Browse Topic: Test facilities
ABSTRACT Flash® Bainite Processing employs rapid thermal cycling (<10s) to strengthen commercial off the shelf (COTS) steel sheet, plate, and tubing into Ultra Hard 600 Armor, High Hard 500 Armor, and advanced high strength steel (AHSS). In a continuous process, induction technology heats a narrow segment of the steel cross section in just seconds to atypically high temperature (1000-1300°C). Quenching substantially immediately follows. A report by Benet Labs and Picatinny Arsenal, investigating a less mature flash technology in 2011, surmised that the novel flash bainite process for steels has the potential to reduce cost and weight while also enhancing mechanical performance [1]. Receiving five financial grants, the US Dept of Energy has greatly matured flash technology in the last few years and its metallurgical understanding in collaboration with Oak Ridge National Lab and others. DOE has named Flash Bainite as the “SBIR Small Business of the Year” in May 2018 and awarded a Phase 3
ABSTRACT This paper will discuss via case study both military and civilian hybrid vehicle development focusing on the processes required from the selection of the hybrid propulsion system architecture, component down-selection using advanced modeling and simulation tools, body/chassis development and integration, design verification testing using an advanced dynamometer test facility, and final full vehicle validation on the test track. The paper will incorporate results from the FED (Fuel Efficiency Demonstrator) program where AVL is responsible in collaboration with World Technical Services Inc., for delivering a fully developed hybrid propulsion system integrated into the demonstrator vehicle
ABSTRACT Localization refers to the process of estimating ones location (and often orientation) within an environment. Ground vehicle automation, which offers the potential for substantial safety and logistical benefits, requires accurate, robust localization. Current localization solutions, including GPS/INS, LIDAR, and image registration, are all inherently limited in adverse conditions. This paper presents a method of localization that is robust to most conditions that hinder existing techniques. MIT Lincoln Laboratory has developed a new class of ground penetrating radar (GPR) with a novel antenna array design that allows mapping of the subsurface domain for the purpose of localization. A vehicle driving through the mapped area uses a novel real-time correlation-based registration algorithm to estimate the location and orientation of the vehicle with respect to the subsurface map. A demonstration system has achieved localization accuracy of 2 cm. We also discuss tracking results
WHY DO WE NEED SIMULATIONS? This paper is intended to provide a broad presentation of the simulation techniques focusing on transmission testing touching a bit on power train testing. Often, we do not have the engine or vehicle to run live proving ground tests on the transmission. By simulating the vehicle and engine, we reduce the overall development time of a new transmission design. For HEV transmissions, the battery may not be available. However, the customer may want to run durability tests on the HEV motor and/or the electronic control module for the HEV motor. What-if scenarios that were created using software simulators can be verified on the test stand using the real transmission. NVH applications may prefer to use an electric motor for engine simulation to reduce the engine noise level in the test cell so transmission noise is more easily discernable
ABSTRACT The thermal test chambers available at TARDEC for validation and development testing are different in terms of capability, size, and flow setup. The effects of the chamber setup on propulsion cooling airflow and the challenges of using thermal chamber tests to correlate CFD results and predict off-road performance will be discussed. Numerical simulation and test results for both a tracked combat vehicle tested in a large test cell and a wheeled MRAP vehicle tested in a smaller test cell will be presented. Numerical simulation results for these two different vehicles in on-road type of scenario and test chamber scenario at full-load cooling will be compared and contrasted. Results from CFD simulation with test cell set-up will be compared with actual physical testing in the test chamber. Procedures used for the propulsion cooling CFD simulation, best practices, limitations, and recommended procedure will be presented in detail
ABSTRACT Design for structural topology optimization is a method of distributing material within a design domain of prescribed dimensions. This domain is discretized into a large number of elements in which the optimization algorithm removes, adds, or maintains the amount of material. The resulting structure maximizes a prescribed mechanical performance while satisfying functional and geometric constraints. Among different topology optimization algorithms, the hybrid cellular automaton (HCA) method has proven to be efficient and robust in problems involving large, plastic deformations. The HCA method has been used to design energy absorbing structures subject to crash impact. The goal of this investigation is to extend the use of the HCA algorithm to the design of an advanced composite armor (ACA) system subject to a blast load. The ACA model utilized consists of two phases: ceramic and metallic. In this work, the proposed algorithm drives the optimal distribution of a metallic phase
ABSTRACT Digital Engineering practices and ecosystem capabilities [1] optimize designs by providing digital solutions with end-to-end information flows that are consistent from concept development, through test and experimentation, all the way to fully defined capabilities influencing systems across Ground Vehicle Brigade Combat Teams (GVBCT). This approach delivers: 1) improved development, demonstration, and assessment of autonomous vehicle capabilities, technologies, software, algorithms, controls, and performance; 2) a plug and play (PnP) interface for system-of-system and vehicle platform mission thread analysis and interoperability; and 3) 3D gaming technology to support advanced virtual scene generation and world model. The modernization of laboratory facilities to meet research and development (R&D) needs, support advanced technology development, and improved vehicle prototypes. The Brigade Level Integration Laboratory (BLIL) architecture provides a set of views composed using
ABSTRACT A unique laboratory suspension testing capability has been developed which, for the first time, enables rapid evaluation of tracked vehicle suspension components. The testing capability was stood up in the Durability Test Lab (DTL) in conjunction with the materials division, both organizations within GVSC. Testing has been ongoing, and the results of that testing are presented, current to the time of publication. Historically, laboratory component testing has been very limited due to the lack of a capability to provide relevant loading conditions. Previous testing capabilities not only were deficient in their vertical speed capability, but more importantly, lacked the ability to apply the corning forces. Further reasoning and details associated with the development of this test system are presented. This capability was developed as part of an ongoing campaign in the materials division of GVSC. The purpose of this campaign is to demonstrate and establish design standards, and
ABSTRACT Fiber reinforced thermoset composites are well known for delivering 50% or more weight savings when compared with steel components while also providing strength, stiffness, and toughness. Nanoparticle additives have been shown to significantly increase the mechanical properties of thermoplastic and thermoset polymer matrices over the base matrix values. Extensive testing and characterization of composites containing graphene nanoplatelets (GnP) has been conducted and reported by XG Sciences’ (XGS) collaborators at the Michigan State University (MSU) Composite Materials and Structures Center. In a recent program with U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), MSU investigated lightweight composites for blast and impact protection. High strain rate test facilities as well as high speed photography and non-destructive interferometry-based evaluation techniques were used to evaluate blast performance. The experimental results are presented
ABSTRACT The Integrated Survivability System Integration Laboratory (ISSIL) developed at the U.S. Army Tank-Automotive Research, Development, and Engineering Command (TARDEC) is a tool which enables and enhances the integration of Soldier survivability technology suites. TARDEC utilized the ISSIL to bridge the gap between concept and realization of the survivability demonstrator vehicle built on MTV 1083 A1P2 platform. The ISSIL was a critical tool for enabling the integration of mechanical, electrical, data, and networking components as well as for validating the system integration through Soldier usability trials. This paper describes how the ISSIL advanced the RDECOMs comprehensive systems engineering process throughout the modeling, analysis, design, development and testing of the demonstrator vehicle
ABSTRACT Probabilistic Principal Component Analysis (PPCA) is a promising tool for validating tests and computational models by means of comparing the multivariate time histories they generate to available field data. Following PPCA by interval-based Bayesian hypothesis testing enables acceptance or rejection of the tests and models given the available field data. In this work, we investigate the robustness of this methodology and present sensitivity studies of validating hybrid powertrain models of a military vehicle simulated over different proving ground courses
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases
U.S. Army Yuma Proving Ground, AZ 928-328-2151
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large turbofan and turbojet engines, particularly those who are interested in infrasound phenomena
Traditional live testing of autonomous ground vehicles can be augmented through use of digital twins of the test environment, the vehicle mobility models, and the vehicle sensors. These digital twins combined with the autonomous software under test allow testers to inject faults, weather, obstacles, find edge case scenarios, and collect information to understand the decision making of the autonomous software under test. With this new capability, autonomous ground vehicles can now be tested in four stages. The first stage is testing the autonomous software using digital twins. In this stage with the help of a High-Performance Computer thousands of scenarios can be run. Once issues are communicated and addressed, stage two, hardware in the loop testing can begin. Hardware in the loop uses simulators that already exist to test systems such as autonomous convoys with a virtual leader and a live follower. Stage three employs a live virtual constructive approach by using one vehicle to test
Because they can go where humans can’t, robots are especially suited for safely working with hazardous nuclear waste. Now, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have designed and tested a remote-controlled, dual-arm telerobotics system with human-like capabilities that has the potential to revolutionize hazardous waste clean-up and holds potential for broader applications
Military performance requirements for adhesives have been traditionally derived to fulfill niche defense needs in harsh operational environments with little consideration for dual-use commercial potential. U.S. Army Research Laboratory, Aberdeen, MD The term “military-grade” can have a variety of meanings that are perspective dependent. In 2014, Ford Motor Company emphasized the term heavily in advertising campaigns to garner consumer acceptance for the transition from steel to aluminum in the body of their flagship F150 model. As cited by Ford, “Engineers selected these high-strength, military-grade aluminum alloys because of the metals' unique ability to withstand tough customer demands.” From this point-of-view, military-grade implies superior performance. However, the bureaucratic and logistical barriers required for certification to military-grade acceptance levels per DoD performance requirements can also be perceived as impediments to innovation and the transition of fundamental
Unlike glass, which is infinitely recyclable, plastic recycling is challenging and expensive because of the material’s complex molecular structure designed for specific needs. New research from the lab of Giannis Mpoumpakis, Associate Professor of Chemical and Petroleum Engineering at the University of Pittsburgh, focuses on optimizing a promising technology called pyrolysis, which can chemically recycle waste plastics into more valuable chemicals
Simulation company rFpro has already mapped over 180 digital locations around the world, including public roads, proving grounds and race circuits. But the company's latest is by far its biggest and most complicated. Matt Daley, technical director at rFpro, announced at AutoSens USA 2024 that its new Los Angeles route is an “absolutely massive, complicated model” of a 36-km (22-mile) loop that can be virtually driven in both directions. Along these digital roads - which were built off survey-grade LIDAR data with a 1 cm by 1 cm (1.1-in by 1.1 in) X-Y grid - rFpro has added over 12,000 buildings, 13,000 pieces of street infrastructure (like signs and lamps), and 40,000 pieces of vegetation. “It's a fantastic location,” Daley said. “It's a huge array of different types of challenging infrastructure for AVs. You can drive this loop with full vehicle dynamic inputs, ready to excite the suspension and, especially with AVs, shake the sensors in the correct way as you would be getting if you
Researchers at the Department of Energy’s Oak Ridge National Laboratory are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide
The last time you dropped a mug, you may have been too preoccupied to take much notice of the intricate pattern of cracks that appeared in the broken object. But capturing the formation of such patterns is the specialty of John Kolinski and his team at the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) in EPFL’s School of Engineering
“Everything old is new again and that is precisely why we’ve been investigating rammed earth construction,” said Sumi Siddiqua, Civil Engineering Professor and Lead Researcher with The University of British Columbia’s Advanced Geomaterials Testing Lab. Siddiqua is part of a research group at UBC Okanagan that’s revisiting old building practices — the use of byproducts and cast-offs — as a way to improve building materials and sustainability of the trade
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventively identify potential issues. This paper proposes an advanced test approach in the area of the overall vehicle system including the steering system and powertrain on a Road to Rig test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles. Furthermore, for the first instance, specific driving manoeuvres, including slalom driving
This SAE Aerospace Recommended Practice (ARP) provides recommendations for: The audit process in general A list of specific areas of attention to be audited Maintaining the test facility in such a manner that it meets audit requirements
Volvo Trucks is leading the charge to net-zero emissions by 2050, but will other OEMs follow? Volvo Trucks is betting on itself to reach the aggressive goal of being completely fossil-free by 2040, meaning its global population of trucks running on roads should be net-zero by 2050. The company is taking an almost fanatical approach to its emissions reduction targets in hopes that other OEMs will follow its lead. Volvo refers to this approach as “The Road to Net-Zero.” Truck & Off-Highway Engineering was invited to Gothenburg, Sweden, to tour many of Volvo's facilities and experience its latest truck offerings at its proving grounds. In addition to touring the newly christened World of Volvo, the company's new experience center located in the heart of Gothenburg, our group of North American journalists was provided unfettered access to company engineers and executives to glean how the company plans to achieve its ambitious targets
A commonplace chemical used in water treatment facilities has been repurposed for large-scale energy storage in a new battery design by researchers at the Department of Energy’s Pacific Northwest National Laboratory. The design provides a pathway to a safe, economical, water-based, flow battery made with Earth-abundant materials. It provides another pathway in the quest to incorporate intermittent energy sources such as wind and solar energy into the nation’s electric grid
A new robotic suction cup which can grasp rough, curved, and heavy stone, has been developed by scientists at the University of Bristol. The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers, which have superb adaptive suction abilities enabling them to anchor to rock
U.S. Naval Research Laboratory (NRL) researchers have outlined a novel contribution in fiber optics computing in a paper recently published in Communications Physics Journal that brings the Navy one step closer to faster, more efficient computing technologies
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Jet Propulsion Laboratory Pasadena, CA
There are times when scientific progress comes in the form of discovering something completely new. Other times, progress boils down to doing something better, faster, or more easily. New research from the lab of Caltech’s Lihong Wang, the Bren Professor of Medical Engineering and Electrical Engineering, is the latter. In a paper published in the journal Nature Biomedical Engineering, Wang and postdoctoral scholar Yide Zhang show how they have simplified and improved an imaging technique they first announced in 2020
In 2023, Parry Labs was awarded two tasks under the Aviation and Missile Technology Consortium's (AMTC) Other Transactions Agreement to lead a multi-vendor team to collaboratively define the Army's Modular Open Systems Approach (MOSA) requirements for computing and software operating environments for all future Army Aviation procurements. This relatively new approach for the Army and industry drove collaboration and allowed U.S. Government (USG) to make key modularity and openness decisions relative to Aviation Mission Computing Environment (AMCE). This unique opportunity provided a platform for industry to openly inform requirements at a much more granular level than previously possible, providing assurances that such detailed requirements wouldn't be an overreach or constrain innovation and disrupt industry business models. Solicited to the entire AMTC, which represents the vast majority of the aviation industrial base, the AMTC and USG team selected the most qualified vendors to
As head of software engineering at Volvo Cars, Alwin Bakkenes is involved not just with all of the software and electronics in Volvo's vehicles but also the automaker's automotive cloud, the data center that trains Volvo's algorithms, the connectivity pipeline and software updates as well as interactions with Volvo's autonomous driving software development subsidiary Zenseact and HaleyTek, a joint venture with ECARX to develop Android-based infotainment systems for Volvo and Polestar. This growing digital footprint gives Volvo an array of tools to improve its future vehicles, something Bakkenes made clear when speaking with SAE Media at the 2024 NVIDIA GTC event in San Jose in March. Volvo started working with NVIDIA around eight years ago and first used the NVIDIA DRIVE Orin system-on-a-chip (SoC) technology in the updated XC90 SUV, introduced in 2022. In 2023, Volvo built a new 22,000 sq m (236,806 sq ft) software testing center in Sweden at a cost of around SEK 300 million (U.S
Items per page:
50
1 – 50 of 3779