Browse Topic: Test facilities

Items (3,740)
This paper investigates the performance of a dissipative material compared to conventional acoustic materials under conditions that simulate real-world vehicle applications with acoustic leakage. Various acoustic materials were evaluated through laboratory experiments, which included acoustic leakage in both the steel panel and the acoustic materials. Acoustic leakages commonly occur in actual vehicle conditions at pass-throughs or fastener mounting locations. The study also presents in-vehicle test results to demonstrate the effectiveness of the dissipative material in managing acoustic leakage.
Yoo, TaewookMaeda, HirotsuguSawamoto, KeisukeAnderson, BrianGan, KimTongHerdtle, Thomas
A cutting-edge EV powertrain NVH laboratory has been established at Dana Incorporated’s world headquarters in Ohio, significantly enhancing its capabilities in EV powertrain NVH development. This state-of-the-art, industry-leading facility is specifically designed to address diverse NVH requirements for EV powertrain development and validation processes. This capability substantially reduces development time for new drivetrain systems. Key features of the laboratory include a hemi-anechoic chamber, two AC asynchronous load motors, an acoustically isolated high-speed input motor, and two battery emulators capable of accommodating both low and high-voltage requirements. The NVH laboratory enables engineers to evaluate system performance and correlate results with digital twin models. This capability supports the optimization of NVH characteristics at both the system and component levels, as well as the refinement of CAE models for enhanced design precision. This paper details the design
Cheng, Ming-TeZugo, Chris
Outdoor test facilities for light vehicle exterior noise regulatory measurement need to have surfaces certified to meet ISO 10844. A recent study considered plug-in-hybrid vehicles operating purely in electric mode to compare results at two facilities, both certified. This emphasizes the pavement contribution. Overall results are generally similar, with a few differences which are discussed.
Sorenson, SteveShao, Guangxin
The recent addition of fully electric powertrains to propulsion system options has increased the relevance of sound and vibration from electric motors and gearboxes. Electrified beam axles require different metrics from conventional beam axles for noise and vibration because they have multiple sources of vibration energy, including an electric motor and a reduction gearbox. Improved metrics are also driven by the stiff suspension connections and lack of significant isolation compared to electric drive units. Blocked force is a good candidate because it can completely characterize the vibration energy transmitted into a receiver and is especially useful because it is theoretically independent of the vehicle-side structure. While the blocked force methodology is not new, its application to beam axles is relatively unexplored in the literature. This paper demonstrates a case study of blocked force measurement of an electrified beam axle with a leaf spring suspension. The axle was tested
Shaw, Matthew DGrimmer, Michael J
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
Kumar, AdityaIppili, Rajani
Platform based vehicle development is standardized at John Deere. The challenges of frontloading the integration of individual components within different platforms using predictive methods is key to shortening the development cycle. Components are individually characterized on test benches and results cannot directly be used to evaluate system performance. Invariant characterization is needed instead, which is possible through techniques such as blocked loads estimation. To evaluate the applicability of such methods, the component-based loads and vehicle in-situ operational loads need to be compared. The confident use of these methods for obtaining structural and acoustic loads enables the use of hybrid system models, enhancing early NVH response predictions. The objective of this work was to enable the confident use of test stand measurements in predictive models across various vehicle platforms. This study compares a powertrain characterization in a vehicle against a test stand to
Vesikar, Prasad BalkrishnaEdgington, JasonDrabison II, John
As the capabilities of unmanned aerial systems continue to evolve rapidly in response to the tactical and strategic necessities of the modern battlefield, the U.S. Army Aeromedical Research Laboratory is exploring a unique approach to improving their operational effectiveness – by focusing on the protection and performance of UAS operators.
Remote sensing offers a powerful tool for environmental protection and sustainable management. While many remote sensing companies use wind or solar energy to power their platforms, California-based startup Dolphin Labs is harnessing wave energy to enable sensing networks for enhanced maritime domain awareness, improving the safety and security of offshore natural resources and critical infrastructure.
A team at the Johns Hopkins Applied Physics Laboratory (APL) is creating an artificial intelligence-driven capability that automates much of the work that goes into designing, setting up, developing and running wargames. The effort holds promise to dramatically amplify the impact and value of wargames and similar exercises for the military and other government agencies.
In the field of automotive engineering, the performance and longevity of suspension bushings and powertrain mounts are critical. These components must endure fatigue loads characterized by their variable amplitude, multi-axial nature, and out-of-phase oscillations. The challenge lies in comprehensively characterizing these service loads during the early stages of vehicle production to foresee potential issues that may arise during later stages. Additional complexity in this analysis is introduced by the nonlinear hyperelastic deformation exhibited by natural rubber, a common material used in these components. To address these challenges, original equipment manufacturers (OEMs) and suppliers employ Computer-Aided Engineering (CAE) techniques for fatigue life predictions. These predictions are complemented by physical testing involving what are known as block cycles. However, the results obtained from these approaches often fail to fully represent the real loading conditions that a
Zarrin-Ghalami, TouhidDatta, Sandip
Fatigue design is invariably of prior concern for the automotive industry, no matter of the evolution of the mobility market: at first because carmakers must stay compliant with general structural integrity requirements for reliability, notably applicable to the chassis system, then due to the endless competition for lightweighting in order to mitigate product costs and/or enhance vehicle efficiency. In the past, this key performance was often tackled by basic reference load cases, making use of the simplest signal content, e.g. sinus functions, to practice constant amplitude loads on test rigs and for computations, respectively. Nowadays, full time series coming from proving ground measurements, or any corresponding virtual road load data computations, may be applied to feed complex vehicle computations for virtual assessment and complex test facilities for final approval, under variable amplitude loads. In between, the concept of load spectra (i.e. distribution of amplitudes with
Facchinetti, Matteo LucaTjhung, TanaJaffre lng, SébastienDatta, SandipHayat lng, RomainGuo, Mingchao
Two wheelers motorcycles are used for many purposes e.g. commuting from one place to another, long highway rides, racing and off-roading. Motorcycles which are used in off-road conditions require higher suspension strokes to absorb large oscillations due to terrain conditions. These motorcycles undergo jumps of varying heights and different vehicle orientations. In some of the dynamic situations front wheel may land on the ground before the rear and in other cases it may be vice versa. To make sure that the vehicle is durable enough to withstand loads in such operating conditions, vehicle drop test was developed in test lab where vehicle is dropped from predefined heights in both front & rear wheel landing conditions. Same test case is simulated in multibody dynamics to capture loads at important connections of the frame. This paper presents the correlation exercise carried out to validate MBD model and simulation process with test data captured during lab test. Accelerations at
Jain, Arvind KumarNirala, Deepak
Technologies from NASA, federal labs, and universities have found commercial applications in the medical industry. Here we highlight some of those spin-off innovations.
Companies have invested heavily to improve color in digital imaging, but wavelength is just one property of light. Polarization — how the electric field oscillates as light propagates — is also rich with information, but polarization imaging remains mostly confined to table-top laboratory settings, relying on traditional optics such as waveplates and polarizers on bulky rotational mounts.
The field of microfluidics is a key technology for the medicine of the future. Having already revolutionized the world of laboratory medicine by enabling samples to be analyzed much faster, it also plays a major role in the development of new drugs.
Continuing prior work, which established a simulation workflow for fatigue performance of elastomeric suspension bushings operating under a schedule of 6-channel (3 forces + 3 moments) road load histories, the present work validates Endurica-predicted fatigue performance against test bench results for a set of multi-channel, time-domain loading histories. The experimental fatigue testing program was conducted on a servo-hydraulic 3 axis test rig. The rig provided radial (cross-car), axial (for-aft), and torsional load inputs controlled via remote parameter control (rpc) playback of road load data acquisition signals from 11 different test track events. Bushings were tested and removed for inspection at intervals ranging from 1x to 5x of the test-equivalent vehicle life. Parts were sectioned and checked for cracks, for point of initiation and for crack length. No failure was observed for bushings operated to 1 nominal bushing lifetime. After 3 nominal bushing lifetimes, cracks were
Mars, WillBarbash, KevinWieczorek, MatthewPham, LiemBraddock, ScottSteiner, EthanStrumpfer, Scott
Novel experimental and analytical methods were developed with the objective of improving the reliability and repeatability of coast-down test results. The methods were applied to coast-down tests of a SUV and a tractor-trailer combination, for which aerodynamic wind-tunnel data were available for comparison. The rationale was to minimize the number of unknowns in the equation of motion by measuring rolling and mechanical resistances and wheel-axle moments of inertia, which was achieved using novel experimental techniques and conventional rotating-drum tests. This led to new modelling functions for the rolling and mechanical resistances in the equation of motion, which was solved by regression analysis. The resulting aerodynamic drag coefficient was closer to its wind-tunnel counterpart, and the predicted low-speed road load was closer to direct measurements, than the results obtained using conventional methods. It is anticipated that applying the novel techniques to characterize the
Tanguay, Bernardde Souza, Fenella
SAE J3230 provides Kinematic Performance Metrics for Powered Standing Scooters. These performance metrics include many tests which require specific conditions including flat pavement with a near zero slope, drivers of specific height and weights, and data acquisition equipment. In order to determine the efficacy of replicating SAE J3230 tests in a laboratory setting, a device called the Micromobility Device Thermo-Electric Dynamometer was used alongside outdoor tests to provide a comparison of scooter performance in these two testing applications. Based on the testing outcomes, it can be determined whether SAE J3230 and similar standards for other micromobility devices can be replicated in a lab-based setting, saving time, operator hazard, and providing more thorough data outputs.
Bartholomew, MeredithAndreatta, DaleZagorski, ScottHeydinger, Gary
Komatsu works with Pronto to upfit a growing fleet of haul trucks operating at Komatsu's Arizona Proving Grounds and customer sites. At Komatsu's Quarry Days 2025 event at its Arizona Proving Grounds (AZPG) outside of Tucson, dealers, customers and media got the opportunity to operate Komatsu mining and construction equipment, learn about its latest technology innovations and talk to product experts. A highlight of the event was the first public demonstration of Komatsu's HD605-10 haul truck outfitted with Pronto's Autonomous Haulage System (AHS), spotlighting the equipment maker's partnership with the AI tech startup to pilot autonomous quarry haulage operations. Several HD605-10 trucks have been equipped with AHS as part of this program currently being tested by quarry operators in Texas. The AZPG site currently has just the one automated truck.
Gehm, Ryan
For years, Proffesor Bozhi Tian’s lab has been learning how to integrate the world of electronics — rigid, metallic, bulky — with the world of the body — soft, flexible, delicate.
Researchers have developed an optical biosensor that can rapidly detect monkeypox, the virus that causes mpox. The technology could allow clinicians to diagnose the disease at the point of care rather than wait for lab results.
India has seen a significant boost in automotive research and development, specific to Vehicle Dynamics active safety systems and ADAS. To develop these systems, without excessive reliance on full working prototypes, vehicle manufacturers are relying on virtual models to better fine tune the design parameters. For this, there is a real requirement of digital twins of the proving grounds. This virtual testing surfaces will help in reducing test costs, test times and increase iteration counts, leading to fine-tuned prototype vehicle and finally a market leading product. National Automotive Test Tracks (NATRAX) is already playing a crucial role in the testing and development of these technologies, on its test tracks. Recognizing the need to assist in virtual testing for Indian automotive manufacturers, NATRAX is taking steps to develop virtual proving grounds to complement physical testing and reduce the development time. This paper targets a comparative analysis of dynamic parameters
S J, SrihariUmorya, DivyanshPatidar, DeepeshJaiswal, Manish
This research investigates the potential of salt gradient solar ponds (SGSPs) as a sustainable and effective solution for thermal energy storage. The study examines the design, construction, and performance of SGSP systems that incorporate coal cinder, comparing their performance with traditional SGSPs without coal cinder. A combination of experimental and numerical approaches is used to evaluate the thermal characteristics and energy efficiency of these systems. The findings indicate that the salt gradient solar pond with coal cinder (SGSP-CC) achieves notably higher temperatures across the Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ), with measured temperatures of 42.57°C, 56.8°C, and 69.86°C, respectively. These represent increases of 7.53%, 12.01%, and 15.49% over those in the conventional SGSP (SGSP-C). Additionally, the energy efficiency gains in the UCZ, NCZ, and LCZ for the SGSP-CC are noteworthy, with increases of 38.06%, 39.61%, and
J, Vinoth Kumar
Lubricant oil in combustion engines undergoes thermal degradation under high temperatures and forms solid deposits. These deposits, called coke, are insidious, black, and carbonaceous solids. To mitigate the problems associated with oil coking, an effective testing methodology must be developed to characterize the coke formation qualitatively and quantitatively. Previously, testing methodologies have been developed to measure coking tendency however some of the international standards such as the SAE ARP 6166 use visual inspection methods to assess coke. Such methods are unsuitable for advanced research as they are prone to error in human judgment. This paper intends to bridge this gap and discusses test methodologies that can measure Coke quantitatively and qualitatively. Coke formation has been studied using different laboratory methods such as static immersion, thin film oxidation, and dynamic spray tests to replicate the various conditions. In a static immersion test, a metal
Jeyaseelan, ThangarajaS, ShanmugasundaramBansal, LalitNegi, AshishKoka, Tirumala RaoDas, Arnab
As the competition in the new energy passenger vehicle market continues to intensify, OEMs are accelerating the deployment and replacement of new energy vehicles. Therefore, higher requirements are being put forward for the research and development cycle of vehicle models, especially in the field of CAE virtual verification. The durability simulation analysis and verification cycle of white body is the longest, becoming one of the bottlenecks restricting the compression of project research and development cycles. This paper proposes an integrated technology route of virtual simulation replacing physical verification. By applying virtual proving ground (VPG) and virtual wheel coupling bench simulation technology, the durability simulation calculation of the body in white (BIW) with “zero sample vehicle and zero test” is achieved. Pseudo damage sensitivity analysis technology is used to simplify the analysis of working conditions and support the rapid verification and improvement of the
Wang, XichengLi, XinPang, HuanSong, Bifeng
For years, Proffesor Bozhi Tian’s lab has been learning how to integrate the world of electronics — rigid, metallic, bulky — with the world of the body — soft, flexible, delicate.
During accelerations and decelerations of a race car whose engine has a wet sump, the forces generated by the vehicle’s motion cause the engine oil to vigorously shift towards the walls of the oil pan and crankcase, contributing to the phenomenon known as ‘sloshing.’ This phenomenon often leads to fluctuations in oil pressure, resulting in oil pressure surge, when the oil is pushed away from the pump pickup point. Via the logged data, the Formula UFSM FSAE Team had witnessed a recurrent lack of oil pressure in the race track during the 2023 Brazilian FSAE competition. In the AutoCross Event, the recurrence of this problem was 80% of the right corners on lateral accelerations between 0.80G and 1.30G. The average oil pressure in this condition was 0.80 bar, even reaching 0.10 bar above 5000 RPM. Therefore, it was necessary to develop a new set of baffles for the oil pan, capable of minimizing the effects of sloshing and, consequently, the oil surge. As a method of research, a test bench
Zimmermann, Natalia DiovanaJunior, Luiz Alfredo CoelhoMartins, MarioHausen, Roberto
In the fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight and cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. It also seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level real world usage pattern simulation methodology to validate and correlate the vehicle level targets for micro strain, wheel forces and displacement on suspension components like optimized Z spring, torque rods, pan hard rod & mounting brackets of newly developed air suspension for buses.
Tangade, Atul BanduBabar, SunilBankar, Milind AchyutraoMehendale, RavindraDhumal, KailasBhusari, DeepakSonawane, RavindraShinde, Saurabh
As per global emissions legislation requirements running test cycles and reporting brake specific emissions is the key requirement. Engine gaseous emissions measurement is mandatory requirement for ON Highway and OFF Highway applications for transient duty cycles during testing at test cells. To meet the stringent emission limits is one of the challenging tasks considering the nature of transient duty cycles with accurate measurement of lower emission values. Calculating accurate results is critical since there are several factors which impacts the accuracy of calculated results especially for transient tests measurement as various engine measurement parameters are involved in calculating the brake specific emission results and time alignment of the various parameters are needed. As per latest regulatory test methods (Euro VI, BS VI, EPA), there is guidance on measuring the time lag through an experiment method and accounting the same during the results calculation, however during
Patil, Rahul ChandrakantRajopadhye, SunilMudassir, MohammedMokhadkar, RahulPhadke, Abhijit NarahariBharambe, NirajDhuri, Santosh
Researchers at the Johns Hopkins Applied Physics Laboratory have developed a machine learning method that could have a huge impact on understanding how material is formed during the additive manufacturing process. John Hopkins Applied Physics Laboratory, Laurel, MD Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin. “We anticipate that this new approach will be extremely impactful in helping design and understand material formation during additive manufacturing processes, and this fits into our overarching strategy focused on accelerating materials development for national security,” said
Researchers and engineers at the U.S. Army Combat Capabilities Development Command Chemical Biological Center have developed a prototype system for decontaminating military combat vehicles. U.S. Army Combat Capabilities Development Command, Aberdeen Proving Ground, MD The U.S. Army Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC) is paving the way and helping the Army transform into a multi-domain force through its modernization and priority research efforts that are linked to the National Defense Strategy and nation's goals. CBC continues to lead in the development of innovative defense technology, including autonomous chem-bio defense solutions designed to enhance accuracy and safety to the warfighter.
For all the engineering that takes place at the Treadwell Research Park (TRP), Discount Tire's chief product and technical officer John Baldwin told SAE Media that there's actually something akin to magic in the way giga-reams of test data are converted into information non-engineers can usefully understand. TRP is where Discount Tire generates data used by the algorithms behind its Treadwell tire shopping guide. The consumer-facing Treadwell tool, available in an app, a website and in stores, provides tire shoppers with personalized, simple-to-understand recommendations that are mostly based on a five-star scale. Discount Tire and its partners have tested over 20,000 SKUs, representing 500 to 1000 different types of tires over the years, Baldwin said, including variants and updates. Testing a tire to discover it has an 8.2 rolling resistance coefficient is one thing. The trick is finding a way to explain it to someone standing in a tire shop.
Blanco, Sebastian
In recent years, engineers at ETH Zurich have developed the technology to produce liquid fuels from sunlight and air. In 2019, they demonstrated the entire thermochemical process chain under real conditions for the first time, in the middle of Zurich, on the roof of ETH Machine Laboratory. These synthetic solar fuels are carbon neutral because they release only as much CO2 during their combustion as was drawn from the air for their production. Two ETH spin-offs, Climeworks and Synhelion, are further developing and commercializing the technologies.
Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin.
U.S. Army Aberdeen Proving Ground, MD 866-570-7247
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
EG-1E Gas Turbine Test Facilities and Equipment
Rama Venkatasubramanian, Luke Osborn, Jeff Maranchi, Meiyong Himmtann, Jonathan Pierce, Richard Ung, Katy Carneal, Robert Armiger JHU Applied Physics Lab Laurel, MD
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large turbofan and turbojet engines, particularly those who are interested in infrasound phenomena.
EG-1E Gas Turbine Test Facilities and Equipment
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases.
Because they can go where humans can’t, robots are especially suited for safely working with hazardous nuclear waste. Now, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have designed and tested a remote-controlled, dual-arm telerobotics system with human-like capabilities that has the potential to revolutionize hazardous waste clean-up and holds potential for broader applications.
For the vibration durability bench test of commercial vehicle batteries, it is essential to have accurate test specifications that exhibit high robustness and reasonable acceleration characteristics. This study evaluates the impact of different battery frame systems on the vibration response of the battery body, as determined by road load spectrum test results of a commercial vehicle battery system. It also confirms the variations in the external environmental load. Utilizing the response spectrum theory, a comprehensive calculation method for the fatigue damage spectrum (FDS) of batteries is developed. The time domain direct accumulation method, frequency domain direct accumulation method, and frequency domain envelope accumulation method are all compared. Analysis of kurtosis and skewness reveals that when the load follows the super-Gaussian distribution characteristics, the time domain direct accumulation method should be used to calculate the fatigue damage spectrum to minimize
Yan, XinGuo, DongniWan, XiaofengSun, JiameiQuan, XinhuiWang, Ying
Military performance requirements for adhesives have been traditionally derived to fulfill niche defense needs in harsh operational environments with little consideration for dual-use commercial potential. U.S. Army Research Laboratory, Aberdeen, MD The term “military-grade” can have a variety of meanings that are perspective dependent. In 2014, Ford Motor Company emphasized the term heavily in advertising campaigns to garner consumer acceptance for the transition from steel to aluminum in the body of their flagship F150 model. As cited by Ford, “Engineers selected these high-strength, military-grade aluminum alloys because of the metals' unique ability to withstand tough customer demands.” From this point-of-view, military-grade implies superior performance. However, the bureaucratic and logistical barriers required for certification to military-grade acceptance levels per DoD performance requirements can also be perceived as impediments to innovation and the transition of fundamental
Unlike glass, which is infinitely recyclable, plastic recycling is challenging and expensive because of the material’s complex molecular structure designed for specific needs. New research from the lab of Giannis Mpourmpakis, Associate Professor of Chemical and Petroleum Engineering at the University of Pittsburgh, focuses on optimizing a promising technology called pyrolysis, which can chemically recycle waste plastics into more valuable chemicals.
Researchers at the Department of Energy’s Oak Ridge National Laboratory are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide.
Simulation company rFpro has already mapped over 180 digital locations around the world, including public roads, proving grounds and race circuits. But the company's latest is by far its biggest and most complicated. Matt Daley, technical director at rFpro, announced at AutoSens USA 2024 that its new Los Angeles route is an “absolutely massive, complicated model” of a 36-km (22-mile) loop that can be virtually driven in both directions. Along these digital roads - which were built off survey-grade LIDAR data with a 1 cm by 1 cm (1.1-in by 1.1 in) X-Y grid - rFpro has added over 12,000 buildings, 13,000 pieces of street infrastructure (like signs and lamps), and 40,000 pieces of vegetation. “It's a fantastic location,” Daley said. “It's a huge array of different types of challenging infrastructure for AVs. You can drive this loop with full vehicle dynamic inputs, ready to excite the suspension and, especially with AVs, shake the sensors in the correct way as you would be getting if you
Blanco, Sebastian
The last time you dropped a mug, you may have been too preoccupied to take much notice of the intricate pattern of cracks that appeared in the broken object. But capturing the formation of such patterns is the specialty of John Kolinski and his team at the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) in EPFL’s School of Engineering.
Items per page:
1 – 50 of 3740