Browse Topic: Test facilities

Items (3,758)
ABSTRACT Full vehicle Hardware-in-the-Loop (HIL) testing provides a virtual platform on which to accurately assess the performance of the powertrain, before the vehicle is built. Furthermore, it allows for seamless integration of components in a modeling and simulation environment with actual hardware to analyze hardware component performance. This paper presents the challenges of creating a rapidly deployable HIL test facility and compares and contrasts the test results of a conventional and parallel powertrain to modeling and simulation
Nedungadi, AshokKreder, Karl
ABSTRACT The Integrated Survivability System Integration Laboratory (ISSIL) developed at the U.S. Army Tank-Automotive Research, Development, and Engineering Command (TARDEC) is a tool which enables and enhances the integration of Soldier survivability technology suites. TARDEC utilized the ISSIL to bridge the gap between concept and realization of the survivability demonstrator vehicle built on MTV 1083 A1P2 platform. The ISSIL was a critical tool for enabling the integration of mechanical, electrical, data, and networking components as well as for validating the system integration through Soldier usability trials. This paper describes how the ISSIL advanced the RDECOMs comprehensive systems engineering process throughout the modeling, analysis, design, development and testing of the demonstrator vehicle
Siddapureddy, VenuFountain, NathanSanders, DavidBudzik, Stacy
ABSTRACT Probabilistic Principal Component Analysis (PPCA) is a promising tool for validating tests and computational models by means of comparing the multivariate time histories they generate to available field data. Following PPCA by interval-based Bayesian hypothesis testing enables acceptance or rejection of the tests and models given the available field data. In this work, we investigate the robustness of this methodology and present sensitivity studies of validating hybrid powertrain models of a military vehicle simulated over different proving ground courses
Pai, YogitaKokkolaras, MichaelHulbert, GregoryPapalambros, PanosPozolo, Michael K.Fu, YanYang, Ren-JyeBarbat, Saeed
This document defines performance standards which mechanical fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments
AS-3 Fiber Optics and Applied Photonics Committee
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments
AS-3 Fiber Optics and Applied Photonics Committee
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large turbofan and turbojet engines, particularly those who are interested in infrasound phenomena
EG-1E Gas Turbine Test Facilities and Equipment
Most military wheeled vehicles operate with a simplistic table-based transmission shift strategy. However, Allison Transmission Inc has created an innovative algorithm-based transmission shift strategy known as FuelSense®2.0 with DynActive® Shifting which optimizes gear selection by accounting for driver demand and vehicle load. This method of shifting has the potential to significantly improve fuel economy while only minimally degrading vehicle performance. In this study, FuelSense®2.0 with DynActive® Shifting was evaluated across three platforms which included the Family of Medium Tactical Vehicles (FMTV), and the Heavy Tactical Vehicles (HTV) Heavy Expanded Mobility Tactical Truck (HEMTT) and Palletized Loading System (PLS). The trucks were drive-cycle tested using both an environmentally controlled dynamometer laboratory and a real-world proving ground user trial
Zielinski, StevenBeiter, StevenMach, Newly
Traditional live testing of autonomous ground vehicles can be augmented through use of digital twins of the test environment, the vehicle mobility models, and the vehicle sensors. These digital twins combined with the autonomous software under test allow testers to inject faults, weather, obstacles, find edge case scenarios, and collect information to understand the decision making of the autonomous software under test. With this new capability, autonomous ground vehicles can now be tested in four stages. The first stage is testing the autonomous software using digital twins. In this stage with the help of a High-Performance Computer thousands of scenarios can be run. Once issues are communicated and addressed, stage two, hardware in the loop testing can begin. Hardware in the loop uses simulators that already exist to test systems such as autonomous convoys with a virtual leader and a live follower. Stage three employs a live virtual constructive approach by using one vehicle to test
Whitt, John M.Bounker, Paul J.
Because they can go where humans can’t, robots are especially suited for safely working with hazardous nuclear waste. Now, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have designed and tested a remote-controlled, dual-arm telerobotics system with human-like capabilities that has the potential to revolutionize hazardous waste clean-up and holds potential for broader applications
For the vibration durability bench test of commercial vehicle batteries, it is essential to have accurate test specifications that exhibit high robustness and reasonable acceleration characteristics. This study evaluates the impact of different battery frame systems on the vibration response of the battery body, as determined by road load spectrum test results of a commercial vehicle battery system. It also confirms the variations in the external environmental load. Utilizing the response spectrum theory, a comprehensive calculation method for the fatigue damage spectrum (FDS) of batteries is developed. The time domain direct accumulation method, frequency domain direct accumulation method, and frequency domain envelope accumulation method are all compared. Analysis of kurtosis and skewness reveals that when the load follows the super-Gaussian distribution characteristics, the time domain direct accumulation method should be used to calculate the fatigue damage spectrum to minimize
Yan, XinGuo, DongniWan, XiaofengSun, JiameiQuan, XinhuiWang, Ying
The last time you dropped a mug, you may have been too preoccupied to take much notice of the intricate pattern of cracks that appeared in the broken object. But capturing the formation of such patterns is the specialty of John Kolinski and his team at the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) in EPFL’s School of Engineering
Researchers at the Department of Energy’s Oak Ridge National Laboratory are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide
Unlike glass, which is infinitely recyclable, plastic recycling is challenging and expensive because of the material’s complex molecular structure designed for specific needs. New research from the lab of Giannis Mpoumpakis, Associate Professor of Chemical and Petroleum Engineering at the University of Pittsburgh, focuses on optimizing a promising technology called pyrolysis, which can chemically recycle waste plastics into more valuable chemicals
“Everything old is new again and that is precisely why we’ve been investigating rammed earth construction,” said Sumi Siddiqua, Civil Engineering Professor and Lead Researcher with The University of British Columbia’s Advanced Geomaterials Testing Lab. Siddiqua is part of a research group at UBC Okanagan that’s revisiting old building practices — the use of byproducts and cast-offs — as a way to improve building materials and sustainability of the trade
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventively identify potential issues. This paper proposes an advanced test approach in the area of the overall vehicle system including the steering system and powertrain on a Road to Rig test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles. Furthermore, for the first instance, specific driving manoeuvres, including slalom driving
Kopp, LennartHarfmann, PatrickNiederberger, LucasSchwämmle, TimmKley, Markus
This SAE Aerospace Recommended Practice (ARP) provides recommendations for: The audit process in general A list of specific areas of attention to be audited Maintaining the test facility in such a manner that it meets audit requirements
EG-1E Gas Turbine Test Facilities and Equipment
Electric vehicles, being inherently quiet without the typical combustion noises, pose a potential safety concern, especially at low speeds. Consequently, an Acoustic Vehicle Alerting System (AVAS) is mandatory in many countries worldwide to warn pedestrians of approaching electric vehicles. The development of AVAS sounds involves conducting measurements on an outside noise test track to verify compliance with regulations. Various environmental parameters on the test track can influence the transmission of sound from the car’s AVAS speaker to the measurement microphones. This research delves into understanding the relationship between the transmission of sound over short distances and environmental parameters. Over a one-year period, 122 measurements were conducted using a specially designed dolly setup. The frequency response function, which characterises the sound transmission, was calculated to determine the dependencies and correlations with environmental parameters. The findings
Schönfeld, NilsGsell, StephanMüller, Gerhard
U.S. Naval Research Laboratory (NRL) researchers have outlined a novel contribution in fiber optics computing in a paper recently published in Communications Physics Journal that brings the Navy one step closer to faster, more efficient computing technologies
A new robotic suction cup which can grasp rough, curved, and heavy stone, has been developed by scientists at the University of Bristol. The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers, which have superb adaptive suction abilities enabling them to anchor to rock
A commonplace chemical used in water treatment facilities has been repurposed for large-scale energy storage in a new battery design by researchers at the Department of Energy’s Pacific Northwest National Laboratory. The design provides a pathway to a safe, economical, water-based, flow battery made with Earth-abundant materials. It provides another pathway in the quest to incorporate intermittent energy sources such as wind and solar energy into the nation’s electric grid
Volvo Trucks is leading the charge to net-zero emissions by 2050, but will other OEMs follow? Volvo Trucks is betting on itself to reach the aggressive goal of being completely fossil-free by 2040, meaning its global population of trucks running on roads should be net-zero by 2050. The company is taking an almost fanatical approach to its emissions reduction targets in hopes that other OEMs will follow its lead. Volvo refers to this approach as “The Road to Net-Zero.” Truck & Off-Highway Engineering was invited to Gothenburg, Sweden, to tour many of Volvo's facilities and experience its latest truck offerings at its proving grounds. In addition to touring the newly christened World of Volvo, the company's new experience center located in the heart of Gothenburg, our group of North American journalists was provided unfettered access to company engineers and executives to glean how the company plans to achieve its ambitious targets
Wolfe, Matt
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Kamal, AbhishekDeka, SushmitaSahoo, NiranjanKulkarni, Vinayak
U.S. Naval Research Laboratory (NRL) scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent Physical Review Research article, and it's expected to become a powerful tool to investigate the physical properties in electronic systems
In 2023, Parry Labs was awarded two tasks under the Aviation and Missile Technology Consortium's (AMTC) Other Transactions Agreement to lead a multi-vendor team to collaboratively define the Army's Modular Open Systems Approach (MOSA) requirements for computing and software operating environments for all future Army Aviation procurements. This relatively new approach for the Army and industry drove collaboration and allowed U.S. Government (USG) to make key modularity and openness decisions relative to Aviation Mission Computing Environment (AMCE). This unique opportunity provided a platform for industry to openly inform requirements at a much more granular level than previously possible, providing assurances that such detailed requirements wouldn't be an overreach or constrain innovation and disrupt industry business models. Solicited to the entire AMTC, which represents the vast majority of the aviation industrial base, the AMTC and USG team selected the most qualified vendors to
There are times when scientific progress comes in the form of discovering something completely new. Other times, progress boils down to doing something better, faster, or more easily. New research from the lab of Caltech’s Lihong Wang, the Bren Professor of Medical Engineering and Electrical Engineering, is the latter. In a paper published in the journal Nature Biomedical Engineering, Wang and postdoctoral scholar Yide Zhang show how they have simplified and improved an imaging technique they first announced in 2020
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel. Data generated
Khan, M. YusufAgarwal, NikhileshPanda, SampadDesai, Atharva TusharWilkinson, John C.Chaille, EvanVats, ShekharSalemme, Tina L.Ragupathy, Thinnesh
Most of the Automated Driving Systems (ADS) technology development is targeting urban areas; there is still much to learn about how ADS will impact rural transportation. The DriveOhio team deployed level-3 ADS-equipped prototype vehicles in rural Ohio with the goal of discovering technical challenges for ADS deployment in such environments. However, before the deployment on public roads, it was essential to test the ADS-equipped vehicle for their safety limitations. At Transportation Research Center Inc. (TRC Inc.) proving grounds, we tested one such prototype system on a closed test track with soft targets and robotic platforms as surrogates for other road users. This paper presents an approach to safely conduct testing for ADS prototype and assess its readiness for public road deployment. The main goal of this testing was to identify a safe Operational Design Domain (ODD) of this system by gaining better understanding of the limitations of the system. The prototype system uses Apollo
Rampilla, LokamanyaFreistuhler, CodyKaranjkar, SayaliSeitz, TimothyTulpule, Punit
Pedestrian Automatic Emergency Braking (P-AEB) is a technology designed to avoid or reduce the severity of vehicle to pedestrian collisions. This technology is currently assessed and evaluated via EuroNCAP and similar procedures in which a pedestrian test target is crossing the road, walking alongside the road, or stationary in the forward vehicle travel path. While these assessment methods serve the purpose of providing cross-comparison of technology performance in a standardized set of scenarios, there are many scenarios which could occur which are not considered or studied. By identifying and performing non-EuroNCAP, non-standardized scenarios using similar methodology, the robustness of P-AEB systems can be analyzed. These scenarios help identify areas of further development and consideration for future testing programs. Three scenarios were considered as a part of this work: straight line approach, curved path approach, and parking lot testing. Exemplar tests were performed for
Bartholomew, MeredithHelber, NicholasHeydinger, GaryZagorski, Scott
Whenever bicyclists ride on public roads, they ride through roadway defects which occasionally causes them to lose control of their bicycles and/or damage components. Previous research has quantified the forces experienced during general road and offroad riding, but did not study the specific influences of variables such as pothole geometry, riding speed, etc. To begin quantifying these effects, a road bike was equipped with a triaxial accelerometer and ridden over poor roadway conditions around an industrial park in Southern California. Next, in a laboratory setting, an artificial pothole was constructed that was 12 inches long and either 1 or 1.65 inches deep. A force plate was placed at the far edge to measure the horizontal loads induced by the bicycle tire riding over the edge and high-speed camera was positioned perpendicular to the path of travel to measure the speed and vertical drop of the front wheel. Lastly, two riders of differing weights rode the same road bicycle over the
Sweet, David MichaelBretting, GeraldWilhelm, Christopher
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives. While evaluating fatigue life within optimization loops, particularly for multiaxial random load fatigue in the time domain, is time-intensive, this study is to improve computational efficiency in two strategies: 1) the dynamic adjustment of target nodes from the
Tong, JiachiMeng, DejianWang, LeiGao, YunkaiYang, James
The gasoline particulate filter (GPF) represents a practical solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as an essential technology in North America to meet the upcoming US EPA tailpipe emission regulation, as proposed in the “Multi-pollutant Rule for Model Year 2027”. The goal of this study was to introduce advanced, uncoated GPF products and measure their particulate mass (PM) reduction performance within the existing US EPA FTP vehicle testing procedures, as detailed in Code of Federal Regulations (CFR) part 1066. Various state-of-the-art GPF products were characterized for their microstructure properties with lab-bench checks for pressure drop and filtration efficiency, then pre-conditioned with an EPA-recommended 1500 mile on-road break-in, and finally were tested on an AWD vehicle chassis-dyno emissions test cell at both 25°C and -7°C ambient conditions. A modern, T3B70, GTDI light-duty truck served as the test vehicle
Craig, AngusWarkins, JasonWassouf, BasselBeall, DouglasBanker, VondaMadaffari Jr, Dominick
Gasoline particulate filters (GPF) have become a standard aftertreatment component in Europe, China, and since recently, India, where particulate emissions are based on a particle number (PN) standard. The anticipated evolution of regulations in these regions towards future EU7, CN7, and BS7 standards further enhances the needs with respect to the filtration capabilities of the GPFs used. Emission performance has to be met over a broader range in particle size, counting particles down to 10nm, and over a broader range of boundary conditions. The requirements with respect to pressure drop, aiming for as low as possible, and durability remain similar or are also enhanced further. To address these future needs new filter technologies have been developed. New technologies for uncatalyzed GPF applications have been introduced in our previous publications. In this contribution we will describe novel Generation 2 and 3 technologies of Corning’s high porosity Corning® DuraTrap® GC HP filters
Boger, ThorstenRose, DominikLi, ChunboChijiiwa, RyokoRemy, ChristopheAlam, Rabeka
FMVSS No. 205, “Glazing Materials,” uses impact test methods specified in ANSI/SAE Z26.1-1996. NHTSA’s Vehicle Research and Test Center initiated research to evaluate a subset of test methods from ANSI Z26.1-1996 including the 227 gram ball and shot bag impact tests, and the fracture test. Additional research was completed to learn about potential changes to tempered glass strength due to the ceramic paint area (CPA), and to compare the performance of twelve by twelve inch flat samples and full-size production parts. Glass evaluated included tempered rear quarter, sunroof, and backlight glazing. Samples with a paint edge were compared to samples without paint, and to production parts with and without paint in equivalent impact tests. A modified shot bag with stiffened sidewalls was compared to the ANSI standard shot bag. The fracture test comparison included evaluating the ANSI Z26.1 impact location and ECE R43 impact location. Over 900 tests covering the various test conditions
Rains, Corinn
Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have invented and patented a new cathode material that replaces lithium ions with sodium and would be significantly cheaper. The cathode is one of the main parts of any battery. It is the site of the chemical reaction that creates the flow of electricity that propels a vehicle
A new computer model tool, developed by researchers at the University of Bristol and based at the Bristol Robotics Laboratory, could be used to train astronauts ahead of Lunar missions
A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab) has developed “supramolecular ink,” a new technology for use in OLED (organic light-emitting diode) displays or other electronic devices. Made of inexpensive, Earth-abundant elements instead of costly scarce metals, supramolecular ink could enable more affordable and environmentally sustainable flat-panel screens and electronic devices
Perovskite solar cells should be subjected to a combination of stress tests simultaneously to best predict how they will function outdoors, according to researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL
When it comes to making batteries that last longer, a team of researchers including engineers at Brown University and Idaho National Laboratory believes the key might be in how things get clean — specifically how soap works in this process
The aim of this study is to determine if the degradation of one or more dampers of a passenger car with ABS leads to a statistically significant reduction of vehicle safety. Therefore, a compact and a mid-size car are tested on a flat test track and on an uneven test track by straight braking maneuvers at different levels of damper degradation. Both test tracks are scanned using a 3D laser scanner. For every level of damper degradation (on each test track) a new set of tires is used, a preconditioning routine is applied and 30 successful measurements are conducted to allow using statistical methods to evaluate the results. The results show that any level of damper degradation with each type of car and test track leads to a significant increase in braking distance and, therefore, to a significant reduction of vehicle safety. The braking distance extension varies heavily with the level of damper degradation and the road properties. The observed extensions range from a little more than 2
Zwosta, TobiasKubenz, JanProkop, Günther
This SAE Recommended Practice provides guidance for test facilities in identifying potential hazards, and safety risks, along with requirements and recommendations related specifically to testing of automated driving systems (ADS) and ADS-operated vehicles. Herein after, for the purposes of this document, utilization of the term “test facilities” implies those conducting testing of ADS or ADS-operated vehicles, unless otherwise noted. References made to safety within this recommended practice apply only to test method safety and driving safety on and during testing at an ADS test facility and do not apply to vehicle design or safety performance. Safety practices for on-road testing, operation, and related deployment are not covered within this document
On-Road Automated Driving (ORAD) Committee
Throughout the commercial, laboratory, and industrial sectors, users are demanding that equipment of all types be more capable and automated. Smarter systems deliver improved operating performance, and they are also easier to use and maintain. Designers accomplish these goals by installing more instrumentation, accessing greater amounts of data, and providing greater controller capabilities with streamlined connections to a variety of field devices
Researchers from MIT, the MIT-IBM Watson AI Lab, and elsewhere have developed a technique that enables deep-learning models to efficiently adapt to new sensor data directly on an edge device
Johns Hopkins Applied Physics Laboratory (APL) researchers have developed one of the world’s smallest, most intense, and fastest refrigeration devices — the wearable thin-film thermoelectric cooler (TFTEC) — and teamed with neuroscientists to help amputees perceive a sense of temperature with their phantom limbs
Storing energy is one of the key challenges for implementing sustainable but intermittent electricity sources like solar and wind. Engineers at Sandia National Laboratories are collaborating with New Mexico-based CSolPower LLC to develop a very affordable method of accomplishing that storage
Developed by a team led by Lawrence Berkeley National Laboratory, a self-assembling nanosheet could significantly extend the shelf life of consumer products. And because the new material is recyclable, it could also enable a sustainable manufacturing approach that keeps single-use packaging and electronics out of landfills
Items per page:
1 – 50 of 3758