Browse Topic: Test equipment and instrumentation

Items (2,528)
Final design choices are frequently made early in the product development cycle in the fiercely competitive automotive sector. However, because of manufacturing tolerances design tolerances stiffness element fitment and other noise factors physical prototypes might show variations from nominal specifications. Significant performance differences (correlation gaps) between the digital twin representation produced during the design phase and real-world performance may result from these deviations. Measuring every system parameter repeatedly to take these variations into account can be expensive and impractical. The goal of this study is to identify important system parameters from system characteristic data produced by controlled dynamic testing to close the gap between digital and physical models. Dynamic load cases are carried out with a 4-poster test rig where vehicle responses are captured under controlled circumstances at different suspension locations. An ideal set of digital model
Verma, Rahul RanjanGoli, Naga Aswani KumarPrasad, Tej Pratap
This study aims to investigate the influence of torque, rotational speed, lubricating oil temperature, and main bearing clearance on the vibration signals of diesel engine block surfaces, thereby establishing a foundation for diagnosing abnormal main bearing wear conditions using engine block surface vibration signals. An experimental test bench was constructed for a six-cylinder diesel engine to collect vibration signals under varying rotational speeds, torques, lubricant temperatures, and main bearing clearances. Frequency domain analysis and wavelet packet decomposition were then performed. The frequency domain analysis results indicate that the vibration signal amplitudes associated with abnormal main bearing wear are primarily concentrated below 5 kHz. Specifically, the energy in frequency bands below 1 kHz and around 2.5 kHz tends to increase with higher rotational speed, torque, and main bearing clearance, while the overall frequency domain amplitudes decrease with rising
Dong, YimingHu, YupingJi, ShaoboPan, ChiYue, YuanhangLiao, Guoliang
This paper briefly introduces the vehicle characteristics of four-wheel steering. Based on the parameters of an electric SUV, a linear two-degree-of-freedom vehicle dynamics model is established, and the transfer function of the rear wheel steering angle is derived to keep the sideslip angle at the center of gravity(CoG) constant at zero and proportional to the front wheel steering angle under steady state. The active rear wheel steering control strategy based on zero sideslip angle is established by MATLAB/Simulink, and a co-simulation model is built with CarSim and the HIL test bench to simulate and analyze the proposed control strategy. Subsequently, through classic handling stability test conditions such as the snake test, steering angle step test, and double lane change test, the influence of active rear wheel steering on vehicle dynamic response indicators such as sideslip angle, lateral acceleration, and yaw rate is studied, and the control effect is compared with that of the
Xu, XiangfeiQu, YuanLiu, Jiabao
The activation of the fuel injector affects both engine performance and pollutant emissions. However, the automotive industry restricts access to information regarding the circuits and control strategies used in its vehicles. One way to optimize fuel injections is using piezoelectric injectors. These injectors utilize crystals that expand or contract when subjected to an electric current, moving the injector needle. They offer a response time up to four times faster than solenoid-type injectors and allow for multiple injections per combustion cycle. These characteristics result in higher combustion efficiency, reduced emissions, and lower noise levels, making piezoelectric injectors widely used in next-generation engines, where stricter emission and efficiency standards are required. This study aims to design a drive circuit for piezoelectric injectors in a common rail system, intended for use in a diesel injector test bench. Experimental measurement of voltage was obtained from an
Moreira, Vinicius GuerraSilveira, Hairton Júnior José daMorais Hanriot, Sérgio deEuzébio, Wagner Roberto
This paper presents the design and implementation of a test bench intended for the development and validation of control strategies applied to a hybrid-electric powertrain. The setup combines a 48 V SEG BRM electric machine with a small-displacement internal combustion engine (ICE), the HONDA GX160, operating in a parallel hybrid configuration. The platform was developed to improve energy efficiency in comparison to a conventional ICE-only system. Modifications were carried out on an existing test bench at Instituto Mauá de Tecnologia, including the fabrication of a new enclosure for the battery pack and its battery management system (BMS), as well as the integration of a Vector VN8911 real-time controller. A custom control strategy was implemented and experimentally evaluated using a predefined drive cycle under two conditions: (I) ICE-only operation and (II) hybrid-electric operation with the proposed strategy. Results showed a fuel consumption reduction of approximately 13% with the
Polizio, YuriZabeu, ClaytonPasquale, GianPinheiro, GiovanaVieira, Renato
The mobility electrification process is currently of great interest due to its environmental appeal, but it is accompanied by new technical requirements for vehicle systems, the powertrain being one of those with the most significant trade-offs to be solved. Higher power densities, higher torque efficiency and lower noise and vibration generation are simultaneously required. The literature shows that the manufacturing chain can influence the final state of surface integrity of a part, which affects the operational behavior and service life of a component. Therefore, a customized transmission system design for electric propulsion requires several analyses, from the raw material to the gear manufacturing processes, so that surface integrity plays a significative role in the required performance. From the perspective of their capability to meet the e-mobility requirements in terms of surface integrity is essential to conduct a comparative analysis of gear manufacturing processes. So, the
Gomes, Caio F. S.Gomes, Gilberto M. O.Colombo, Tiago C. A.Rego, Ronnie R.Michelotti, Alvaro C.Berto, Lucas F.
The durability of automotive catalysts is a critical factor in ensuring compliance with strict environmental regulations throughout the vehicle’s lifespan. Accelerated aging methods are widely used in the industry to predict catalyst degradation over a reduced period, allowing for performance optimization and ensuring their effectiveness in emission reduction. The ABNT NBR 16897:2021 standard establishes general guidelines for these tests but does not define in detail all the experimental conditions necessary for practical implementation. Addressing this gap, this study proposes the application and development of a standardized experimental procedure for accelerated catalyst aging, aligned with current regulations and adapted to test conditions in an engine dynamometer test bench. The objective is to provide a solid technical foundation, filling gaps for future implementations of this methodology, allowing investigations into the durability of aftertreatment systems and assisting both
Yana, Diego Andree ReynosoPradelle, FlorianBraga, Sergio LealSánchez, Fernando ZegarraMachado, Guilherme BastosCarvalho, Rogério Nascimento deSilva, Katia Moniz da
This study presents three methods for obtaining the latency of an indirect injection Electro-Injector as a function of the applied voltage. This parameter is relevant for the linearization of the injected mass in order to model fuel mass delivery on modern ECUs. For this purpose, the authors built a test bench, with the intent of running analysis on the results of tests of mass differential between injections, circulating current, and mechanical vibration. The authors gathered data over the iterative experiments and correlated the mass differential, vibration data and current measurements. The authors observed that with a reduction of supply voltage at the injector’s pins, a greater injector dead time made itself present displaying a need for a compensation of opening time in function of voltage since the injector’s needle takes a longer amount of time in partially open positions. Modern ECU manufacturers broadly use the data obtained by this type of iterative experiment to accurately
Juliatti, Rafael MotterOliveira, Julia Mathias deMorais Hanriot, Sérgio deSilveira, Hairton Júnior Jose daMoreira, Vinicius Guerra
This study presents the design, construction, and experimental validation of a test bench for characterizing elastomer-based torsion suspensions in light vehicle applications. The system replaces conventional spring-damper assemblies with viscoelastic elements that simultaneously absorb and dissipate road-induced vibrations. We developed a scaled prototype instrumented with an Arduino-based data acquisition system and analyzed results using Octave®. The experimental protocol comprised: (1) tribological tests to identify optimal friction pairs through coefficient of friction (μ) and wear rate measurements, and (2) dynamometric evaluations of torque transmission capacity, power output, and efficiency across gear ratios (2.03-6.34). Results indicate that a steel-steel friction pair under a normal force of 250-300 N achieves optimal performance, delivering an output power of 1706 W (84.8% efficiency) and a torque of 30.25 Nm. Comparative analysis shows this configuration reduces wear rates
Silva, Diego BrunoGrandinetti, Francisco JoséCastro, Thais SantosDias, Érica XimenesSouza Soares, de Álvaro ManoelMartins, Marcelo SampaioReis de Faria Neto, dos Antônio
This SAE Aerospace Standard (AS) establishes the requirements for various types of identification sleeving that will shrink to a predetermined size upon the application of heat after it has been marked using AS23053 sleeves as basis material. This AS does not cover specific carrier configuration.
AE-8D Wire and Cable Committee
The rotational resistance coefficient of the bogie is a critical parameter for assessing the operational safety of vehicles, significantly influencing the stability of the vehicle’s snaking motion and the safety of curve negotiation. This paper conducts measurements of the rotational resistance coefficient using a 6- degree-of-freedom bogie test rig, evaluating the variation patterns of the indicator under different vehicle load conditions and air spring inflation states. By establishing a SIMPACK dynamic model of the 6-DOF platform, it is possible to obtain actuator displacement control curves that comply with the EN 14363 standard. Taking a specific subway trailer bogie as an example, the rotational resistance coefficient under various operating conditions was measured. The test results indicate that under the condition of air spring deflation, the rotational resistance coefficient is significantly higher than that under air spring inflation. Moreover, under the condition of air
Li, LiHu, Jie
The European Space Agency (ESA) has added a micro-vibration test instrument, developed by the National Physical Laboratory (NPL), to its satellite testing facilities. NPL is the United Kingdom’s National Measurement Institute, developing and maintaining the national primary measurement standards. The instrument measures vibrations generated by satellite subsystems, to quantify their effects on images and measurements made from space. This facility is the result of five years of collaboration between NPL and ESA.
One of the most important components of an electric vehicle is the drive motor. Induction motors are often used for this purpose. During operation of these motors, power loss occurs, especially at high speeds. This power loss corresponds, among other things, to the sum of winding losses, iron core losses and mechanical losses. The power losses generate heat, which causes the temperature in the rotor and stator to rise. The increase in temperature of the components inside the motor can lead to premature wear and fatigue failure. To prevent overheating, the motors are air- or water-cooled. Water cooling can be achieved, for example, by means of jacket cooling. Here, the heat generated is dissipated directly by forced convection. However, the cooling jacket makes it difficult to determine the temperature inside the motor. Determining these temperatures is necessary to protect the motor from premature fatigue. The temperatures inside the motor during operation are of particular interest
Schamberger, StephanieReuss, Hans-Christian
Common rail, high-pressure electronic fuel injection is one of the primary technologies enabling high-efficiency and low emissions in modern diesel engines. Most fuel injectors utilize an actively controlled solenoid valve to actuate a needle that modulates the fuel supply into the combustion chamber. The electrical drive circuit for the injector requires extensive development costs, and thus, most designs are proprietary in nature, making it difficult to perform academic studies of the fuel injection processes. This research presents an injector driver circuit to control one or more solenoid injectors simultaneously for research-based injector development efforts. The electrical circuit was computationally modeled and optimized iteratively, and then, electronic hardware was developed to demonstrate control of a Bosch CRIN3 solenoid diesel injector as proof of concept. In addition, the injector performance was quantified by the fuel rate of injection (ROI) profiles obtained in a test
Bogdanowicz, EdwardAgrawal, AjayLemmon, Andrew N.Bittle, Joshua
This study investigates the failure mechanisms of a press-fitted AISI 304L pulley, which is used to drive an engine coolant variable water pump in automotive applications. The analysis focuses on the peculiar loading scheme of the pulley resulting from the innovative water pump design which combines high mean stress from press fitting with cyclic stress from rotating bending loads that exceed the material's yield point. This is coupled with the cyclic material behavior of AISI 304L which exhibits a strong cyclic hardening. This combination significantly influences the stress distribution and fatigue life of the component under cyclic loads combined with material plasticity, ultimately leading to fatigue failure at the pulley-shaft mating surface. Assembly endurance tests were conducted on a specialized test bench, allowing control of pulley bending load. A comprehensive failure analysis, including visual inspection, metallurgical examination, and finite element analysis (FEA) was
Franceschini, AlessandroSquarcini, RaffaeleRybicki, Gilles
The ongoing electrification of vehicle powertrains brings attention to components with a minor contribution to overall friction losses in research and development. To optimize the overall energy efficiency, it is essential to analyze and reduce the losses in these components. Wheel bearings are of particular interest in this context, as their friction losses affect both the driving and recuperation phases. These losses are dependent on temperature, mechanical loads and the bearing mounting situation into the vehicle. The analysis of friction losses and their dependency on the factors mentioned above is usually conducted by measurements on component test benches to allow an isolated analysis. In contrast, the friction losses of the complete drive system are measured on powertrain or roller test benches. In this context, the factors affecting the losses in wheel bearings deviate from the measurements obtained on component test benches. The purpose of this paper is to analyses the effect
Hartmann, LukasErxleben, LarsRebesberger, RonHenze, RomanSturm, Axel
In the next years, the global hydrogen vehicle market is expected to grow at a very high rate. Consequently, it is necessary for scholars and professionals to study and test specific components in order to rise motor efficiency leveraging the new features of connectivity available in smart roads. In particular, our research is focused on the developement of an engine control module driven by evaluation of usage characteristics (e.g., driving style) and "connected-to-x" scenarios using the standard engine control approach. Moreover, the module proposed enables the implementation of "fast running" models to improve the response of vehicles and make the best possible use of H2-powered engine characteristics. That said, in this paper is proposed a new approach to implement the control module, using Support Vector Machine (SVM) as the machine learning algorithm to detect driving style, and consequently modify the parameters of the engine. We choose SVM because i) it is less prone to
Mastroianni, MicheleMerola, SimonaIrimescu, AdrianDe Santis, MarcoEsposito, ChristianAversano, Lerina
Electric vehicles are shaping the future of the automotive industry, with the drive motor being a crucial component in their operation. Ensuring motor reliability requires rigorous testing using specialized test benches to validate key performance parameters. However, inefficiencies in the helical gear configuration within these test systems have led to frequent malfunctions, affecting production flow. This study focuses on optimizing the motor test bench by refining critical design parameters through vibration signal analysis and machine learning techniques. Vibrational data is collected under different gear configurations, utilizing an accelerometer integrated with a Data Acquisition (DAQ) system and MATLAB-based directives for seamless data collection. Machine learning classifiers, including Fine Gaussian SVM and Bilayered Neural Network, are applied to categorize signals into normal and faulty conditions, both with and without a 0.25 KW load. The analysis reveals that SVM achieves
S, RavikumarSharik, NSyed, ShaulV, MuralidharanD, Pradeep Kumar
Electric two-wheeler testing before they are introduced in the market is one of the essential features needed by the certification agencies. Different types of test bench are available for measuring the torque and power from the electric two-wheeler that includes eddy current based motor test bench and mechanical based loading benches. In the present work an electric motor bench is designed and developed that takes care all features of electric two wheelers. The power supply to the motor is done through convertors and controller while mechanical loading is applied through belt. The other features that are kept in the rig includes lighting system and speed controller for the motor. The design is developed for variable outer diameter of electric two-wheeler testing. Tests were conducted on the developed rig. Test results were compared with electric motor specifications and were found to be in good agreement
Vashist, DevendraVerma, KartikChamok, FahimTewatia, BharatRajput, Neeraj
This document provides user information on best practice methods and processes for the in-service inspection, evaluation, and cleaning of expanded beam (EB) fiber optic interconnect components (termini, alignment sleeves, and connectors), test equipment, and test leads based on the information provided in AIR6031 and ARP6283. This document provides the user with a decision-making tool to determine if the fiber optic components are acceptable for operation with EB fiber optic termini.
AS-3 Fiber Optics and Applied Photonics Committee
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
AS-3 Fiber Optics and Applied Photonics Committee
Trains traditionally transmit braking and mitigation commands through the air tube filling and exhausting method, which is easy to cause local large longitudinal impact. In order to meet the high-precision requirements of synchronous transmission of commands for heavy-duty trains with large groupings, this paper proposes a laser+industrial Ethernet network control system, which can meet the requirements of flexible train grouping and virtual connecting under the premise of ensuring synchronous transmission of commands for trains with large groupings. The system consists of central control unit, locomotive laser communication module, locomotive switch, mobile wireless communication terminal, security gateway, vehicle control unit, vehicle laser communication module, vehicle switch, etc. It is designed according to the three-layer architecture of vehicle-level network, train-level network and line-level network, which can realise the issuance of internal control commands and status
Meng, XiangzhenLi, ChuanhuZhu, Youlong
With the ongoing electrification of vehicles, components contributing a minor share of overall drivetrain losses are coming into focus. Analyzing these losses is crucial for enhancing the energy efficiency of modern vehicles and meeting the increasing demands for sustainability and extended driving range. These components include wheel bearings, whose friction losses are influenced by parameters such as temperature, mechanical loads, and mounting situation. Therefore, it is essential to analyze the resulting friction losses and their dependence on the mentioned influencing parameters at an early stage of development, both through test bench measurements and with the help of simulation models. To achieve these objectives, this submission presents a methodology that combines test bench measurements with a measurement-based simulation of the friction losses of wheel bearings occurring in the vehicle as a complete system under varying driving cycles and parameters. For this purpose, an
Hartmann, LukasSturm, AxelHenze, RomanNotz, Fabian
This paper presents a model-based systems engineering (MBSE) and digital twin approach for a military 6T battery tester. A digital twin architecture (encompassing product, process, and equipment twins) is integrated with AI-driven analytics to enhance battery defect detection, provide predictive diagnostics, and improve testing efficiency. The 6T battery tester’s MBSE design employs comprehensive SysML models to ensure traceability and robust system integration. Initial key contributions include early identification of battery faults via impedance-based sensing and machine learning, real-time state-of-health tracking through a synchronized virtual battery model, and streamlined test automation. Results indicate the proposed MBSE/digital twin solution can detect degradation indicators (e.g. capacity fade, rising internal impedance) earlier than traditional methods, enabling proactive maintenance and improved operational readiness. This approach offers a reliable, efficient testing
Sandoval, Roman
In recent years, motorsport has increasingly focused on environmental concerns, leading to the rise of hybrid and fully electric competitions. In this scenario, electric motors and batteries take a crucial role in reducing the environmental impact by recovering energy during braking. However, due to inherent limitations, motors and battery cannot fully capture all braking power, necessitating the use of standard friction brakes. To achieve an efficient balance between electric motors and friction brakes, the brake pressure can no longer be directly controlled by the driver. Instead, it must be computed by the Vehicle Control Unit (VCU) and sent to a smart actuator, i.e. the Brake-By-Wire (BBW), which ensures that the required pressure is applied. The standard approach to achieve precise pressure control is to design a nested Proportional-Integral-Derivative (PID) control architecture, which requires an accurate nominal model of the system dynamics to meet the desired tracking
Gimondi, AlexDubbini, AlbertoRiva, GiorgioCantoni, Carlo
Pin-on-disk tribometers are used to determine the frictional behaviour and boundary layer dynamics of material pairings. Material pairings are examined under defined conditions in order to reason about the friction behaviour and wear. Pairings for real brake systems with larger pad sizes can be tested on flywheel mass test rigs in order to provide proof of suitability. This is mainly due to a lack of knowledge about the scaling behaviour of friction linings. The Department of Machinery System Design at TU Berlin has combined the classic approach of a pin-on-disk tribometer with a flywheel mass test rig (up to 12.78 kgm2) and thus set up a laboratory brake on which material pairings with different pad shapes and sizes (up to 48 cm2) can be examined. The flywheel mass test rig consists of an adjustable DC-motor that drives a shaft on which variable flywheel masses and brake disks can be installed. The variability allows for different kinetic energies at different friction speeds. The
Heuser, Robert MichaelRosenthal, Tobias RichardWiest, Daniel ChristianMeyer, Henning Jürgen
Remote monitoring of commercial vehicles is taking an increasingly central position in automotive companies, driven by the growth of the on-road freight transportation sector. Specifically, telematics devices are increasingly gaining importance in monitoring powertrain operability, performance, reliability, sustainability, and maintainability. These systems enable real-time data collection and analysis, offering valuable support in resolving issues that may occur on the road. Moreover, the fault codes, called Diagnostic Trouble Codes (DTCs), that arise during actual road driving constitute fundamental information when combined with several engine parameters updated every second. This integration provides a more accurate assessment of vehicle conditions, allowing proactive maintenance strategies. The principal goal is to deliver an even faster response for resolving sudden issues, thus minimizing vehicle downtime. High-resolution data transmission and failure event information
D'Agostino, ValerioCardone, MassimoMancaruso, EzioRossetti, SalvatoreMarialto, Renato
Research on hydrogen-fueled internal combustion engines has gained growing attention as a carbon-neutral solution to reducing emissions in the transport sector. However, challenges remain, with the risk of abnormal combustion being one of the major criticalities. This paper aims to clarify the ignition process of a hydrogen-air mixture caused by lubricant oil droplets and soot deposition. To achieve this, high-speed imaging methods were applied with a Rapid Compression Expansion Machine under engine-like conditions. Direct imaging and OH* chemiluminescence were captured simultaneously on the engine head to visualize the ignition point and flame propagation. Different operating conditions were tested to evaluate the influence of lambda, intake pressure, and soot quantity on ignition occurrence. For each test bench configuration, ten successive tests were conducted to assess the probability of ignition. The presence of soot was ensured through a preliminary run with diesel injection. The
Tempesti, ClarettaYukitani, TakumiHoribe, NaotoRomani, LucaFerrara, GiovanniKawanabe, Hiroshi
The need to reduce pollutant emissions has pushed the automotive industry towards sustainable mobility promoting new technological solutions, among which the use of hybrid powertrains stands out. The development of a hybrid architecture is very complex and demands proper components sizing and the determination of optimized power-split strategies among different power sources, for example: Internal Combustion Engine (ICE), electric generator/motor and batteries. Moreover, the experimental analysis regarding performance and emissions requires that the whole propulsive system must be set up on the test bench, hence, negatively affecting the cost of the entire design phase. In this scenario, an optimum design and sizing approach for a series-hybrid electric vehicle (S-HEV) is proposed aiming at a design cost reduction. The presented procedure relies on numerical modelling of the hybrid powertrain and on the optimization of the fuel consumption and the driving range. The series-hybrid
Lisi, LeonardoSaponaro, GianmarcoEpiscopo, DomenicoTorresi, MarcoCamporeale, Sergio Mario
The mechanical components of drive systems for electric vehicles are less complex than those of conventional drives and are therefore generally less prone to faults. On the other hand, a challenge lies in the relatively limited experience in dealing with faults in the electric drivetrain and their effects on driving dynamics compared to conventional drives. To meet these challenges, this paper presents a method to simulate faults in the electric powertrain of a real demonstrator vehicle on a full vehicle test bench and to evaluate the influence on driving dynamics. For this purpose, the demonstrator vehicle was modeled in detail in a co-simulation between the driving dynamics simulation software CarMaker and the real-time solution for simulating and testing electrical components Typhoon HIL. This enabled the investigation of the vehicle’s behavior in the event of a fault. Subsequently, tests with the vehicle were performed on the Vehicle-in-the-Loop full vehicle test bench and the
Rautenberg, PhilipKonzept, AnjaHitz, ArneFrey, MichaelReick, Benedikt
The electrification of the transportation sector relies on extensive research and data availability to accelerate technological advancements. However, for certain key components such as electric machines, detailed operational information remains scarce, which in turn limits the development of accurate system-level models for electrified powertrains. As a contribution to addressing this challenge, this study presents an experimental benchmark of the electric machine in the second-generation Toyota Mirai, a fuel cell hybrid electric vehicle (FCHEV) featuring a variable DC voltage bus, which was tested on a roller test bench. The proposed methodology aims to characterize the electric machine with minimal instrumentation and prior knowledge of the machine’s configuration, by identifying electrical and geometric parameters that are relevant for a steady-state model of the machine, applicable to system-level studies, with the objective of providing a methodology that can be used in future
Carlos Da Silva, DanielKefsi, LaidSciarretta, Antonio
In the rapidly advancing field of EV applications, the design of high-efficient inverters is one of the key factors in improving overall vehicle performance. This paper presents the design of a three-level (3-L) automotive inverter based on GaN technology, aimed at enhancing the performance and efficiency of electric vehicles (EVs). GaN components, sourced from Cambridge GaN Devices (CGD), are utilized to leverage their superior switching characteristics and efficiency. The work is supported by both simulation and experimental results, which confirm the advantages of integrating GaN components and the 3-L inverter topology. The findings demonstrate improved performance, lower losses, and enhanced overall efficiency, making this design a promising solution for the future of EV power electronics.
Battiston, AlexandreAghaei Hashjin, SaeidFindlay, JohnHaje Obeid, NajlaSiad, Ines
The search for alternative solutions for vehicle electrification, while reducing the carbon footprint during the transition to green mobility, leads to the investigation of electro-fuels (e-fuels) in conventional internal combustion engines. Leveraging previous research, the present study focuses on the optimisation of a Compression Ignition (CI) engine combustion control in response to the use of the Oxymethylene Dimethyl Ethers (OMEx) blended with conventional diesel. The selected e-fuel is the OME3, which is expected to be used as a drop-in solution and to easily achieve a reduction in soot emissions due to both its high oxygen content and lack of direct carbon bonds in its molecular structure. To verify its potential, a 1D single-cylinder CI multi-zone engine model has been exploited to simulate various diesel/OME3 blends in a wide engine operating range. The first step deals with the evaluation of performance and emissions to demonstrate the differences, particularly in terms of
Foglia, AntonioCervone, DavideFrasci, EmmanueleArsie, IvanPolverino, PierpaoloPianese, Cesare
Tire and road wear particles (TRWP) have emerged as air quality hazardous matters and significant sources of airborne microplastic pollution, contributing to environmental and human health concerns. Regulatory initiatives, such as the Euro 7 standards, emphasize the urgent need for standardized methodologies to quantify TRWP emissions accurately. Despite advancements in measuring tire abrasion rates, critical gaps persist in the characterization of airborne TRWP, particularly regarding the influence of collection system design and influencing parameters on measurement accuracy and repeatability. This study addresses these challenges by designing a controlled methodological framework that aims to minimize the influencing effects and ensure comparability in TRWP emission quantification results. At the German Aerospace Center (DLR) dynamometer testbench in Stuttgart, Germany, a methodical framework was established to ensure the repeatability and comparability of TRWP measurements
Celenlioglu, Melis SerenEpple, FabiusReijrink, NinaLöber, ManuelReiland, SvenVecchi, RobertaPhilipps, Franz
This article details the experimental and testing activities of the EU project AeroSolfd, with a particular focus on the project's efforts to reduce combustion-based nanoparticle emissions in exhaust gases for the European fleet of vehicles by developing a GPF retrofit solution. The technical activities undertaken the process of developing such a retrofit are examined in this article. The findings illustrate the viability of reducing nanoparticle levels in gasoline-powered vehicles with the utilization of appropriate GPFs. For this purpose, in addition to a fleet, four vehicles were examined in great detail and underwent the process of obtaining component approval for the particulate filter. The vehicles were measured in a preliminary state, then following the installation of the GPF, and subsequently after several months of continuous field operation. A total of four vehicles were selected for evaluation as a representative subgroup of a larger test fleet of vehicles in the project
Engelmann, DaniloMayer, AndreasComte, PierreRubino, LaurettaLarsen, Lars
The debate over synthetic fuels is intense especially in sectors with a high energy demand like maritime [1, 2]. Hydrogen production from renewable sources is growing, but immediate measures for decarbonization are needed [3, 4]. In this context, the project MethMag was funded, and a gas engine for methane combustion with an innovative cooling concept and a purged prechamber (PC) spark plug was virtually developed [5, 6]. Validation with data from the test bench demonstrates that the simulations accurately represent the operating conditions [7, 8]. This combustion process is adapted for ammonia, which is being considered as a climate-friendly fuel of the future, particularly in maritime transportation [4, 9]. This fuel faces significant combustion challenges and is therefore mostly considered in complex, bivalent systems [10]. In particular, the prechamber is examined regarding the ignitability of ammonia. The overarching objective is to eliminate the necessity for a secondary fuel
Rothe, PaulBikas, GeorgiosMauss, Fabian
In this article, the authors present the various choices made to design a magnet free and directly recyclable pure synchro-reluctant (Pure-SynRel) machine with asymmetrical poles operating at a maximum speed of ~21,000 rpm dedicated to automotive. This project focused on identifying design levers and optimizing the magnetic circuit to address three well-known challenges of this topology that limit its application as an automotive traction machine. These challenges include: maximizing the power factor to reduce inverter rating and cost, minimizing sources of NVH (noise, vibration, and harshness) and torque ripples, and ultimately maximizing efficiency to bridge the performance gap with magnet-based technologies (PMaSynRel). The sizing of stator components—such as the choice of winding (concentric or distributed, full or fractional pitch, round or hairpin wire)—and rotor components (e.g., the number of pole pairs, shape, and number of barriers) are explained. Additionally, the
Applagnat-Tartet, AntoineMilosavljevic, MisaDelpit, Pierre
Developing innovative ignition technologies offers a crucial opportunity to improve the performance of internal combustion engines while significantly reducing harmful emissions, contributing to a more sustainable future. The replacement of the standard spark plug with a pre-chamber igniter is a well-known combustion accelerator for externally ignited engines for passenger vehicles. An increase in engine efficiency, especially at high loads, can be realized. However, pre-chamber ignition technology has not yet been widely adopted in the market, primarily due to the difficulty of achieving stable operation at lower engine loads. A better understanding of the flow and mixture conditions is needed to improve the combustion stability with the pre-chamber igniter in low-load operating conditions. The gas exchange in the passive pre-chamber was studied using a combination of numerical modelling and experimental methods. Accessing those parameters experimentally requires a high effort in test
Fellner, FelixHärtl, MartinJaensch, MalteD'Elia, MatteoBurgo Beiro, MarcosNambully, Suresh KumarRothbauer, Rainer
Turbocharging technique is a key technology for the development of hydrogen engines, allowing high lambda values to reach low NOx emissions. In ultra-lean mixture conditions, the thermal management of the lubricating oil and its cold condition becomes a crucial aspect that cannot be neglected. Accordingly, the impact of different lubricating oils and different lubricant thermal conditions is highlighted referring to the performance of a turbocharging system for automotive application. To this aim, an experimental campaign is conducted at the test bench for components of propulsion systems of the University of Genoa. Tests are performed on a turbocharger equipped with a variable geometry turbine under both steady and unsteady flow conditions, considering different positions of the turbine regulating device. A 4-cylinder engine head was coupled to the turbocharger in order to reproduce the pulsating flow related to the opening and closing of the engine valves. The influence of the
Marelli, SilviaUsai, VittorioCordalonga, Carla
This paper presents an integrated methodology for the analysis of hydrogen-fueled 2-Stroke engines, combining experimental data, 1D-CFD simulations, and 3D-CFD combustion calculations. The proposed approach aims to enhance the understanding of scavenging, injection, and combustion processes in a 50 cm3 loop-scavenged engine with low-pressure direct hydrogen injection, experimentally studied on a test bench. The hydrogen-fueled engine was capable of achieving a maximum power output of 3.1 kW, using a slightly lean air-to-fuel ratio (lambda = 1.3). The maximum engine speed for stable combustion without knocking was achieved at wide open throttle at 7119 RPM. The developed 1D-CFD model, based on the engine layout at the test bench, was calibrated using average experimental data and specific full load operating points. 3D-CFD simulations were performed for one full load operating point, focusing on combustion dynamics and fuel distribution within the chamber, with combustion model
Caprioli, StefanoFerretti, LucaScrignoli, FrancescoFiaschi, MatteoD'Elia, MatteoOswald, RolandSchoegl, OliverNambully, Suresh KumarRothbauer, RainerMattarelli, EnricoKirchberger, RolandRinaldini, Carlo
Items per page:
1 – 50 of 2528