Browse Topic: Test facilities

Items (3,721)
The new Stage 5 emission regulation requires several changes on engines as well as design and development of new auxiliary systems. These changes affected the engine dynamics and NVH characteristics. These changes are validated for various operating conditions on engine test cell in a controlled environment where engine is mounted on test cell with dyno. Further, this engine will be used by other machine forms, hence NVH performance needs to be evaluated for all the applications. Isolation of three-cylinder engines is challenging since it has to deal with inherent imbalance forces while providing the isolation to meet the durability requirements of heavy applications from off highway machines. This paper covers the methods used for verification of engine isolation performance. NVH tests are conducted for integration of three-cylinder engine with roadbuilding machine. An analytical model is developed to identify rigid body modes and mount transmissibility. Results from this analytical
Pawar, Sachin M.Mandke, Devendra LaxmikantKASABE, SANDEEPJadhav, Vijay
Engine is the prime mover of an automobile. Tractor is also equipped with engine of higher capacity to meet the power requirement. Apart from powering the wheels, engine also runs different accessories such as water pump, alternator, AC pump, Oil pump and so on. The power from the engine is transferred to accessories via chain drive or belt drive through the crankshaft pulley. During field testing, in one of the tractors, engine pulley mounting bolt failure was reported. The failure resulted in immediate seizure of the engine making the tractor standstill in the field. The root cause of the failure was unknown. Hence, there was a need to develop a component or subsystem level test methodology to address the issue quickly. In the current scope, an attempt was made to develop a subsystem level laboratory test methodology to simulate the failure mode and to validate the design modifications in an accelerated manner. The failure mode was simulated in lab and different design iterations
Chakraborty, Abhirup
Recent experimental work from the authors’ laboratory demonstrated that applying a boosted current ignition strategy under intensified flow conditions can significantly reduce combustion duration in a rapid compression machine (RCM). However, that study relied on spark anemometry, which provided only localized flow speed estimates and lacked full spatial resolution of velocity and turbulence near the spark gap. Additionally, the influence of turbulence on combustion behavior and performance across varying flow speeds and excess air ratios using a conventional transistor-controlled ignition (TCI) system was not thoroughly analyzed. In this study, non-reactive CFD simulations were used to estimate local flow and turbulent velocities near the spark gap for piston speeds ranging from 1.2 to 9.7 m/s. Simulated local velocities ranged from 0.7 to 96 m/s and were used to interpret experimentally observed combustion behavior under three excess air ratios (λ = 1.0, 1.4, and 1.6). Combustion was
Haider, Muhammad.ShaheerJin, LongYu, XiaoReader, GrahamZheng, Ming
As part of technology maturation efforts, the COAT Lab evaluated the impact of external audio on driving performance in simulated under amor environments. To do so, we conducted an Engineering Evaluation Test (EET) wherein participants were asked to drive a simulated military vehicle through a Slalom course (primary task) while monitoring for aerial threats (secondary task). Using a combination of objective and subjective metrics, this evaluation quantified participants’ ability to maneuver and detect threats while using external audio as an enabling technology. Evaluation results indicated external audio positively benefited driving performance and situation awareness. However, evaluation results also indicated that external audio was not sufficient in and of itself for detecting time-sensitive aerial threats. Together, these results suggest a development path forward in which external audio is combined with visual information to enhance crew situation awareness under armor.
Grant, LaurenShrestha, SumitHoffing, Russell Cohen
The ongoing shift toward electrification, particularly in the transport and energy sectors, has intensified the deployment of lithium-ion batteries (LIBs). While LIBs offer high energy density and efficiency, their increasing use also brings significant safety challenges—most critically, the risk of thermal runaway (TR) in confined environments. This study presents a fast and structured zero-dimensional/one-dimensional (0D/1D) methodology for estimating key parameters associated with TR events in sealed volumes. The model integrates empirical correlations, energy-based mass estimation approaches, and simplified combustion simulations to assess pressure and temperature rise during TR. Experimental vented mass and gas composition data—obtained through sealed canister testing—serve as the basis for the simulation inputs. A numerical procedure combining mixing dynamics and adiabatic combustion is used to predict critical outcomes such as maximum overpressure and peak temperature
Garcia, AntonioMicó, CarlosMarco-Gimeno, JavierGómez-Soriano, Alejandro
This paper deals with the hydrogen-to-helium jets comparison within the framework of the assessment of helium as a potential hydrogen surrogate. The comparison is centred on the assessment of the combined action of pressure ratio with gas properties on the dynamics of the jet exiting an outward-opening injector. The shots are performed at injection pressures and backpressures ranging from 21 to 36 bar and from 1.2 to 5 bar, respectively. The Schlieren technique is deployed to capture the jets images. The study demonstrates that at certain pressure ratios helium is an appealing solution bridging the lab safety with fidelity to hydrogen-like jet behaviour. Decreasing pressure ratio minimizes the hydrogen-to-helium difference in axial penetration and area, enabling helium to yield a hydrogen-like development. The findings underscore the impact of the pressure ratio on how the gas properties, such as density and diffusivity, dictate the evolution of the axial propagation and area
Coratella, CarloTinchon, AlexisHespel, CamilleDober, GavinFoucher, Fabrice
The German Aerospace Center's (DLR) solar-powered high altitude platform (HAP) has completed ground vibration testing, in preparation for low altitude flight testing planned for 2026. German Aerospace Center (DLR), Cologne, Germany High-altitude uncrewed aircraft can remain in the lower stratosphere for extended periods, performing a wide range of Earth observation and communications tasks - from monitoring shipping lanes and supporting disaster response to providing internet access. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has now taken an important step in the development of its own high-flying solar aircraft by successfully completing a Ground Vibration Test (GVT) on its innovative HAP-alpha high-altitude platform. Extensive ground trials took place at DLR's National Experimental Test Center for Unmanned Aircraft Systems in Cochstedt, Germany. Further tests will follow and the first low-altitude flight trial is planned for 2026, subject to ideal
For years researchers at the Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) have been developing tools to accelerate the materials discovery and development of new energy storage technologies, including those that can predict the performance of the batteries systems for long-term grid services.
Researchers at the Department of Energy’s Oak Ridge National Laboratory are using advanced manufacturing techniques to revitalize the domestic production of very large metal parts that weigh at least 10,000 pounds each and are necessary for a variety of industries, including clean energy.
A research team led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new fabrication technique that could improve noise robustness in superconducting qubits, a key technology for enabling large-scale quantum computers.
U.S. Army researchers, in collaboration with academic partners, invented a stronger copper that could help advance defense, energy and aerospace industries thanks to its ability to endure unprecedented temperature and pressure extremes. Extreme materials experts at the U.S. Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory built on a decade of scientific success to develop a new way to create alloys that enable Army-relevant properties that were previously unachievable. An alloy is a combination of a metal with other metals or nonmetals.
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
Not a traditional university lab, Harvard University’s Move Lab employs professional engineers, product developers, and academics who work across disciplines to bring research innovations to market. The lab is focused on human performance enhancement to protect people’s physical ability to guard against injury, extend their abilities beyond the limits of advancing age, and restore them to people who have lost them. They have developed wearable solutions that support functional movements and allow impaired individuals to more easily interact with their environment.
Wind Tunnels are complex and cost-intensive test facilities. Thus, increasing the test efficiency is an important aspect. At the same time, active aerodynamic elements gain importance for the efficiency of modern cars. For homologation, such active aero-components pose an extra level of test complexity as their control strategies, the relevant drive cycles and their aerodynamics in different positions must be considered for homologation-relevant data. Often, active components have to be manually adjusted between test runs, which is a time-consuming process because the vehicle is not integrated into the test automation. Even if so, designing a test sequence stepping through the individual settings for each component of a vehicle is a tedious task in the test session. Thus, a sophisticated integration of the wind tunnel control system with a test management system, supporting the full homologation process is one aspect of a solution. The other is the integration of the vehicle’s active
Jacob, Jan D.
A paper-based diagnostic device can detect COVID-19 and other infectious diseases in under 10 minutes, without the need for sophisticated lab equipment or trained personnel.
The article introduces the air springs, CDC, rear-wheel steering system, braking system, front-wheel steering system, and electric drive system in the vehicle’s central coordinated motion control system. It explores achieving more comfortable shock absorption by adjusting the CDC (Continuously Variable Damping system) damping and other means. By combining open-loop and closed-loop rear-wheel steering control, the turning radius in small-radius steering mode is reduced by up to 10%, enabling crab-walking, optimizing the moose test entering speed up to 90.9 kph, and improving vehicle behavior on split-friction surfaces. Through the cooperation of IBS (Intelligent Brake System) and VMC, an extremely comfortable braking process is achieved.
Zhou, YuxingLi, Wen
Someday, instead of large, expensive individual space satellites, teams of smaller satellites – known by scientists as a “swarm” – will work in collaboration, enabling greater accuracy, agility, and autonomy. Among the scientists working to make these teams a reality are researchers at Stanford University’s Space Rendezvous Lab, who recently completed the first-ever in-orbit test of a prototype system able to navigate a swarm of satellites using only visual information shared through a wireless network.
Physicists at the Naval Research Laboratory are collaborating with several universities throughout the U.S. to develop a small satellite that will detect the emission of short gamma-ray bursts. U.S. Naval Research Laboratory, Washington D.C. The U.S. Naval Research Laboratory (NRL), in partnership with NASA's Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA's StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers. NRL transferred the instrument to NASA on March 4 for the next phase, environmental testing. From there, the instrument will be integrated onto the spacecraft bus, followed by launch into Low Earth Orbit in 2027. StarBurst will be installed as a secondary payload via the Evolved Expendable Launch Vehicle Secondary Payload Adapter Grande interface with a
Nickel’s role in the future of electric vehicle batteries is clear: It’s more abundant and easier to obtain than widely used cobalt, and its higher energy density means longer driving distances between charges. However, nickel is less stable than other materials with respect to cycle life, thermal stability, and safety. Researchers from The University of Texas at Austin and Argonne National Laboratory aim to change that with a new study that dives deep into nickel-based cathodes, one of the two electrodes that facilitate energy storage in batteries.
Last summer, SAE Media was invited to Eaton's proving grounds in Marshall, Michigan, to test drive an electric truck the company had built in collaboration with BAE Systems. The truck was a showcase not only of BAE's powertrain control technology, but also of Eaton's new multi-speed heavy-duty EV transmission. That truck was on display at the 2025 ACT Expo, as was Eaton's transmission. SAE Media spoke with Scott Adams, SVP of technology and global products for Eaton, in Anaheim, California, about the company's portfolio of multi- and single-speed medium- and heavy-duty transmissions as well as other upcoming driveline offerings.
Wolfe, Matt
The U.S. Naval Research Laboratory (NRL), in partnership with NASA’s Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA’s StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers.
Platform based vehicle development is standardized at John Deere. The challenges of frontloading the integration of individual components within different platforms using predictive methods is key to shortening the development cycle. Components are individually characterized on test benches and results cannot directly be used to evaluate system performance. Invariant characterization is needed instead, which is possible through techniques such as blocked loads estimation. To evaluate the applicability of such methods, the component-based loads and vehicle in-situ operational loads need to be compared. The confident use of these methods for obtaining structural and acoustic loads enables the use of hybrid system models, enhancing early NVH response predictions. The objective of this work was to enable the confident use of test stand measurements in predictive models across various vehicle platforms. This study compares a powertrain characterization in a vehicle against a test stand to
Vesikar, Prasad BalkrishnaEdgington, JasonDrabison II, John
A cutting-edge EV powertrain NVH laboratory has been established at Dana Incorporated’s world headquarters in Ohio, significantly enhancing its capabilities in EV powertrain NVH development. This state-of-the-art, industry-leading facility is specifically designed to address diverse NVH requirements for EV powertrain development and validation processes. This capability substantially reduces development time for new drivetrain systems. Key features of the laboratory include a hemi-anechoic chamber, two AC asynchronous load motors, an acoustically isolated high-speed input motor, and two battery emulators capable of accommodating both low and high-voltage requirements. The NVH laboratory enables engineers to evaluate system performance and correlate results with digital twin models. This capability supports the optimization of NVH characteristics at both the system and component levels, as well as the refinement of CAE models for enhanced design precision. This paper details the design
Cheng, Ming-TeZugo, Chris
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
Kumar, AdityaIppili, Rajani
The recent addition of fully electric powertrains to propulsion system options has increased the relevance of sound and vibration from electric motors and gearboxes. Electrified beam axles require different metrics from conventional beam axles for noise and vibration because they have multiple sources of vibration energy, including an electric motor and a reduction gearbox. Improved metrics are also driven by the stiff suspension connections and lack of significant isolation compared to electric drive units. Blocked force is a good candidate because it can completely characterize the vibration energy transmitted into a receiver and is especially useful because it is theoretically independent of the vehicle-side structure. While the blocked force methodology is not new, its application to beam axles is relatively unexplored in the literature. This paper demonstrates a case study of blocked force measurement of an electrified beam axle with a leaf spring suspension. The axle was tested
Shaw, Matthew DGrimmer, Michael J
Outdoor test facilities for light vehicle exterior noise regulatory measurement need to have surfaces certified to meet ISO 10844. A recent study considered plug-in-hybrid vehicles operating purely in electric mode to compare results at two facilities, both certified. This emphasizes the pavement contribution. Overall results are generally similar, with a few differences which are discussed.
Sorenson, SteveShao, Guangxin
This paper investigates the performance of a dissipative material compared to conventional acoustic materials under conditions that simulate real-world vehicle applications with acoustic leakage. Various acoustic materials were evaluated through laboratory experiments, which included acoustic leakage in both the steel panel and the acoustic materials. Acoustic leakages commonly occur in actual vehicle conditions at pass-throughs or fastener mounting locations. The study also presents in-vehicle test results to demonstrate the effectiveness of the dissipative material in managing acoustic leakage.
Yoo, TaewookMaeda, HirotsuguSawamoto, KeisukeAnderson, BrianGan, KimTongHerdtle, Thomas
As the capabilities of unmanned aerial systems continue to evolve rapidly in response to the tactical and strategic necessities of the modern battlefield, the U.S. Army Aeromedical Research Laboratory is exploring a unique approach to improving their operational effectiveness – by focusing on the protection and performance of UAS operators.
Remote sensing offers a powerful tool for environmental protection and sustainable management. While many remote sensing companies use wind or solar energy to power their platforms, California-based startup Dolphin Labs is harnessing wave energy to enable sensing networks for enhanced maritime domain awareness, improving the safety and security of offshore natural resources and critical infrastructure.
Novel experimental and analytical methods were developed with the objective of improving the reliability and repeatability of coast-down test results. The methods were applied to coast-down tests of a SUV and a tractor-trailer combination, for which aerodynamic wind-tunnel data were available for comparison. The rationale was to minimize the number of unknowns in the equation of motion by measuring rolling and mechanical resistances and wheel-axle moments of inertia, which was achieved using novel experimental techniques and conventional rotating-drum tests. This led to new modelling functions for the rolling and mechanical resistances in the equation of motion, which was solved by regression analysis. The resulting aerodynamic drag coefficient was closer to its wind-tunnel counterpart, and the predicted low-speed road load was closer to direct measurements, than the results obtained using conventional methods. It is anticipated that applying the novel techniques to characterize the
Tanguay, Bernardde Souza, Fenella
Komatsu works with Pronto to upfit a growing fleet of haul trucks operating at Komatsu's Arizona Proving Grounds and customer sites. At Komatsu's Quarry Days 2025 event at its Arizona Proving Grounds (AZPG) outside of Tucson, dealers, customers and media got the opportunity to operate Komatsu mining and construction equipment, learn about its latest technology innovations and talk to product experts. A highlight of the event was the first public demonstration of Komatsu's HD605-10 haul truck outfitted with Pronto's Autonomous Haulage System (AHS), spotlighting the equipment maker's partnership with the AI tech startup to pilot autonomous quarry haulage operations. Several HD605-10 trucks have been equipped with AHS as part of this program currently being tested by quarry operators in Texas. The AZPG site currently has just the one automated truck.
Gehm, Ryan
A team at the Johns Hopkins Applied Physics Laboratory (APL) is creating an artificial intelligence-driven capability that automates much of the work that goes into designing, setting up, developing and running wargames. The effort holds promise to dramatically amplify the impact and value of wargames and similar exercises for the military and other government agencies.
Companies have invested heavily to improve color in digital imaging, but wavelength is just one property of light. Polarization — how the electric field oscillates as light propagates — is also rich with information, but polarization imaging remains mostly confined to table-top laboratory settings, relying on traditional optics such as waveplates and polarizers on bulky rotational mounts.
In the field of automotive engineering, the performance and longevity of suspension bushings and powertrain mounts are critical. These components must endure fatigue loads characterized by their variable amplitude, multi-axial nature, and out-of-phase oscillations. The challenge lies in comprehensively characterizing these service loads during the early stages of vehicle production to foresee potential issues that may arise during later stages. Additional complexity in this analysis is introduced by the nonlinear hyperelastic deformation exhibited by natural rubber, a common material used in these components. To address these challenges, original equipment manufacturers (OEMs) and suppliers employ Computer-Aided Engineering (CAE) techniques for fatigue life predictions. These predictions are complemented by physical testing involving what are known as block cycles. However, the results obtained from these approaches often fail to fully represent the real loading conditions that a
Zarrin-Ghalami, TouhidDatta, Sandip
Two wheelers motorcycles are used for many purposes e.g. commuting from one place to another, long highway rides, racing and off-roading. Motorcycles which are used in off-road conditions require higher suspension strokes to absorb large oscillations due to terrain conditions. These motorcycles undergo jumps of varying heights and different vehicle orientations. In some of the dynamic situations front wheel may land on the ground before the rear and in other cases it may be vice versa. To make sure that the vehicle is durable enough to withstand loads in such operating conditions, vehicle drop test was developed in test lab where vehicle is dropped from predefined heights in both front & rear wheel landing conditions. Same test case is simulated in multibody dynamics to capture loads at important connections of the frame. This paper presents the correlation exercise carried out to validate MBD model and simulation process with test data captured during lab test. Accelerations at
Jain, Arvind KumarNirala, Deepak
SAE J3230 provides Kinematic Performance Metrics for Powered Standing Scooters. These performance metrics include many tests which require specific conditions including flat pavement with a near zero slope, drivers of specific height and weights, and data acquisition equipment. In order to determine the efficacy of replicating SAE J3230 tests in a laboratory setting, a device called the Micromobility Device Thermo-Electric Dynamometer was used alongside outdoor tests to provide a comparison of scooter performance in these two testing applications. Based on the testing outcomes, it can be determined whether SAE J3230 and similar standards for other micromobility devices can be replicated in a lab-based setting, saving time, operator hazard, and providing more thorough data outputs.
Bartholomew, MeredithAndreatta, DaleZagorski, ScottHeydinger, Gary
Fatigue design is invariably of prior concern for the automotive industry, no matter of the evolution of the mobility market: at first because carmakers must stay compliant with general structural integrity requirements for reliability, notably applicable to the chassis system, then due to the endless competition for lightweighting in order to mitigate product costs and/or enhance vehicle efficiency. In the past, this key performance was often tackled by basic reference load cases, making use of the simplest signal content, e.g. sinus functions, to practice constant amplitude loads on test rigs and for computations, respectively. Nowadays, full time series coming from proving ground measurements, or any corresponding virtual road load data computations, may be applied to feed complex vehicle computations for virtual assessment and complex test facilities for final approval, under variable amplitude loads. In between, the concept of load spectra (i.e. distribution of amplitudes with
Facchinetti, Matteo LucaTjhung, TanaJaffre lng, SébastienDatta, SandipHayat lng, RomainGuo, Mingchao
Continuing prior work, which established a simulation workflow for fatigue performance of elastomeric suspension bushings operating under a schedule of 6-channel (3 forces + 3 moments) road load histories, the present work validates Endurica-predicted fatigue performance against test bench results for a set of multi-channel, time-domain loading histories. The experimental fatigue testing program was conducted on a servo-hydraulic 3 axis test rig. The rig provided radial (cross-car), axial (for-aft), and torsional load inputs controlled via remote parameter control (rpc) playback of road load data acquisition signals from 11 different test track events. Bushings were tested and removed for inspection at intervals ranging from 1x to 5x of the test-equivalent vehicle life. Parts were sectioned and checked for cracks, for point of initiation and for crack length. No failure was observed for bushings operated to 1 nominal bushing lifetime. After 3 nominal bushing lifetimes, cracks were
Mars, WillBarbash, KevinWieczorek, MatthewPham, LiemBraddock, ScottSteiner, EthanStrumpfer, Scott
Technologies from NASA, federal labs, and universities have found commercial applications in the medical industry. Here we highlight some of those spin-off innovations.
Items per page:
1 – 50 of 3721