Browse Topic: Test equipment and instrumentation
The majority of transportation systems continue to rely on internal combustion engines powered by fossil fuels. Heavy-duty applications, in particular, depend on diesel engines due to their high brake efficiency, power density, and robustness. Despite significant advancements in diesel engine technology that have reduced emissions and improved efficiency, complex and costly after-treatment systems remain necessary to meet the stringent emission regulations. Dimethyl ether (DME), which can be produced from various renewable feedstocks and possesses high chemical reactivity, is a promising alternative for heavy-duty applications, particularly in compression ignition direct injection engines. Its high reactivity, volatility, and oxygenated composition offer significant potential to address emission challenges while reducing reliance on after-treatment systems. However, DME’s lower energy density requires adjustments in injection parameters (such as injection pressure and duration) or
Fatigue design is invariably of prior concern for the automotive industry, no matter of the evolution of the mobility market: at first because carmakers must stay compliant with general structural integrity requirements for reliability, notably applicable to the chassis system, then due to the endless competition for lightweighting in order to mitigate product costs and/or enhance vehicle efficiency. In the past, this key performance was often tackled by basic reference load cases, making use of the simplest signal content, e.g. sinus functions, to practice constant amplitude loads on test rigs and for computations, respectively. Nowadays, full time series coming from proving ground measurements, or any corresponding virtual road load data computations, may be applied to feed complex vehicle computations for virtual assessment and complex test facilities for final approval, under variable amplitude loads. In between, the concept of load spectra (i.e. distribution of amplitudes with
The electric vehicle market, vehicle ECU computing power, and connected electronic vehicle control systems continue to grow in the automotive industry. The results of these advanced and expanded vehicle technologies will provide customers with increased cost savings, safety, and ride quality benefits. One of these beneficial technologies is the tire wearing prediction. The improved prediction of tire wear will advise a customer the best time to change tires. It is expected that this prediction algorithms will be essential part for both the optimization of the chassis control systems and ADAS systems to respond to changed tire performance that varies with a tire’s wear condition. This trend is growing, with many automakers interested in developing advanced technologies to improve product quality and safety. This study is aimed at analyzing the handling and ride comfort characteristics of the tire according to the depth of tire pattern wear change. The handing and ride comfort
A bench was developed with the aim of making it possible to test direct injection fuel system of low-displacement engines (up to 2,000cc) outside of a conventional test bench. It has adjustable supports that make it possible to install various engines of different manufacturers. In addition, the bench has features an electric motor, an external oil pumping system and a programmable ECU. These accessory systems were necessary because the engine for which the bench was initially designed has undergone various adaptations that required external systems such as those mentioned above. The project was designed to provide great ease, agility and low manufacturing costs, so the entire bench chassis was manufactured using just one standardized steel profile that is easily found on the market. Still about manufacturing, the concept of the prototype was also developed around the need for it to be compact and easy to transport so that the tests could be carried out in different environments in an
Gear shifting effort or force especially in manual transmission has been one of the key factors for subjective assessment in passenger vehicle segment. An optimum effort to shift into the gears creates a big difference in overall assessment of the vehicle. The gear shifting effort travels through the transmission shifting system that helps driver to shift between the different available gears as per the torque and speed demand. The shifting system is further divided into two sub-systems. 1. Peripheral system [Gear Shift Lever with knob and shift Cable Assembly] and Shift system inside the transmission [Shift Tower Assembly, Shift Forks, Hub and sleeve Assembly with keys, Gear Cones and Synchronizer Rings etc.] [1]. Both the systems have their own role in overall gear shifting effort. There has been work already done on evaluation of the transmission shifting system as whole for gear shifting effort with typical test bench layouts. Also, work has been on assessment of life of the
Clutch wear is a significant factor affecting vehicle performance and maintenance costs, and understanding its dynamics is crucial for original equipment manufacturers (OEMs) to enhance product reliability and customer satisfaction. It is important to predict clutch wear to enable customers to understand the condition of their clutch and the remaining clutch life, to avoid sudden vehicle breakdowns. This paper explains the approach of measuring the clutch wear profile on an actual vehicle and simulating the same conditions on a powertrain test bench, with the establishment of a correlation in clutch wear profiles.
Hypersonic platforms provide a challenge for flight test campaigns due to the application's flight profiles and environments. The hypersonic environment is generally classified as any speed above Mach 5, although there are finer distinctions, such as “high hypersonic” (between Mach 10 to 25) and “reentry” (above Mach 25). Hypersonic speeds are accompanied, in general, by a small shock standoff distance. As the Mach number increases, the entropy layer of the air around the platform changes rapidly, and there are accompanying vortical flows. Also, a significant amount of aerodynamic heating causes the air around the platform to disassociate and ionize. From a flight test perspective, this matters because the plasma and the ionization interfere with the radio frequency (RF) channels. This interference reduces the telemetry links' reliability and backup techniques must be employed to guarantee the reception of acquired data. Additionally, the flight test instrumentation (FTI) package needs
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing.
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments.
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
Arraid LLC Phoenix, AZ 480-699-3047 JamesHilken@solidstatedisks.com
This document defines cables that are used to provide electrical power for U.S. Department of Defense avionics support and test equipment.
Manually checking the quality of components or products in industry is labor-intensive for employees and error-prone on top of that. The Fraunhofer Institute for Mechatronic Systems Design IEM is unveiling a solution that provides total versatility in this area. In an it’s OWL supported collaboration with Diebold Nixdorf and software specialist verlinked, Fraunhofer IEM has created a combination of collaborative robot (cobot), AI-based image analysis and IoT platform. The system frees employees from having to perform visual inspections and can be incorporated into all kinds of testing scenarios. The Fraunhofer researchers presented a demonstrator of the cobot/IoT platform at the 2024 Hannover Messe Trade Show in February.
Simulation company rFpro has already mapped over 180 digital locations around the world, including public roads, proving grounds and race circuits. But the company's latest is by far its biggest and most complicated. Matt Daley, technical director at rFpro, announced at AutoSens USA 2024 that its new Los Angeles route is an “absolutely massive, complicated model” of a 36-km (22-mile) loop that can be virtually driven in both directions. Along these digital roads - which were built off survey-grade LIDAR data with a 1 cm by 1 cm (1.1-in by 1.1 in) X-Y grid - rFpro has added over 12,000 buildings, 13,000 pieces of street infrastructure (like signs and lamps), and 40,000 pieces of vegetation. “It's a fantastic location,” Daley said. “It's a huge array of different types of challenging infrastructure for AVs. You can drive this loop with full vehicle dynamic inputs, ready to excite the suspension and, especially with AVs, shake the sensors in the correct way as you would be getting if you
Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. And it’s sensitive enough to help farmers with pest problems. The wireless microphone array that one company recently created with help from NASA can locate crop-threatening insects by listening for sound they make in fields. And now, it’s making fast, affordable testing possible almost anywhere.
Items per page:
50
1 – 50 of 2556