Browse Topic: Test procedures

Items (12,686)
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
Ostberg, DavidBradford, Bill
ABSTRACT Defence R&D Canada – Suffield has undertaken a research project to investigate the practicality of an operationally quiet hybrid-electric snowmobile. This paper reports on the design of, and the testing conducted with, a prototype noise-reduced hybrid-electric snowmobile. The project goals were to ascertain the practicality of such a design and to determine the baseline achievable noise reduction prior to any optimization. The project has overcome most of the technological hurdles, producing a solid basis for future work. The vehicle performed well in military user testing
Ouellette, SimonGiesbrecht, JaredKuyek, DavidDe Broux, FrancisProulx, Olivier
ABSTRACT The Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Standard adopts many protocols that are traditionally used for developing enterprise application software deployed on general-purpose or server/workstation based computing platforms. This has led to discussions regarding the suitability of the VICTORY Standard for deployment to embedded and resource-constrained platforms. An independent software implementation of VICTORY core services was developed within the U.S Army Tank and Automotive Research, Development and Engineering Center (TARDEC) VICTORY System Integration Lab (SIL). These services were ported from a general-purpose computing platform to an embedded environment. Test procedures were developed and extensive performance tests were conducted to determine the feasibility of operating in this resource-constrained environment. This paper discusses the development procedures, implementation, test procedures, and performance results
Russell, Mark
ABSTRACT A process for donning restraints did not exist as related to Soldier gear encumbrance. For laboratory testing restraint donning was left to the discretion of the technician or test engineer setting up the Anthropomorphic Test Dummy (ATD) and resulted in increased occupant excursion. Therefore the Ground System Survivability (GSS) Blast Mitigation Team (BMT), United States Army Tank Automotive Research, Development and Engineering Center (TARDEC), Warren, MI. conducted studies which were accomplished through restraint system testing. This testing consisted of both Blast and Crash test modes. It was discovered that the ideal testing method couples the occupant to the seat and reduces the amount of restraint to gear interaction. When properly donned the occupant experiences reduced amounts of excursion vs. the improperly restrained occupant. This resulted in a procedure for which restraint systems are to be donned for test events. The routing procedure is included in this
Karwaczynski, Sebastian K.
ABSTRACT The Hybrid Electric Vehicle Fuel Economy Methodology Study was conducted by the Automotive Instrumentation Division, US Army Aberdeen Test Center (ATC), Aberdeen Proving Ground (APG), Maryland, from June 2006 through August 2009. The program objectives were to develop a test protocol that can be used to evaluate the fuel consumption characteristics of a hybrid electric vehicle regardless of weight class, battery chemistry, and/or driveline configuration, and to characterize the performance of currently developed hybrid vehicles and tactical wheeled vehicle prototypes with regard to fuel consumption and energy usage. Eleven hybrids and eight conventional vehicles were provided for the methodology study. Fuel consumption tests were conducted on a wide spectrum of terrains ranging from level paved road surfaces to hilly cross country secondary road surfaces. Test vehicles were operated over the full range of speed capabilities on each of the terrain scenarios. Results for ground
Taylor, Wayne T.
ABSTRACT This paper describes the VIPER II, the Vehicle Inertia Parameter Evaluation Rig, developed by SEA, Ltd at the request of the US Army’s Tank Automotive Research, Development and Engineering Center (TARDEC). The previous machine was the VIPER I, built in 2000. The new machine is built to measure vehicle center-of-gravity height, the pitch, roll, and yaw moments of inertia, and the roll/yaw cross product of inertia. It is made to test nearly all of the Army’s wheeled vehicles, covering a range of weights from 3000 to 100,000 lbs, up to 150 inches in width and up to 600 inches in length. Commercial vehicles could also be tested. The machine was installed in March, 2014 in the TARDEC facility in Warren, MI. The paper describes the need for such measurements, the basic features of the machine, the test procedure, and the results of early testing. The design specification for accuracy was 3% for all measurements, but the actual VIPER II accuracy is usually better than 1
Andreatta, DaleHeydinger, Gary J.Bixel, Ronald A.Sidhu, AnmolKurec, AleksanderBaseski, IgorSkorupa, Thomas
ABSTRACT The XM1124 HE HMMWV has the potential for providing this capability on the battlefield. The XM1124 is a TARDEC funded program that converts a standard HMMWV into a series, HE HMMWV. Over the past 5 years, this vehicle has been in the hands of the warfighter and has undergone a significant amount of testing and a number of upgrades. In a joint effort between TARDEC, DRS, and A123 Systems, the vehicle is being upgraded using A123 Nanophosphate™ prismatic cells to provide additional energy storage. This technology shows the potential for providing the energy and power needed for a ruggedized Military Application, while providing a safe, efficient means of energy storage and transfer that can be used in this extremely challenging environment
Marcel, MikeKnakal, TonyStifflemire, TerryLock, Bob
ABSTRACT The functionality of the next-generation Department of Defense platforms, such as the Small Unmanned Ground Vehicles (SUGV) and Small Unmanned Arial Vehicles (SUAV), requires strongly electronics-rich architectures. The reliability of these systems will be dependent on the reliability of the electronics. These electronic systems and the critical components in them can experience extremely harsh thermal and vibrations environments. Therefore, it is imperative to identify the failure mechanisms of these components through experiments and simulation based on physics-of-failure methods. One of the key challenges in recreating life-cycle vibration conditions during design and qualification testing in the lab is the re-creation of simultaneous multi-axial excitation that closely mimics what the product experiences in the field. Currently, there are two common approaches in the industry when testing a prototype or qualifying a product for multi-axial vibration environments. One
Habtour, EdMortin, DavidChoi, CholminDasgupta, Abhijit
The purpose of this document is to serve as a resource to aerospace designers who are planning to utilize Wavelength Division Multiplexed (WDM) interconnects and components. Many WDM commercial systems exist and they incorporate a number of existing, commercially supported, standards that define the critical parameters to guide the development of these systems. These standards ensure interoperability between the elements within these systems. The commercial industry is motivated to utilize these standards to minimize the amount of tailored development. However, since some of the aerospace parameters are not satisfied by the commercial devices, this document will also try to extend the commercial parameters to those that are necessary for aerospace systems. The document provides cross-references to existing or emerging optical component and subsystem standards. These parameter definitions, test methods, and procedures typically apply to telecommunications application and in some cases
AS-3 Fiber Optics and Applied Photonics Committee
This document is intended for discrete and integrated digital, wavelength division multiplexing (WDM), and analog/radio frequency (RF) photonic components developed for eventual transition to aerospace platforms. The document provides the reasons for verification of photonic device life test and packaging durability. The document focuses on pre-qualification activity at the optical component level to achieve TRL 6. The recommended tests in this document are intended to excite typical failure mechanisms encountered with photonic devices in an aerospace operating environment, and to build confidence that a technology is qualifiable during a program’s engineering and manufacturing development phase. This recommended practice is targeting components to support electrical-to-optical, optical-to-electrical, or optical-to-optical functionality. Passive optical waveguide, fiber optic cable, and connector components that are integral to a photonic package are included. Component and photonic
AS-3 Fiber Optics and Applied Photonics Committee
This document defines the steps and documentation required to perform a digital fiber optic link loss budget. This document does not specify how to design a digital fiber optic link. This document does not specify the parameters and data to use in a digital fiber optic link loss budget
AS-3 Fiber Optics and Applied Photonics Committee
This document defines performance standards which mechanical fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments
AS-3 Fiber Optics and Applied Photonics Committee
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments
AS-3 Fiber Optics and Applied Photonics Committee
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749
AC-9 Aircraft Environmental Systems Committee
A well-designed cooling system is crucial in construction machines for efficient heat dissipation from vital components, including the Radiator(RAD), Oil Cooler (OC) and Intercooler (IC). The radiator ensures optimal engine performance and longevity by maintaining a stable operating temperature. Oil Coolers preserve hydraulic system efficiency. Inter Coolers optimize engine performance through denser intake air. The robust cooling system enhances system reliability, reduces downtime, avoid overdesigned system, and increases operator safety in demanding construction environments. The size and location of heat exchangers are critical in cooling system design. Using 1D simulation tool KULI for cooling system design offers the benefits of comprehensive system simulation, optimization of thermal management, reduced development time and costs, enhanced system reliability, improved integration with other systems, and real-world testing and validation. The tool enables time and cost-effective
Dewangan, NitinKattula, NitinGoklani, Mohit
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
Cooling Systems Standards Committee
This paper discusses how a software development approach based on the Future Airborne Capability Environment (FACE) standard and COTS model-based development tools can enable modular and open software applications to be rapidly developed and deployed in a manner strongly aligned with the Army’s Ground Combat Infrastructure Architecture (GCIA) objectives. We describe the use of multiple model-based tools for data architecture, software generation, and system architecture, and describe how these tools have evolved to better support open standards. It then describes the methodology used to integrate Simulink with multiple FACE Transport Services Segment (TSS) implementations. The paper discusses the tools and techniques used, the software components involved, and the testing and validation process
Snyder, MarkMcBroom, MarkMcCane, Kirsten
The Virtual Autonomous Navigation Environment (VANE) is a set of tools that have been developed over a decade to assist autonomy developers in building autonomous systems. VANE has high-fidelity, physics-based sensors and vehicle models that interact with virtual environments built by utilizing decades of experience in characterizing environmental conditions. These models and environments are used in software-in-the-loop simulations to assist in the development and evaluation of autonomous vehicles in a cost-effective and time-sensitive manner. The software-in-the-loop simulations have been verified with data from concurrent physical testing and are used by autonomy developers to improve the safety, scalability, and cost effectiveness of testing autonomous vehicles
Holden, GarrettAspin, ZacharyMonroe, John G.McInnis, DavidDavenport, CollinPrice, PhillipHansen, Brad
Traditional live testing of autonomous ground vehicles can be augmented through use of digital twins of the test environment, the vehicle mobility models, and the vehicle sensors. These digital twins combined with the autonomous software under test allow testers to inject faults, weather, obstacles, find edge case scenarios, and collect information to understand the decision making of the autonomous software under test. With this new capability, autonomous ground vehicles can now be tested in four stages. The first stage is testing the autonomous software using digital twins. In this stage with the help of a High-Performance Computer thousands of scenarios can be run. Once issues are communicated and addressed, stage two, hardware in the loop testing can begin. Hardware in the loop uses simulators that already exist to test systems such as autonomous convoys with a virtual leader and a live follower. Stage three employs a live virtual constructive approach by using one vehicle to test
Whitt, John M.Bounker, Paul J.
This SAE Aerospace Standard (AS) defines the overall requirements applicable to oxygen flow indication as required by Airworthiness Requirements of CS/FAR 25.1449 to show that oxygen is being delivered to the dispensing equipment. Requirements of this document shall be applicable to any type of oxygen system technology and encompass “traditional” pneumatic devices, as well electric/electronic indication
A-10 Aircraft Oxygen Equipment Committee
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12
A-10 Aircraft Oxygen Equipment Committee
The advent of neck braces for the helmeted motorcycle rider has introduced a pertinent research question: To what extent do they reduce measures related to the major mechanism of neck injury in unrestrained torso accidents, i.e., compression flexion (CF)? This question requires a suitable method of testing and evaluating the measures for a load case resulting in the required mechanism. This study proposes a weighted swinging anvil striking the helmeted head of a supine HIII ATD by means of a near vertex impact with a low degree of anterior head impact eccentricity to induce CF of the neck. The applied impact was chosen for the baseline (no neck brace) so that the upper and lower neck axial forces approached injury assessment reference values (IARV). The head impact point evaluated represents those typically associated with high-energy burst fractures occurring within the first 20 ms, with possible secondary disruption of posterior ligaments. The proposed test can be used to evaluate
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
With the development of automotive intelligence and networking, the communication architecture of automotive network is evolving toward Ethernet. To improve the real-time performance and reliability of data transmission in traditional Ethernet, time-sensitive network (TSN) has become the development direction of next-generation of automotive networks. The real-time advantage of TSN is based on accurate time synchronization. Therefore, a reliable time synchronization mechanism has become one of the key technologies for the application of automotive Ethernet technology. The protocol used to achieve accurate time synchronization in TSN is IEEE 802.1AS. This protocol defines a time synchronization mechanism suitable for automotive Ethernet. Through the master clock selection algorithm, peer link delay measurement, and clock synchronization and calibration mechanism, the time of each node in the vehicle network is synchronized to a reference master clock. In addition, the protocol clearly
Guo, YiLuo, FengWang, ZitongGan, HaotianWu, MingzhiLiu, Hongqian
This SAE Standard establishes the procedures for the application of Tonne Kilometer Per Hour (TKPH) rating values for off-the-road tires; utilizing empirical data formula, it describes the procedure for evaluating and predicting off-the-road tire TKPH requirements as determined by a work cycle analysis
MTC8, Tire and Rim
This SAE Standard establishes the Tonne Kilometer Per Hour Test Procedure for off-the-road tires. This document is applicable to only those tires used on certain earthmoving machines referenced in SAE J1116
MTC8, Tire and Rim
To provide a method by which to assess the cleanliness of new hydraulic fluids. The method is applicable to new mineral and synthetic hydraulic fluids - regardless of packaging. This SAE Standard is not intended as a procedure for operating equipment
CTTC C1, Hydraulic Systems
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired and tracked asphalt pavers. Service, secondary, and parking brakes are included
OPTC2, Braking
For the vibration durability bench test of commercial vehicle batteries, it is essential to have accurate test specifications that exhibit high robustness and reasonable acceleration characteristics. This study evaluates the impact of different battery frame systems on the vibration response of the battery body, as determined by road load spectrum test results of a commercial vehicle battery system. It also confirms the variations in the external environmental load. Utilizing the response spectrum theory, a comprehensive calculation method for the fatigue damage spectrum (FDS) of batteries is developed. The time domain direct accumulation method, frequency domain direct accumulation method, and frequency domain envelope accumulation method are all compared. Analysis of kurtosis and skewness reveals that when the load follows the super-Gaussian distribution characteristics, the time domain direct accumulation method should be used to calculate the fatigue damage spectrum to minimize
Yan, XinGuo, DongniWan, XiaofengSun, JiameiQuan, XinhuiWang, Ying
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventively identify potential issues. This paper proposes an advanced test approach in the area of the overall vehicle system including the steering system and powertrain on a Road to Rig test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles. Furthermore, for the first instance, specific driving manoeuvres, including slalom driving
Kopp, LennartHarfmann, PatrickNiederberger, LucasSchwämmle, TimmKley, Markus
This standard describes the accepted methods used for preparing aerospace sealant test specimens for qualification and quality conformance or acceptance testing. AS5127/1 and AS5127/2 are to be used in conjunction with this document and the applicable AMS specifications
AMS G9 Aerospace Sealing Committee
This specification establishes the design, performance, and test requirements for hydraulic quantity measuring fuses intended to be used for hydraulic circuit protection
A-6C5 Components Committee
This specification covers a carbon steel in the form of wire supplied as coils, spools, or cut lengths (see 8.2
AMS E Carbon and Low Alloy Steels Committee
This research aims to develop an inverse controller to track target vibration signals for the application to car subsystem evaluations. In recent times, perceptive assessments of car vibration have been technically significant, particularly parts interacting with passengers in the car such as steering wheels and seats. Conventional vibration test methods make it hard to track the target vibration signals in an accurate manner without compensating for the influence of the transfer function. Hence, this paper researched the vibration tracking system based on inverse system identification and digital signal processing technologies. Specifically, the controller employed a semi-active algorithm referring to both the offline modeling of the inverse system and the adaptive control. The semi-active controller could reconstruct the target vibration signal in a more efficient and safer way. The proposed methodology was first confirmed through computation simulations using Simulink. The
Jung, GyuYeolLee, Sang KwonAn, KanghyunJang, SunyoungShin, TaejinKwak, WooseongKim, Howuk
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device specific tests and requirements can be found in applicable SAE technical reports
Test Methods and Equipment Stds Committee
RAMBHA-LP (Radio Anatomy of Moon Bound Hypersensitive Ionosphere and Atmosphere—Langmuir Probe) was one of the key scientific payloads onboard the Indian Space Research Organization’s (ISRO) Chandrayaan-3 mission. Its objectives were to estimate the lunar plasma density and its variations near the lunar surface. The probe was initially kept in a stowed condition attached to the lander. A mechanism was designed and realized for deploying the probe at a distance of 1 meter to avoid the plasma sheath effect in the moon’s plasma environment. The RAMBHA-LP deployment system consists of a metallic spherical probe with Titanium Nitride coating on its surface, a long carbon-fiber-reinforced polymer boom, a spring-assisted deployment mechanism, a dust-protection subsystem, and a hold release mechanism (HRM) based on a shape-memory alloy-based actuator. The entire RAMBHA-LP system weighed nearly 1.3 kilograms. The system had undergone many sub-system and system-level tests in ambient, dynamic
Alam, Mohammed SabirPaul, JohnsUpadhyay, Nirbhay KumarNalluveettil, Santhosh JSateesh, GollangiA, Jothiramalingam
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The trailer holding or sliding on the grade, fully loaded, or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and upgrade directions
Truck and Bus Brake Systems Committee
This SAE Recommended Practice establishes a method of evaluating the structural integrity of the parking brake system of all new trucks, buses, and combination vehicles designed for roadway use in the following classifications: TRACTOR, TRAILER, TRUCK, AND BUS: over 4500 kg (10 000 lb) GVWR
Truck and Bus Foundation Brake Committee
This SAE Aerospace Standard (AS) establishes standard requirements for aerospace sealants and adhesion promoters, which may be incorporated as part of SAE Aerospace Material Specifications (AMS) for such products. This document provides for commonality of methods and procedures for responsibility for inspection, source inspection, classification of tests, establishment of/and qualification to qualified products lists, approval, reports, resampling and retesting, packaging, and marking
AMS G9 Aerospace Sealing Committee
This document derives from the Federal Motor Vehicle Safety Standards (FMVSS) 105 and 135 vehicle test protocols as single-ended inertia-dynamometer test procedures. The test sequences enable brake output measurement, friction material effectiveness, and corner performance in a controlled and repeatable environment. This SAE Document also includes optional sections for parking brake output performance for rear brakes with hydraulic or Electric Park Brakes (EPB). It applies to brake corners from vehicles covered by the FMVSS 105 and 135 when using the appropriate brake hardware and test parameters. The FMVSS 135 applies to all passenger cars and light trucks up to 3500 kg of gross vehicle weight (GVWR). The FMVSS 105 applies to all passenger cars, multi-purpose vehicles, buses, and trucks above 3500 kg of GVWR. This document does not include testing for school bus applications or vehicles equipped with hydraulic brakes with a GVWR above 4540 kg. This document does not evaluate or
Brake Dynamometer Standards Committee
Items per page:
1 – 50 of 12686