a result, a harmonization white paper [7] was issued to provide a certification path for Thermal Runaway (TR) Hazards, followed by an EASA certification memorandum on the acceptable approaches for the certification of Electric/Hybrid Propulsion Systems (EHPS). Recently, an FAA Advisory Circular (draft) was issued for the “powered-lift” aircraft that feature these propulsion battery systems. Despite the advances made by electric/hybrid aircraft manufacturers and the aviation authorities, there is still a missing piece of the puzzle. Mainly, engineering work still needs to be done to properly integrate the EHPS architecture to achieve safety objectives. The burden is still on systems engineering to propose their own
Hanna, MichaelWalker, Cherizar
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
A-5A Wheels, Brakes and Skid Controls Committee
In the modern automotive industry, improving fuel efficiency while reducing carbon emissions is a critical challenge. To address this challenge, accurately measuring a vehicle’s road load is essential. The current methodology, widely adopted by national guidelines, follows the coastdown test procedure. However, coastdown tests are highly sensitive to environmental conditions, which can lead to inconsistencies across test runs. Previous studies have mainly focused on the impact of independent variables on coastdown results, with less emphasis on a data-driven approach due to the difficulty of obtaining large volumes of test data in a short period, both in terms of time and cost. This paper presents a road load energy prediction model for vehicles using the XGBoost machine learning technique, demonstrating its ability to predict road load coefficients. The model features 27 factors, including rolling, aerodynamic, inertial resistance, and various atmospheric conditions, gathered from a
Song, HyunseungLee, Dong HyukChung, Hyun
Track testing methods are utilized in the automotive industry for emissions and fuel economy certification. These track tests are performed on smooth road surfaces which deteriorate over time due to wear and weather effects, hence warranting regular track repaves. The study focuses on the impact of repaving on track quality and surface degradation due to weather effects. 1D surface profiles and 2D surface images at different spatial frequencies were measured at different times over a span of two years using various devices to study the repave and degradation effects. Data from coastdown tests was also collected over a span of two years and is used to demonstrate the impact of track degradation and repaving on road load characterization parameters that are used for vehicle certification tests. Kernel density estimation and non-parametric spectral estimation methods are used to visualize the characteristic features of the track at different times. In the pre-processing stage, outliers
Singh, YuvrajJayakumar, AdithyaRizzoni, Giorgio
Headquartered in San Juan, Puerto Rico, Unusual Machines describes itself as a “classic American technology company born from garage tinkerers and hobbyists, focused on serving the emerging drone industry with unique and innovative products.” The company recently launched a new low-cost flight controller for drones, the Riot Brave F7, that achieved “Blue UAS” certification from the Department of Defense's (DoD) Defense Innovation Unit (DIU) in August. The Riot Brave F7 - just $58 - features a STMF722RET6 processor equipped with Bosch accelerometer and barometer, and has 16Mb of built in Blackbox Memory. While the company developed Riot Brave F7 primarily as a low cost flight controller option for FPV drones, there are broader possibilities for it, including military applications.
On December 13, 2024, the U.S. Food and Drug Administration (FDA) notified the Medical Device Innovation Consortium (MDIC) of their final approval of the MDIC Report on the MedAccred Accreditation and Audit Program for Contract Sterilizers (Final Report). FDA inspections of firms, such as contract sterilizers, are pursuant to Title 21-Food and Drugs, Chapter 9 – Federal Food, Drug, and Devices, Part A-Drugs and Devices, Section 21 USC 360: Registration of producers of drugs or devices, Subsection (h) Inspections.1 The FDA notification is the culmination of a pilot study initiated by the Performance Review Institute (PRI) in 2023 in collaboration with MDIC and the FDA to evaluate PRI’s MedAccred Sterilization Audit and Accreditation Program of contract sterilizers. The agency confirmed that MedAccred is as an acceptable audit approach that may be leveraged for regulatory purposes as well as supplier oversight.
The scope of this ARP is as follows: Use of M&S for type certification of the Advanced Air Mobility (AAM) aircraft, product, or system. However, this does not preclude this ARP being used for certification of other aircraft types and associated products and systems. This ARP is not applicable to flight simulation training device (FSTD) qualifications or pilot certification. If a qualified FSTD is proposed for aircraft, product, or system certification, it must demonstrate sufficient M&S substantiation to meet the related requirement. Structural design and modeling are not addressed by this document. EMI/EMC certification is not addressed by this document.
G-35, Modeling, Simulation, Training for Emerging AV Tech
Given the recent increase in exhaust gas emission restrictions, electrification has become the major development focus in the transportation industry. Like combustion vehicles, electrified ones must also undergo homologation tests. According to the Battery Electric Vehicle (BEV) homologation standard, SAE J1634, the vehicle must be subjected to a minimum 1600 km break-in cycle. This standard also allows the battery to undergo an equivalent cycle that results in the same level of degradation. Since the recommended break-in cycle duration exceeds the vehicle’s battery autonomy, at least one recharge is necessary to accomplish the break-in normalization. This requirement implies more time allocated to a dynamometer, which represents additional costs to the manufacturer. As in any industry, cost reduction is crucial to enable the development of new technologies in the automotive industry. To contribute to this, a faster battery break-in cycle is proposed. As validated in several literature
Souza, Rafael BarbosaJunior, Rodrigo Alonso PiresRodrigues, Luiz Fernando AlvesBecker, Giovana StopanovskiFernandes, HederMaia, Thales Alexandre CarvalhoPontes, Diego Augusto
This SAE Aerospace Information Report (AIR) provides information on air quality and some of the factors affecting the perception of cabin air quality in commercial aircraft cabin air. Also a typical safety analysis process utilizing a Functional Hazard Assessment approach is discussed.
AC-9 Aircraft Environmental Systems Committee
This SAE Recommended Practice supersedes SAE J1930 MAR2017 and is technically equivalent to ISO 15031-2. This document is applicable to all light-duty gasoline and diesel passenger vehicles and trucks, and to heavy-duty gasoline vehicles. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair databases, underhood emission labels, and emission certification applications. This document should be used in conjunction with SAE J1930DA Digital Annexes, which contain all of the information previously contained within the SAE J1930 tables. These documents focus on diagnostic terms applicable to electrical/electronic systems, and therefore also contain related mechanical terms, definitions, abbreviations, and acronyms. Even though the use and appropriate updating of these documents is strongly encouraged, nothing in these documents should be construed as prohibiting the introduction of a term, abbreviation, or
Vehicle E E System Diagnostic Standards Committee
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined. Absolute and
Jacob, Jan D.
In 2023, the European Union set more ambitious targets for reducing greenhouse gas emissions from passenger cars: the new fleet-wide average targets became 93.6 g/km for 2025, 49.5 g/km in 2030, going to 0 in 2035. One year away from the 2025 target, this study evaluates what contribution to CO2 reduction was achieved from new conventional vehicles and how to interpret forecasts for future efficiency gains. The European Commission’s vehicle efficiency cost-curves suggest that optimal technology adoption can guarantee up to 50% CO2 reduction by 2025 for conventional vehicles. Official registration data between 2013 and 2022, however, reveal only an average 14% increase in fuel efficiency in standard combustion vehicles, although reaching almost 23% for standard hybrids. The smallest gap between certified emissions and best-case scenarios is of 14 g/km, suggesting that some manufacturers’ declared values are approaching the optimum. Yet, the majority of vehicles do not appear to fully
Komnos, DimitriosNur, JamilTansini, AlessandroKtistakis, Markos AlexandrosSuarez, JaimeKrause, JetteFontaras, Georgios
RTCA DO-178C, guideline in the aviation industry for the development of airworthiness of aviation software mandates the analysis of data and control coupling using requirement-based testing for safety-critical avionics software (Refer the Table 1). DO-178C defines Control Coupling as the manner or degree by which one software component influences the execution of another software component. Data Coupling as the dependence of a software component on data not exclusively under the control of that software component. The intent of the analysis of data coupling and control coupling is to ensure that each module/component are interacting with each other as expected. That is, the intent is to show that the software modules/components affect one another in the ways in which the software designer intended and do not affect one another in ways in which they were not intended, thus resulting in unplanned, anomalous, or erroneous behavior. The measurements and assurance should be conducted using
Ramegowda, Yogesha Aralakuppe
The extent of automation and autonomy used in general aviation (GA) has been steadily increasing for decades, with the pace of development accelerating recently. This has huge potential benefits for safety given that it is estimated that 75% of the accidents in personal and on-demand GA are due to pilot error. However, an approach to certifying autonomous systems that relies on reversionary modes limits their potential to improve safety. Placing a human pilot in a situation where they are suddenly tasked with flying an airplane in a failed situation, often without sufficient situational awareness, is overly demanding. This consideration, coupled with advancing technology that may not align with a deterministic certification paradigm, creates an opportunity for new approaches to certifying autonomous and highly automated aircraft systems. The new paths must account for the multifaceted aviation approach to risk management which has interlocking requirements for airworthiness and
Dietrich, Anna MracekRajamani, Ravi
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
Hayes, MichaelMuelaner, JodyRoye, ThorstenWebb, Philip
The Insurance Institute for Highway Safety (IIHS) introduced its updated side-impact ratings test in 2020 to address the nearly 5,000 fatalities occurring annually on U.S. roads in side crashes. Research for the updated test indicated the most promising avenue to address the remaining real-world injuries was a higher severity vehicle-to-vehicle test using a striking barrier that represents a sport utility vehicle. A multi-stiffness aluminum honeycomb barrier was developed to match these conditions. The complexity of a multi-stiffness barrier design warranted research into developing a new dynamic certification procedure. A dynamic test procedure was created to ensure product consistency. The current study outlines the process to develop a dynamic barrier certification protocol. The final configuration includes a rigid inverted T-shaped fixture mounted to a load cell wall. This fixture is impacted by the updated IIHS moving deformable barrier at 30 km/h. The fixture represents the stiff
Mueller, BeckyArbelaez, RaulHeitkamp, EricMampe, Christopher
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system. However, the principles used at the braking system level can be applied at the
S-18 Aircraft and Sys Dev and Safety Assessment Committee
As model-based systems engineering is proliferating throughout the aerospace industry as a method to manage the development of complex cyber-physical systems, opportunities to leverage formal methods for verification and validation purposes are significant. As a system model described in SysML can contain the level of semantics required to define strict system requirements, it is possible to create a translation tool to generate SRL (SADL (Semantic Application Design Language) Requirements Language) to leverage ASSERT™ (Analysis of Semantic Specifications and Efficient generation of requirements-based Tests) for verification and validation of the system requirements. SADL [13] is a controlled English grammar that translates directly into OWL (Web Ontology Language) [14]. As part of the validation of the SRL requirements, ASSERT™ leverages a theorem prover to look for conflict and completeness errors. For verification, ASSERT™ uses a Satisfiability Modulo Theories (SMT) solver for the
McMillan, CraigLee, LawrenceRussell, DanielPrince, DanielHasanovic, NihadDurling, MichaelSiu, KitVaranasi, Sarat ChandraMeng, BaoluoKleven, Everett
Protecting against atmospheric icing conditions is critical for the safety of aircraft during flight. Sensors and probes are often used to indicate the presence of icing conditions, enabling the aircraft to engage their ice protection systems and exit the icing cloud. Supercooled large drop icing conditions, which are defined in Appendix O of 14 CFR Part 25, pose additional aircraft certification challenges and requirements as compared to conventional icing conditions, which are defined in Appendix C of 14 CFR Part 25. For this reason, developing sensors that can not only indicate the presence of ice, but can also differentiate between Appendix O and Appendix C icing conditions, is of particular interest to the aviation industry and to federal agencies. Developing detectors capable of meeting this challenge is the focus of SENS4ICE, a European Union sponsored project. While participating in the SENS4ICE Project, Collins Aerospace has developed an ice detection and differentiation
Hamman, MatthewGelao, GiancarloRidouane, El HassanChabukswar, RohanBotura, Galdemir
The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT. In this investigation, an experimental setup was constructed to further investigate the applicability of the TVT to flexible airframes
Al-bess, LohayKhouli, Fidel
The term Industry 4.0 is well known in contemporary automotive landscape. It encompasses a smart integrated framework of IIoT (Internet of Things) and industrial automation with machine learning, artificial intelligence and big data analytics to arrive at optimal solutions to running the processes in a streamlined, efficient and effective manner. Industry 4.0 has assumed critical significance in the contemporary era of people working from remote locations to operate processes in order to build products, thereby ensuring business continuity. Consequently, it follows that if industry 4.0 is applied to automotive homologation activity, it will lead to a standardized evaluation, consistent fidelity of testing, accurate judgement of the product under test with regards to its certification, and most importantly, timed delivery to release in the market. The author hereby elucidates a unified Industry 4.0 Framework for Automotive homologation in India which is the need of the hour. This
S Thipse, Yogesh
This overview and study article scrutinizes the evolution and challenges of electric vertical takeoff and landing aircraft (eVTOL), with a primary focus on airworthiness and safety certification. The paper discusses key issues such as high-energy-density aviation-grade batteries and the light weighting of electrical propulsion systems. Utilizing scientific models and real-world data, the study outlines the required battery technology and electrical propulsion specifications for eVTOLs with effective commercial load capabilities. For eVTOLs operating in the 300 km range, aviation-grade batteries must achieve energy densities between 300-600 wh/kg. For those covering a 600 km range, the energy density requirements exceed 600 wh/kg. Compliance with stringent safety standards, including triple certification by the FAA under 14 CFR Part 23, is imperative. This article conducted research and offered flowchart of the complicated FAA standard, which is rare in existing articles. This article
Ma, XinDing, Shuiting
Advanced flight control system, aviation battery and motor technologies are driving the rapid development of eVTOL to offer possibilities for Urban Air Mobility. The safety and airworthiness of eVTOL aircraft and systems are the critical issues to be considered in eVTOL design process. Regarding to the flight control system, its complexity of design and interfaces with other airborne systems require detailed safety assessment through the development process. Based on SAE ARP4754A, a forward architecture design process with comprehensive safety assessment is introduced to achieve complete safety and hazard analysis. The new features of flight control system for eVTOL are described to start function capture and architecture design. Model-based system engineering method is applied to establish the functional architecture in a traceable way. SFHA and STPA methods are applied in a complementary way to identify the potential safety risk caused by failure and unsafe control action. PSSA with
Ning, ChengweiZhang, HaoWeng, HaiminMa, Ran
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the development of aircraft and systems, taking into account aircraft functions and operating environment. It provides practices for ensuring the safety of the overall aircraft design, showing compliance with regulations, and assisting a company in developing and meeting its own internal standards. These practices include validation of requirements and verification of the design implementation for safety, certification, and product assurance. The guidelines in this document were developed in the context of U.S. Title 14 Code of Federal Regulations (14 CFR) Part 25 and European Union Aviation Safety Agency (EASA) Certification Specification (CS) CS-25. They may be applicable in the context of other regulations, such as 14 CFR Parts 23, 27, 29, 33, and 35, and CS-23, CS-27, CS-29, CS-E, and CS-P. This document addresses the development cycle for aircraft and systems that implement aircraft and system functions. It
S-18 Aircraft and Sys Dev and Safety Assessment Committee
This specification covers the requirements for qualification, requalification, and certification of etch inspectors.
AMS B Finishes Processes and Fluids Committee
ARP4761A and its EUROCAE counterpart, ED-135, present guidelines for performing safety assessments of civil aircraft, systems, and equipment. They may be used when addressing compliance with certification requirements (e.g., 14 CFR/CS Parts 23, 25, 27, and 29 and 14 CFR Parts 33, 35, CS-E, and CS-P). ARP4761A/ED-135 may also be used to assist a company in meeting its own internal safety assessment standards. While the safety assessment processes described are primarily associated with civil aircraft, systems, and equipment, these processes may be used in many other applications. The guidelines herein identify a systematic safety assessment process, but other processes may be equally effective. The processes described herein are usually applicable to the new designs or to existing designs that are affected by changes to design or functions. In the case of the implementation of existing design(s) in a derivative application, complementary means such as service experience in a similar
S-18 Aircraft and Sys Dev and Safety Assessment Committee
Ground vibration testing (GVT) is an important phase of the development, or the structural modification of an aircraft program. The modes of vibration and their associated parameters extracted from the GVT are used to modify the structural model of the aircraft to make more reliable dynamics predictions to satisfy certification authorities. Due to the high cost and the extensive preparations for such tests, a new method of vibration testing called taxi vibration testing (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated by the German Institute for Aerospace Research (DLR) as alternative to conventional GVT. In this investigation, a computational framework based on fully coupled flexible multibody dynamics for TVT is presented to further investigate the applicability of the TVT to flexible airframes. The time domain decomposition (TDD) method for OMA was used to postprocess the response of the airframe during a TVT. The framework was then used to
Al-bess, LohayKhouli, Fidel
Non-exhaust emissions are clearly one of the focal points for the upcoming Euro 7 legislation. The new United Nations Global Technical Regulation (UN GTR) defining the framework for brake emission measurements is about to be officially published. The first amendment to this text is already on the way through the United Nations Economic Commission for Europe (UNECE) hierarchy for decision making. In real life, the final emission factor as the ultimate result of a test is influenced by inaccuracies of numerous parts of the measurement system as well as additional contributing factors like the performance of the particulate filter handling process, which might not be primarily related to equipment specifications. The regulation’s definitions set the basic requirements for testing, whilst establishing a robust and efficient testing process requires a thorough assessment of the influencing factors on the measurement quality, which in turn can be described using e.g., repeatability and
Weidinger, ChristophMartikainen, SampsaWanek-Ruediger, ChristianHuber, MichaelRainer, Andreas
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications. The main driving force to upgrade GC-LB was that six of the 12
Kaperick, JosephFish, Dr GarethCoe, ChuckCosgrove, BradleyTurner, DavidMackwood, WayneMistry, KuldeepChichester, ChadDudley, GaryMorris, DwaineBrandon, KeythKunselman, Michael
This SAE Aerospace Recommended Practice (ARP) identifies and defines methods of compliance with power available and inlet distortion requirements for rotorcraft with inlet barrier filter (IBF) installations. The material developed herein is intended to provide industry-recommended methods of compliance with civil airworthiness regulations. It is intended to serve as a basis for new or revised FAA advisory material describing acceptable methods for determining power assurance, establishing power available, and for substantiating acceptable engine inlet distortion for IBF installations. The ARP does not address other types of inlet protection systems such as inertial separator, electrostatic precipitators, or foreign object debris (FOD) screens. It is agreed to treat dust, ice, salt, water, and snow as contaminants to the IBF for the purpose of establishing power available and assessing inlet distortion, but any other effects of ice and snow on inlet airworthiness are outside the scope
S-12 Powered Lift Propulsion Committee
Aircraft surface precipitation static (p-static) charge can be generated when aircraft fly through ice particles, rain, snow and dust. However, in the context of p-static protection, this document is used for providing guidance for any thing that charges the outer surface of the aircraft (e.g. engine exhaust). P-static discharges from the aircraft can disrupt aircraft communication, navigation, and surveillance radios, and can damage aircraft radomes and windshields. This SAE Aerospace Recommended Practice (ARP) defines design considerations for aircraft p-static control and related methods to verify acceptable aircraft p-static performance. This ARP addresses p-static charging due to the aircraft flying through ice particles, rain, snow and dust. It does not address other triboelectric charging that may be present in an aircraft, such as triboelectric fuel charging or environmental control system or air conditioning static charging. It does not address electrostatic charging created
AE-2 Lightning Committee
Since the emission gap of nitrogen oxides between the measurements in the indoor emission certification test and the driving in real road conditions has revealed to be significant, the RDE(Real Driving Emissions) regulations of exhaust emissions in real road driving in Europe were adopted in 2017 at the Euro 6d-TEMP stage and gradually strengthened thereafter. Many countries including Korea are applying equivalent and similar regulations. In order to identify whether vehicles in use comply with the emission standards within the exhaust emissions warranty period, it is necessary to add real road tests to ongoing in-use inspections. Thus, a study on the development of an indoor test cycle in order to use for in-use inspection instead of an real road test becomes required while satisfying RDE criteria. This study shows that the RDE test conducted in real road driving can be simulated in an indoor chassis dynamometer, and confirms that the RDE regulations including dynamic characteristics
Park, JeonghyunChoi, ByeongheeChoi, SungwoonKim, BadaLee, Chul-heeLee, DaeyupKwon, SangilChung, TaekhoLee, Jongtae
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
Yates, TimothyAli, RanaSuzuki, MayuMatsubara, NaoyoshiYokoo, NozomiMorii, TakuyaAkiyama, ShotaIshizaki, Keita
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document. It presents the current opportunities, challenges of UAS operating at or below 400 ft
Manoharan, DineshG.V.V., Ravi KumarR, PrithivirajGhimire, RiteshRencher, RobertMarkou, ChrisFabre, ChrisRoboff, MarkBudeanu, DragosRajamani, RaviWalthall, RhondaVeluri, Sastry
In an application first, the physics of why the sky is blue is used to measure gas flows without obstructive sensors. A longstanding industry partnership between Virginia Polytechnic Institute and State University (Virginia Tech) and Pratt & Whitney has resulted in a new laser-optical technology that aims to revolutionize in-flight thrust measurement.
With the announcement of the Euro 7 proposal, it is now clear that nitrous oxide (laughing gas, N2O) emissions must be considered and complied with the certification of exhaust aftertreatment systems (EATS) of commercial vehicles (CV). This paper describes the possible formation pathways for N2O in the EATS for different drives and uses measurement results to show the boundary condition and the magnitude of formation as well as the possibilities for influencing or preventing its formation.
Többen, HeikeWeinmann, PhilippWolf, ThomasLott, PatrickBastian, SimonDeutschmann, Olaf
In-flight icing is a major weather hazard to aviation; therefore, the remote detection of meteorological conditions leading to icing is a very aspired goal for the scientific community. In 2017, the Meteorological Laboratory of CIRA has developed a satellite-based tool for in-flight icing detection in collaboration with Italian Air Force Meteorological Service. Then, in the framework of the European project SENS4ICE, a further maturation of the previously developed algorithm has been achieved, in order to consider also Supercooled Large Drop (SLD) Icing Conditions. The tool relies on high-resolution satellite products based on Meteosat Second Generation (MSG) data. The aim of this product is to identify areas potentially affected by in-flight icing hazard, using information about the properties of clouds, remotely inferred from satellite, and the set of experimental curves and envelopes describing the interrelationship of icing-related cloud variables, that represent the icing
Zollo, Alessandra LuciaBucchignani, Edoardo
This paper is focused on the numerical analysis of the impingement and water catch rate of snow particles on the engine air intake of the Next Generation Civil Tilt Rotor (NGCTR). This NGCTR is developed by Leonardo Helicopters. The collection efficiency and water catch rate for the intake geometry are obtained for the test cases that have been defined for the relevant snow conditions. These conditions are related to the flight envelope of the NGCTR, existing EASA/FAA certification specifications, and the snow characterization. The analyses have been performed for the baseline air intake geometry. A range of particle diameters has been simulated with a particle density equal to the density of ice and with a particle drag relation that disregards the particle shape. Based on the results for the water catch rate on the basic nacelle configuration in snow conditions it is concluded that the ‘cheeks’ of the duct are more susceptible to impingement of larger snow crystals (>75 μm), whereas
Kool, NinaVan der Weide, EdwinSpek, Ferdinandvan der Ven, Harmenvan 't Hoff, Stefan
Items per page:
1 – 50 of 1556