Browse Topic: Test facilities
Wind Tunnels are complex and cost-intensive test facilities. Thus, increasing the test efficiency is an important aspect. At the same time, active aerodynamic elements gain importance for the efficiency of modern cars. For homologation, such active aero-components pose an extra level of test complexity as their control strategies, the relevant drive cycles and their aerodynamics in different positions must be considered for homologation-relevant data. Often, active components have to be manually adjusted between test runs, which is a time-consuming process because the vehicle is not integrated into the test automation. Even if so, designing a test sequence stepping through the individual settings for each component of a vehicle is a tedious task in the test session. Thus, a sophisticated integration of the wind tunnel control system with a test management system, supporting the full homologation process is one aspect of a solution. The other is the integration of the vehicle’s active
Physicists at the Naval Research Laboratory are collaborating with several universities throughout the U.S. to develop a small satellite that will detect the emission of short gamma-ray bursts. U.S. Naval Research Laboratory, Washington D.C. The U.S. Naval Research Laboratory (NRL), in partnership with NASA's Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA's StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers. NRL transferred the instrument to NASA on March 4 for the next phase, environmental testing. From there, the instrument will be integrated onto the spacecraft bus, followed by launch into Low Earth Orbit in 2027. StarBurst will be installed as a secondary payload via the Evolved Expendable Launch Vehicle Secondary Payload Adapter Grande interface with a
Someday, instead of large, expensive individual space satellites, teams of smaller satellites – known by scientists as a “swarm” – will work in collaboration, enabling greater accuracy, agility, and autonomy. Among the scientists working to make these teams a reality are researchers at Stanford University’s Space Rendezvous Lab, who recently completed the first-ever in-orbit test of a prototype system able to navigate a swarm of satellites using only visual information shared through a wireless network.
The U.S. Naval Research Laboratory (NRL), in partnership with NASA’s Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA’s StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers.
Nickel’s role in the future of electric vehicle batteries is clear: It’s more abundant and easier to obtain than widely used cobalt, and its higher energy density means longer driving distances between charges. However, nickel is less stable than other materials with respect to cycle life, thermal stability, and safety. Researchers from The University of Texas at Austin and Argonne National Laboratory aim to change that with a new study that dives deep into nickel-based cathodes, one of the two electrodes that facilitate energy storage in batteries.
Last summer, SAE Media was invited to Eaton's proving grounds in Marshall, Michigan, to test drive an electric truck the company had built in collaboration with BAE Systems. The truck was a showcase not only of BAE's powertrain control technology, but also of Eaton's new multi-speed heavy-duty EV transmission. That truck was on display at the 2025 ACT Expo, as was Eaton's transmission. SAE Media spoke with Scott Adams, SVP of technology and global products for Eaton, in Anaheim, California, about the company's portfolio of multi- and single-speed medium- and heavy-duty transmissions as well as other upcoming driveline offerings.
The recent addition of fully electric powertrains to propulsion system options has increased the relevance of sound and vibration from electric motors and gearboxes. Electrified beam axles require different metrics from conventional beam axles for noise and vibration because they have multiple sources of vibration energy, including an electric motor and a reduction gearbox. Improved metrics are also driven by the stiff suspension connections and lack of significant isolation compared to electric drive units. Blocked force is a good candidate because it can completely characterize the vibration energy transmitted into a receiver and is especially useful because it is theoretically independent of the vehicle-side structure. While the blocked force methodology is not new, its application to beam axles is relatively unexplored in the literature. This paper demonstrates a case study of blocked force measurement of an electrified beam axle with a leaf spring suspension. The axle was tested
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
As the capabilities of unmanned aerial systems continue to evolve rapidly in response to the tactical and strategic necessities of the modern battlefield, the U.S. Army Aeromedical Research Laboratory is exploring a unique approach to improving their operational effectiveness – by focusing on the protection and performance of UAS operators.
Remote sensing offers a powerful tool for environmental protection and sustainable management. While many remote sensing companies use wind or solar energy to power their platforms, California-based startup Dolphin Labs is harnessing wave energy to enable sensing networks for enhanced maritime domain awareness, improving the safety and security of offshore natural resources and critical infrastructure.
Komatsu works with Pronto to upfit a growing fleet of haul trucks operating at Komatsu's Arizona Proving Grounds and customer sites. At Komatsu's Quarry Days 2025 event at its Arizona Proving Grounds (AZPG) outside of Tucson, dealers, customers and media got the opportunity to operate Komatsu mining and construction equipment, learn about its latest technology innovations and talk to product experts. A highlight of the event was the first public demonstration of Komatsu's HD605-10 haul truck outfitted with Pronto's Autonomous Haulage System (AHS), spotlighting the equipment maker's partnership with the AI tech startup to pilot autonomous quarry haulage operations. Several HD605-10 trucks have been equipped with AHS as part of this program currently being tested by quarry operators in Texas. The AZPG site currently has just the one automated truck.
A team at the Johns Hopkins Applied Physics Laboratory (APL) is creating an artificial intelligence-driven capability that automates much of the work that goes into designing, setting up, developing and running wargames. The effort holds promise to dramatically amplify the impact and value of wargames and similar exercises for the military and other government agencies.
Technologies from NASA, federal labs, and universities have found commercial applications in the medical industry. Here we highlight some of those spin-off innovations.
Companies have invested heavily to improve color in digital imaging, but wavelength is just one property of light. Polarization — how the electric field oscillates as light propagates — is also rich with information, but polarization imaging remains mostly confined to table-top laboratory settings, relying on traditional optics such as waveplates and polarizers on bulky rotational mounts.
Fatigue design is invariably of prior concern for the automotive industry, no matter of the evolution of the mobility market: at first because carmakers must stay compliant with general structural integrity requirements for reliability, notably applicable to the chassis system, then due to the endless competition for lightweighting in order to mitigate product costs and/or enhance vehicle efficiency. In the past, this key performance was often tackled by basic reference load cases, making use of the simplest signal content, e.g. sinus functions, to practice constant amplitude loads on test rigs and for computations, respectively. Nowadays, full time series coming from proving ground measurements, or any corresponding virtual road load data computations, may be applied to feed complex vehicle computations for virtual assessment and complex test facilities for final approval, under variable amplitude loads. In between, the concept of load spectra (i.e. distribution of amplitudes with
The field of microfluidics is a key technology for the medicine of the future. Having already revolutionized the world of laboratory medicine by enabling samples to be analyzed much faster, it also plays a major role in the development of new drugs.
For years, Proffesor Bozhi Tian’s lab has been learning how to integrate the world of electronics — rigid, metallic, bulky — with the world of the body — soft, flexible, delicate.
Researchers have developed an optical biosensor that can rapidly detect monkeypox, the virus that causes mpox. The technology could allow clinicians to diagnose the disease at the point of care rather than wait for lab results.
This research investigates the potential of salt gradient solar ponds (SGSPs) as a sustainable and effective solution for thermal energy storage. The study examines the design, construction, and performance of SGSP systems that incorporate coal cinder, comparing their performance with traditional SGSPs without coal cinder. A combination of experimental and numerical approaches is used to evaluate the thermal characteristics and energy efficiency of these systems. The findings indicate that the salt gradient solar pond with coal cinder (SGSP-CC) achieves notably higher temperatures across the Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ), with measured temperatures of 42.57°C, 56.8°C, and 69.86°C, respectively. These represent increases of 7.53%, 12.01%, and 15.49% over those in the conventional SGSP (SGSP-C). Additionally, the energy efficiency gains in the UCZ, NCZ, and LCZ for the SGSP-CC are noteworthy, with increases of 38.06%, 39.61%, and
For years, Proffesor Bozhi Tian’s lab has been learning how to integrate the world of electronics — rigid, metallic, bulky — with the world of the body — soft, flexible, delicate.
Researchers and engineers at the U.S. Army Combat Capabilities Development Command Chemical Biological Center have developed a prototype system for decontaminating military combat vehicles. U.S. Army Combat Capabilities Development Command, Aberdeen Proving Ground, MD The U.S. Army Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC) is paving the way and helping the Army transform into a multi-domain force through its modernization and priority research efforts that are linked to the National Defense Strategy and nation's goals. CBC continues to lead in the development of innovative defense technology, including autonomous chem-bio defense solutions designed to enhance accuracy and safety to the warfighter.
Researchers at the Johns Hopkins Applied Physics Laboratory have developed a machine learning method that could have a huge impact on understanding how material is formed during the additive manufacturing process. John Hopkins Applied Physics Laboratory, Laurel, MD Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin. “We anticipate that this new approach will be extremely impactful in helping design and understand material formation during additive manufacturing processes, and this fits into our overarching strategy focused on accelerating materials development for national security,” said
Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin.
For all the engineering that takes place at the Treadwell Research Park (TRP), Discount Tire's chief product and technical officer John Baldwin told SAE Media that there's actually something akin to magic in the way giga-reams of test data are converted into information non-engineers can usefully understand. TRP is where Discount Tire generates data used by the algorithms behind its Treadwell tire shopping guide. The consumer-facing Treadwell tool, available in an app, a website and in stores, provides tire shoppers with personalized, simple-to-understand recommendations that are mostly based on a five-star scale. Discount Tire and its partners have tested over 20,000 SKUs, representing 500 to 1000 different types of tires over the years, Baldwin said, including variants and updates. Testing a tire to discover it has an 8.2 rolling resistance coefficient is one thing. The trick is finding a way to explain it to someone standing in a tire shop.
U.S. Army Aberdeen Proving Ground, MD 866-570-7247
In recent years, engineers at ETH Zurich have developed the technology to produce liquid fuels from sunlight and air. In 2019, they demonstrated the entire thermochemical process chain under real conditions for the first time, in the middle of Zurich, on the roof of ETH Machine Laboratory. These synthetic solar fuels are carbon neutral because they release only as much CO2 during their combustion as was drawn from the air for their production. Two ETH spin-offs, Climeworks and Synhelion, are further developing and commercializing the technologies.
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Fangzheng Liu, Nathan Perry, Tobias Roeddiger, Sean Auffinger, Joseph Paradiso, Ariel Ekblaw MIT Media Lab Cambridge, MA
Rama Venkatasubramanian, Luke Osborn, Jeff Maranchi, Meiyong Himmtann, Jonathan Pierce, Richard Ung, Katy Carneal, Robert Armiger JHU Applied Physics Lab Laurel, MD
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases.
U.S. Army Yuma Proving Ground, AZ 928-328-2151
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large turbofan and turbojet engines, particularly those who are interested in infrasound phenomena.
Items per page:
50
1 – 50 of 3749