Browse Topic: Non-destructive tests

Items (892)
ABSTRACT The US Army is replacing conventional armor with new types of ballistic protection which are lighter in weight than the materials they replace yet offer the same degree of protection. A key component of this new type of armor is called Multi Functional (MFA) or Sensor Enhanced Armor (SEA) because the armor provides more capabilities than traditional ballistic protection for the soldier and ground vehicle. In this paper we shall concentrate on the real-time health monitoring of SEA. We have developed a method which has been applied to several types of new ballistic protection. We use ultrasonic waves to excite the armor panel. We measure the response to the excitation when the ballistic protection is known to be undamaged and store the results in a database. To determine if the armor has been damaged, we measure it again and compare the new results to the contents of the database
Reynolds, ThomasMeitzler, Thomas J.Ebenstein, Samuel
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Recommended Practice establishes the requirements and procedures for eddy current inspection of open fastener holes in aluminum aircraft structures
AMS K Non Destructive Methods and Processes Committee
This recommended practice provides recommendations for minimizing high temperature oxidation (HTO) during the heat treatment of aluminum alloy products and parts. HTO leads to deterioration of properties
AMS D Nonferrous Alloys Committee
This specification establishes the design, performance, and test requirements for hydraulic quantity measuring fuses intended to be used for hydraulic circuit protection
A-6C5 Components Committee
This specification covers procedures for ultrasonic immersion inspection of premium-grade wrought titanium and titanium alloy round billet 5 inches (127 mm) and over in nominal diameter (see 2.6.1). Metal alloy billets other than titanium may be tested to this specification with the use of suitable reference standards
AMS K Non Destructive Methods and Processes Committee
This specification establishes nondestructive testing methods, sampling frequency, and acceptance criteria for the inspection of metal castings
AMS B Finishes Processes and Fluids Committee
This standard establishes the acceptance criteria for surface discontinuities as revealed by magnetic particle or liquid penetrant examination of nuts
E-25 General Standards for Aerospace and Propulsion Systems
In radiography testing, the radioactive elements Iridium 192 (Ir192) and Cobalt 60 (Co60) are employed to detect subsurface and inner flaws. These radioactive components are kept secure within the radiation-protected source camera. Despite the fact that the camera is safe, there is a little quantity of radiation that may harm human body cells. In this present study, it restricts radiation emission by placing a lead sheet over the source camera, which absorbs the produced radiation. The innovative concept involves in this present work is to place a manually operated switch near the radiation source to emit radiation
Suresh Balaji, R.Daniel Das, A.Marimuthu, S.Manivannan, S.
This specification covers fluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless inspection oil vehicle
AMS K Non Destructive Methods and Processes Committee
This SAE Aerospace Standard (AS) covers water conditioning agents used to facilitate aqueous wet-method magnetic particle inspection
AMS K Non Destructive Methods and Processes Committee
This specification covers fluorescent magnetic particles in the form of a dry powder
AMS K Non Destructive Methods and Processes Committee
The purpose of this report is to outline types of in-service heat damage that have been observed in high strength steel landing gear components, with an emphasis on a particular type that is referred to as “Ladder Cracking” which can develop in landing gear shock struts. The report discusses how ladder cracking can be detected visually and evaluated by non-destructive inspection methods, and how it can be repaired at overhaul with the prior approval of the Original Equipment Manufacturer. This report also describes the use of a bearing material that has resolved this problem without introducing other problems. Examples of other types of service induced heat damage are also discussed
A-5B Gears, Struts and Couplings Committee
Neutron diffraction is a powerful tool for noninvasive and nondestructive characterization of materials and can be applied even in large devices such as internal combustion engines thanks to neutrons’ exceptional ability to penetrate many materials. While proof-of-concept experiments have shown the ability to measure spatially and temporally resolved lattice strains in a small aluminum engine on a timescale of minutes over a limited spatial region, extending this capability to timescales on the order of a crank angle degree over the full volume of the combustion chamber requires careful design and optimization of the engine structure to minimize attenuation of the incident and diffracted neutrons to maximize count rates. We present the design of a “neutronic engine,” which is analogous to an optical engine in that the materials and external geometry of a typical automotive engine have been optimized to maximize access of the diagnostic while maintaining the internal combustion chamber
Wissink, MartinWray, Christopher L.Lee, P.M.Hoffmeyer, Matthew M.Frost, Matthew J.An, KeChen, Yan
Non-destructive evaluation of aircraft production is optimized and digitalized with Industry 4.0. The aircraft structures produced using fiber metal laminate are traditionally inspected using water-coupled ultrasound scans and manually evaluated. German Aerospace Center (DLR), Augsburg, Germany Ultrasonic Testing (UT) is a typical Non-destructive testing (NDT) method for examining the structural components for aircraft production. Manufacturing aircraft made of fiber metal laminates (FML) includes cascaded steps such as placement of aluminum, glass prepreg, adhesive, doublers, stringers, vacuum bagging and curing in an autoclave. Quality control (QC) is performed first at the layup of the component (without stringers) after curing and the quality assessment is visually evaluated. The manually performed examination of anomalies is very time-consuming. In addition, conducted NDT inspection using a manual UT phased array for Glass Reinforced (GLARER) FML of A380, it lacked the high
Ultrasonic Testing (UT) is a typical Non-destructive testing (NDT) method for examining the structural components for aircraft production. Manufacturing aircraft made of fiber metal laminates (FML) includes cascaded steps such as placement of aluminum, glass prepreg, adhesive, doublers, stringers, vacuum bagging and curing in an autoclave. Quality control (QC) is performed first at the layup of the component (without stringers) after curing and the quality assessment is visually evaluated. The manually performed examination of anomalies is very time-consuming. In addition, conducted NDT inspection using a manual UT phased array for Glass Reinforced (GLARE®) FML of A380, it lacked the high capacity of data and additionally an evaluation software
To provide general instructions for accomplishing ultrasonic thickness measurements. Measurements can be made from one side of a material when access to the opposite side is restricted
AMS K Non Destructive Methods and Processes Committee
This specification covers a stable, noncorrosive, water-soluble, highly-penetrating, fluorescent solution which may, but need not, be diluted with an appropriate amount of water for use
AMS K Non Destructive Methods and Processes Committee
This SAE Aerospace Standard defines the requirements for establishing a nondestructive inspection (NDI) program for aerospace systems to include but not limited to aircraft structure, aircraft stores (external structures such as antennas, pods, fuel tanks, weapons, radomes, etc.) and missile/rocket structural components when an NDI Program Plan is required by contract. NDI Programs are essential to ensuring NDI processes are implemented to support the lifecycle design requirements of the system and its components. NDI Programs are applicable to all phases of the system life cycle, including acquisition, modification, and sustainment. This standard may also be applicable to mechanical equipment, subsystems, and propulsion systems, but the requirements defined by the NDI Program Plan should be tailored by the contracting agency for such use. An NDI Program Plan shall be developed at the beginning of the technology development phase and shall define all NDI requirements to be adhered to
AMS K Non Destructive Methods and Processes Committee
This specification covers an aluminum alloy in the form of die forgings or hand forgings up to 5 inches (125 mm) in thickness, and forging stock of any size (see 8.7
AMS D Nonferrous Alloys Committee
This specification covers nonfluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless oil vehicle and packaged in aerosol cans
null, null
This specification covers nonfluorescent, magnetic particles having black, red, gray, or other color, as specified, supplied in the form of dry powders
AMS K Non Destructive Methods and Processes Committee
This specification covers an aluminum alloy in the form of die forgings up to 6.000 inches (152.40 mm), inclusive, in nominal thickness and forging stock of any size (see 8.6
AMS D Nonferrous Alloys Committee
This procurement specification covers aircraft quality bolts and screws made from a low alloy, heat resistant steel of the type identified under the Unified Numbering System as UNS K14675
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers an aluminum alloy in the form of sheet and plate from 0.020 to 6.000 inches (0.51 to 152.40 mm), inclusive, in thickness (see 8.5
AMS D Nonferrous Alloys Committee
Digital shearography has many advantages, such as full-field, non-contact, high sensitivity, and good robustness. It was widely used to measure the deformation and strain of materials, also to the application of nondestructive testing (NDT). However, most digital sherography applications can only work in one field of view per measurement, and some small defects may not be detected as a result. Multiple measurements of different fields of view are needed to solve this issue, which will increase the measurement time and cost. The difficulty in performing multiple measurements may also increase for cases where the loading is not repeatable. Therefore, a system capable of measuring dual fields of view at the same time is necessary. The carrier frequency spatial phase shift method may be a good candidate to reach this goal because it can simultaneously record phase information of multiple images, e.g. two speckle interferograms with different fields of view. It then obtains the phase
Zheng, XiaowanGuo, BichengFang, SiyuanSia, BernardYang, Lianxiang
As automotive designs add more aluminum to lightweight their vehicles, friction stir welding (FSW) will likely become a principal joining process in the industry. FSW is a solid-state joining process which avoids many of the traditional problems of welding aluminum alloys such as hot cracking, porosity and solidification shrinkage. These attributes enable high preforming friction stir welded joints of cast, 5XXX, 6XXX, 7XXX or mixed aluminum alloy combinations. Although FSW technologies have advanced to support high volume applications and have been applied in current automotive parts, its inability for nondestructive evaluation (NDE) increases the cost to manufacture friction stir welded parts. Current state of the art NDE methods for FSW are either ultrasound or radiographic technologies which add complexity to manufacturing lines and additional costs to FSW production. Many have researched ways to reduce NDE costs by using measured forces of the FSW process. These methods have
Hunt, JohnathonLarsen, BrighamHovanski, Yuri
Equipment used in aerospace non-destructive inspection presents opportunity for modernization. Many inspection cells in production operate using a widely available control system software that is suitable for most inspection applications with minimal customization. The size and complex geometry of airframe components demand more application-specific system design to ensure the reliability and cycle time required for an aerospace production schedule. Ordinary inspection systems require manual teaching for program generation and lack datum-finding systems required to rerun programs without modification. Integration of offline programming software and machine vision instruments can save inspection technicians hours or shifts per part by eliminating the need for program retraining due to variation in part delivery position. Modernized inspection cells will reduce labor burden on technicians and provide reliable cycle time information to production planners
Elrod, JoshuaWaterman, MichaelParker, Dylan
This specification covers nonfluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless inspection oil vehicle. The magnetic particles shall be in the form of either a single material or composite material as defined in 1.3
AMS K Non Destructive Methods and Processes Committee
This SAE Aerospace Standard (AS) establishes requirements for the manufacture and certification of tool steel rings for magnetic particle inspection
AMS K Non Destructive Methods and Processes Committee
This specification covers a corrosion- and heat-resistant steel in the form of welded tubing
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of plate 1.500 to 6.000 inches (38.1 to 152.40 mm) thick (see 8.5
AMS D Nonferrous Alloys Committee
This specification establishes the design, performance, and test requirements for hydraulic flow rate fuses intended to be used for hydraulic circuit protection on aircraft
A-6C5 Components Committee
This specification covers a corrosion and moderate heat-resistant steel in the form of investment castings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion resistant steel in the form of investment castings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion resistant steel in the form of investment castings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers aluminum alloy rolled or forged rings up to 6 inches (152 mm) which are produced and shipped in the –T351 or –T352 temper and are artificially aged to the –T82 temper prior to being put into service
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of sheet and plate from 0.020 to 5.000 inches (0.51 to 127.00 mm), inclusive, in nominal thickness (see 8.5
AMS D Nonferrous Alloys Committee
This specification establishes acceptance criteria for discontinuities revealed by magnetic particle inspection of parts made from wrought, ferromagnetic materials
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of plate 0.750 to 1.500 inch (19.05 to 38.10 mm), inclusive, in nominal thickness (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate with nominal thickness from 1.000 to 5.000 inches (25.40 to 127.00 mm), inclusive (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate 0.500 to 2.250 inches (12.70 to 57.15 mm), inclusive, in nominal thickness (see 8.6
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of die forgings, hand forgings, and forging stock
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of two types of thin-wall, close-tolerance hydraulic tubing 0.125 to 2.00 inches (3.18 to 50.8 mm), inclusive, in nominal OD
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 2.000 inches (0.51 to 50.80 mm), inclusive, in nominal thickness, supplied in the annealed (-O) condition (see 8.3). When specified, product shall be supplied in the “as fabricated” (-F) temper
AMS D Nonferrous Alloys Committee
This specification establishes the acceptance criteria and inspection requirements for adhesive-bonded sandwich structures including the metal-to-metal bonding found in these structures, but usage is not limited to such applications and each application should be considered individually
AMS P17 Polymer Matrix Composites Committee
This specification covers nonfluorescent, magnetic particles in the form of dry powders in the form of single or composite magnetic particle intended to be suspended in oil or conditioned water vehicle for use in the wet method, magnetic particle inspection
AMS K Non Destructive Methods and Processes Committee
This specification covers a zinc alloy in the form of die castings
AMS D Nonferrous Alloys Committee
This specification covers the requirements for preparation of aluminum and aluminum alloys for soldering by zinc immersion pre-treatment followed by copper plating and tin or tin-zinc alloy plating
AMS B Finishes Processes and Fluids Committee
Items per page:
1 – 50 of 892