Browse Topic: Wind tunnel tests

Items (2,184)
The objective of the paper is to enhance the aerodynamic performance of an aircraft wing using the injection–suction method. This method utilizes simulation techniques based on the Reynolds-averaged Navier–Stokes (RANS) equations with a k-epsilon turbulence model solver. The results of the simulations demonstrate a significant improvement in the wing’s performance, with a 33% increase in the stalling angle and a 10% enhancement in the lift coefficient compared to the baseline airfoil. The drag value is decreasing up to 40% depending on the angle of attack. The novelty of this proposed method was in the strategic placement of injection and suction. Injection is applied over the top airfoil at the separation point, while suction is applied at the midsection of the bottom airfoil. This configuration optimizes the aerodynamic flow over the wing, leading to improved performance metrics of lift coefficient and stall angle. This concept has potential applications in subsonic fixed-wing
Rameshbhai, Patel AnkitkumarPatidar, Vijay KumarBalaji, K.
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined. Absolute and
Jacob, Jan D.
In order to establish a high-precision digital automotive climatic wind tunnel, consider the influence of wind tunnel structure on automotive CFD simulation, study the thermal flow field characteristics of automobiles in climatic wind tunnels, and create a detailed digital model of the climatic wind tunnel using CFD method. The simulation model was established based on the actual climatic wind tunnels and vehicles, taking into account the structure of the climatic wind tunnels, the equipment in the test section, the boundary layer suction, and other interferences on the automotive. The simulation results are compared with wind speed in front and altitude direction, surface pressure of the vehicle, and underhood components’ temperature measurements in the climatic wind tunnel. Good agreement is observed confirming that the simulation model can accurately predict the thermal flow field characteristics of automobile in the climatic wind tunnel. The study shows that the integration of the
Xu, XiangZhang, YilunWang, YuanWang, DanWang, Wei
When traveling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so-thin shear layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps – the most prominent example being CLEAN-SC – to produce certain ring effects, so-called halos, around sources. In this paper, we intend to cast some light on this effect by describing our path of analyzing/circumventing these halos and how they are linked to the
Puhle, ChristofMeyer, AndyDöbler, Dirk
The mystery of how futuristic aircraft embedded engines, featuring an energy-conserving arrangement, make noise has been solved by researchers at the University of Bristol. University of Bristol, Bristol, UK A study published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane's main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don't have to work as hard to move the plane, so it burns less fuel. The research, led by Dr. Feroz Ahmed from Bristol's School of Civil, Aerospace and Design Engineering under the supervision of Professor Mahdi Azarpeyvand, utilized the University National Aeroacoustic Wind Tunnel Facility. They were able to identify distinct noise sources originating
The design of aerospace applications necessities precise predictions of aerodynamic properties, often obtained through resource-intensive numerical simulations. These simulations, though they are accurate, but are unsuitable for iterative design processes due to their computational complexity and time-consuming nature. To address this challenge, machine learning, with its data-driven approach and advanced algorithms, offers a novel and cost-effective solution for predicting airfoil characteristics with exceptional precision and speed. This study explores the application of the Back-Propagation Neural Network (BPNN), a machine learning model, to forecast critical aerodynamic coefficients such as lift and drag for airfoils. The BPNN model is fed with input parameters including the airfoils name, flow Reynolds number, and angle of attack in relation to incoming flows. Training the BPNN model is accomplished using a dataset derived from CFD simulations employing the Spalart–Allmaras
M N, LochanN, RakshithaPrasad, B K SwathiSivasubramanian, Jayahar
Unsteady pressure fluctuations in launch vehicles can induce aerodynamic instabilities, potentially resulting in vibration, structural fatigue, and even catastrophic failure. These risks undermine structural integrity and jeopardize payload delivery, threatening mission success and crew safety. Therefore, precise measurements of unsteady pressure are vital for understanding dynamic pressure distribution and flow behaviour caused by phenomena like shock waves, vortices, boundary layer interactions, and flow separation. While ground-based wind tunnel tests have conventionally provided these insights, this paper presents an on-board system designed for real-time unsteady pressure data acquisition. The system addresses the challenge of accurately resolving high-frequency pressure variations over very high base pressure values. It can be integrated into re-entry vehicles and stage recovery experiments, providing confidence in acquiring data for complex geometrical shapes. Moreover, the
Varma, RekhanshiSB, VidyaJogi, DeepakMM, NandakishorKC, Finitha
The mutual aerodynamic influence of road vehicles in close proximity is known to alter significantly the drag performance of the vehicles. This paper presents an extended analysis from a study of two open-access road-vehicle shapes (a DrivAer Notchback model and an AeroSUV Estateback model) in close lateral proximity with each other, or with other vehicle shapes. Wind-tunnel measurements were conducted for a yaw-angle range of ±10°, for lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. The results of a previous analysis of the data, which examined aerodynamic force measurements only, showed changes in drag coefficient of ±20% or more depending on the relative locations and wind conditions. In this paper, the force-coefficient results reexamined, and surface-pressure measurements are introduced to investigate the sources of the performance changes. The results suggest that the
McAuliffe, BrianBarber, Hali
MSIL (Maruti Suzuki India Limited), India’s leading carmaker, has various SUVs (Sports Utility Vehicle) in its model lineup. Traditionally, SUVs are considered to have a bold on-road presence and this bold design language often deteriorates aerodynamic drag performance. Over the years, the demand for this segment has significantly grown, whereas the CAFE (Corporate Average Fuel Economy) norms have become more stringent. To cater this growing market demand, MSIL planned for two new SUVs: (1) New BREZZA - A bolder design with similar targeted aerodynamic performance compared to its predecessor (BREZZA-2016) and (2) FRONX - A new cross-over SUV vehicle targeted best-in-class aerodynamic performance in this category at MSIL. This paper illustrates the aerodynamic development process for these two SUVs using CFD (Computational Fluid Dynamics) and full scale WTT (Wind Tunnel Test). During the initial stages, the bolder design of the New BREZZA (2022) deteriorated the aerodynamic drag of the
Dey, SukantaBajpai, DeveshKumar, ChandanRegin, Felix
In the authors’ previous work, a database was generated documenting the effects of variable blockage ratios on the drag and lift of simplified and generic automotive bodies in solid wall wind tunnels. This database displays significant differences in the responses of different vehicle architectures to changes in wind tunnel blockage. What was not examined in this previous work was the effect of wind tunnel blockage on the incremental values of geometry changes to these generic models. This is critical knowledge related to the aerodynamic development process of automotive vehicles in wind tunnels. To complement that work, the present paper examines the effects of changes in solid wall blockage on the incremental force values of geometry changes on the simplified sedan geometry known as the Pilot Fastback, the Pilot Squareback and the Ford GTU pickup. It is intended that this information will give initial insight as to the degree in which solid wall wind tunnel blockage effects can
Gleason, MarkRiegel, Eugen
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation. This
Shin, Yong-suLee, Jungsoo
Rotor-only ducted low-pressure axial fans play a crucial role in automotive thermal management of the tightly packed under-hood region. Most current scientific work concerning low-pressure axial fans investigate the aerodynamic performance of these fans while operating with uniform inlet flow conditions. This is rarely the case in real-world applications. This work aims to investigate the aerodynamic performance of low-pressure axial fans operating with upstream blockages. First, a validation study is performed in the absence of any upstream blockage. Numerical results are compared against publicly available experimental data. Steady-state, Reynolds-Averaged Navier Stokes (RANS) analysis is performed on a single-blade passage. The validation study also evaluates the choice of turbulence model and suggests the use of the k- ε turbulence model with wall functions for the best comparison against experimental data. To study the effect of upstream blockage, a generic blockage disc is
Ghosh, DebarsheeAndersson, NiklasEtemad, Sassan
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated. The results showed that for the compressor performance, the turbulence models and time-step parameters selection were within 3% error of the simulated and experimental values for
Huang, RongNi, JiminWang, QiweiYin, Qi
Common aerodynamic research models have been used in aerodynamic research throughout the years to assist with the development and correlation of new testing and numerical techniques, in addition to being excellent tools for gathering fundamental knowledge about the physics around the vehicle. The generic truck utility (GTU) was introduced by Woodiga et al. [1] in 2020 following successful adoption of the DrivAer (Heft et al. [2]) by the automotive aerodynamics community with the goal to capture the unique flow fields created by pickups and large SUVs. To date, several studies have been presented on the GTU (Howard et. al 2021 [3], Gleason, Eugen 2022 [4]), however, with the increasing prevalence of electric vehicles (EVs), the authors have created additional GTU configurations to emulate an EV-style underbody for the GTU. The existing GTU has the flexibility to independently vary the cab and box lengths, plus a rear cap with three different backlight angles to model SUVs, however, the
Howard, KevinChen, ShengDobronsky, SayanKochanek, ZacharySkinner, Shaun
Compression ignition engine-based transportation is nowadays looking for cleaner combustion solutions. Among them, ducted fuel injection (DFI) is emerging as a cutting-edge technology due to its potential to drastically curtail engine-out soot emissions. Although the DFI capability to abate soot formation has been demonstrated both in constant-volume and optical engine conditions, its optimization and understanding is still needed for its exploitation on series production engines. For this purpose, computational fluid dynamics (CFD) coupled with low-cost turbulence models, like RANS, can be a powerful tool, especially in the industrial context. However, it is often challenging to obtain reliable RANS-based CFD simulations, especially due to the high dependence of the various state-of-the-art turbulence models on the case study. In this scenario, the present work proposes a comparative analysis of the outcome of several RANS turbulence models against high-fidelity large eddy simulation
Segatori, CristianoPiano, AndreaPeiretti Paradisi, BenedettaMillo, FedericoBianco, Andrea
Meeting customer expectations along with regulatory requirements for efficiency and emissions reduction requires that even highly functional automotive products, such as 4x4s, are developed for aerodynamics efficiency. This is true of iconic vehicles, such as the Land Rover Defender. This paper discusses the redefinition of an icon: the aerodynamics development of the All-New Land Rover Defender. It outlines a strategy based on integrating simulation and test approaches: unsteady Computational Fluid Dynamics (CFD) simulation and Full-Scale Wind Tunnel testing. After outlining the integrated development model built around these toolsets, it demonstrates the natural fit between early phase work and simulation, where the focus was on optimizing vehicle volumes and proportions. The growing use of wind tunnel testing, as the design matures, is also explored, starting with full scale clay models before transitioning to a more representative bespoke test property. The overall development
Eliyas, JehanGaylard, Adrian P.
The difficulties of testing a bluff automotive body of sufficient scale to match the on-road vehicle Reynolds number in a closed wall wind tunnel has led to many approaches being taken to adjust the resulting data for the inherent interference effects. But it has been impractical if not impossible to experimentally analyze the effects that are occurring on and around the vehicle when these blockage interferences are taking place. The present study is an extension of earlier work by the author and similarly to that study uses the CFD (computational fluid dynamics) analysis of several bodies of differing configurations to examine the interference phenomena in solid wall wind tunnels and the effects that they have on the pressures, forces and force increments experienced by the vehicle model. This is accomplished by executing a series of CFD configurations with varying sized cross sections from 0.2% to 16% blockage enabling an approximation of free air conditions as a reference. The
Gleason, MarkRiegel, Eugen
This article analyzes the aerodynamic performance of Class 8 tractor-trailer geometries made available by the Environmental Protection Agency (EPA) using CFD simulation. Large Eddy Simulations (LES) were carried out with the CFD package, Simerics-MP+. A Sleeper tractor and a 53-foot box trailer configuration was considered. The configuration featured a detailed underbody, an open-grille under-hood engine compartment, mirrors, and the radiator and condenser. Multiple tractor-trailer variants were studied by adding aerodynamic surfaces to the baseline geometries. These include tank fairings and side extenders for the cabins, two types of trailer skirts, and a trailer tail. The effect of these devices towards reducing the overall vehicle drag was investigated. Mesh generation was carried out directly on the given geometry, without any surface modifications, using Simerics’ Binary-Tree unstructured mesher. Subsequently, simulations were setup considering realistic driving conditions with
Varghese, JoelWu, YifengJorda Juanos, AlbertSaha, RohitDhar, Sujan
A new methodology is discussed for the development and implementation of a wind-averaged drag analysis technique for the development of aerodynamic-driven surfaces for use in the automotive industry. Current methods of vehicle design focus on reducing the straight-line coefficient of drag using wind tunnel testing and computational fluid dynamics and quote this value as the vehicle's aerodynamic performance. It is suggested to transition passenger vehicle aerodynamic design to the methodology employed for Class-A vehicles and design with a focus on reducing the wind-averaged drag value. Based on the methods used in J1252, the wind averaged drag calculation method utilizes the average wind speed a vehicle will experience in the continental United States and assumes an equal probability of the wind coming from all directions relative to the vehicle. Wind-averaged drag will optimize vehicle design for real-world improvements of vehicle efficiency. The wind average drag developed herein
Kaminski, MeghanBorton, Zackery
In vehicle development, reducing noise is a major concern to ensure passenger comfort. As electric vehicles become more common and engine and vibration noises improve, the aerodynamic noise generated around the vehicle becomes relatively more noticeable. In particular, the fluctuating wind noise, which is affected by turbulence in the atmosphere, gusts of wind, and wake caused by the vehicle in front, can make passengers feel uncomfortable. However, the cause of the fluctuating wind noise has not been fully understood, and a solution has not yet been found. The reason for this is that fluctuating wind noise cannot be quantitatively evaluated using common noise evaluation methods such as FFT and STFT. In addition, previous studies have relied on road tests, which do not provide reproducible conditions due to changing atmospheric conditions. To address this issue, automobile manufacturers are developing devices to generate turbulence in wind tunnels. However, in wind tunnels, it is
Tajima, AtsushiIkeda, JunNakasato, KosukeKamiwaki, TakahiroWakamatsu, JunichiOshima, MunehikoLi, ChungGangTsubokura, Makoto
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred. Varying the tyre pattern changes
Josefsson, ErikUrquhart, MagnusSebben, Simone
During the pure electric vehicle high speed cruise driving condition, the unsteady air flow in the chassis cavity is susceptible to self-sustaining oscillations phenomenon. And the aerodynamic oscillation excitation could be coupled with the cabin interior acoustic mode through the body pressure relief vent, the low frequency booming noise may occur and seriously reduces the driving comfort. This paper systematically introduces the characteristics identification and the troubleshooting process of the low frequency aerodynamic noise case. Firstly, combined with the characteristics of the subjective jury evaluation and objective measurement, the acoustic wind tunnel test restores the cabin booming phenomenon. The specific test procedure is proposed to separate the noise excitation source. Secondly, according to the road test results, it is inferenced that the formation mechanism of low frequency noise is the self- sustaining oscillation with the underbody shedding vortex feedback
Shen, LongZhang, JunGu, Perry
In the field of vehicle aerodynamic simulation, Reynold Averaged Navier-Stokes (RANS) model is widely used due to its high efficiency. However, it has some limitations in capturing complex flow features and simulating large separated flows. In order to improve the computational accuracy within a suitable cost, the Field Inversion and Machine Learning (FIML) method, based on a data-driven approach, has received increasing attention in recent years. In this paper, the optimal coefficients of the Generalized k-ω (GEKO) model are firstly obtained by the discrete adjoint method of FIML, utilizing the results of wind tunnel experiments. Then, the mapping relationship between the flow field characteristics and the optimal coefficients is established by a neural network to augment the turbulence model. On the basis of that, the study further investigates the effects of hyperparameters such as epoch, batch size, activation function, and learning rate on the accuracy of the augmented GEKO model
Tao, YueXia, ChaoCai, JianfengZhou, HuaShi, FanglinYang, Zhigang
Planning for charging in transport missions is vital when commercial long-haul vehicles are to be electrified. In this planning, accurate range prediction is essential so the trucks reach their destinations as planned. The rolling resistance significantly influences truck energy consumption, often considered a simple constant or a function of vehicle speed only. This is, however, a gross simplification, especially as the tire temperature has a significant impact. At 80 km/h, a cold tire can have three times higher rolling resistance than a warm tire. A temperature-dependent rolling resistance model is proposed. The model is based on thermal networks for the temperature at four places around the tire. The model is tuned and validated using rolling resistance, tire shoulder, and tire apex temperature measurements with a truck in a climate wind tunnel with ambient temperatures ranging from -30 to 25 °C at an 80 km/h constant speed. Dynamic tire simulations were conducted using a heat
Lind Jonsson, OskarEriksson, LarsHolmbom, Robin
Emissions and fuel economy certification testing for vehicles is carried out on a chassis dynamometer using standard test procedures. The vehicle coastdown method (SAE J2263) used to experimentally measure the road load of a vehicle for certification testing is a time-consuming procedure considering the high number of distinct variants of a vehicle family produced by an automaker today. Moreover, test-to-test repeatability is compromised by environmental conditions: wind, pressure, temperature, track surface condition, etc., while vehicle shape, driveline type, transmission type, etc. are some factors that lead to vehicle-to-vehicle variation. Controlled lab tests are employed to determine individual road load components: tire rolling resistance (SAE J2452), aerodynamic drag (wind tunnels), and driveline parasitic loss (dynamometer in a driveline friction measurement lab). These individual components are added to obtain a road load model to be applied on a chassis dynamometer. However
Singh, YuvrajJayakumar, AdithyaRizzoni, Giorgio
This paper presents calculations of external car aerodynamics by using the Partial-Averaged Navier-Stokes (PANS) variable resolution model in conjunction with the Finite Volume (FV) immersed-boundary method. The work presented here is the continuation of the study reported in Basara et al. [1, 2]. In that work, it was shown that the same accuracy of predicted aerodynamic forces could be achieved for both types of computational meshes, the standard body-fitted mesh and the immersed boundary (IB) Cartesian mesh, by using the Reynolds-Averaged Navier-Stokes (RANS) k-ζ-f model as well as by using the Partially-Averaged Navier-Stokes (PANS) method. Based on the accuracy achieved, Basara et al. [2] concluded that further work could focus on evaluating the turbulence modelling on the immersed boundary meshes only. Furthermore, due to all the known shortcomings of the steady-state approach, in this work we only deal with the Partially Averaged Navier-Stokes (PANS), which belongs to the hybrid
Basara, BranislavPavlovic, ZoranSaric, Sanjin
This paper presents the application of statistical process control (SPC) methods to Windshear, a 180-mph motorsports and automotive wind tunnel equipped with a wide-belt rolling road system. The SPC approach captures the complete variability of the facility and offers useful process performance metrics that are based on a sound statistical framework. Traditional control charts are explored, emphasizing the uniqueness of variability experienced in wind tunnels which includes significant, unexplained short-term and long-term variation compared to typical manufacturing processes. This unique variation is elegantly captured by the three-way control chart, which is applied to estimate the complete process reproducibility with different levels of repeatability of vehicle drag coefficient. The sensitivity of three-way control charts is explored including the evaluation of an alternate group assignment within the same dataset. A practical example is provided evaluating secondary boundary layer
Bringhurst, KatlynnWalter, JoelBest, Scott
The China Automotive Technology and Research Center (CATARC) has completed two new wind tunnels at its test centre in Tianjin, China: an aerodynamic/aeroacoustic wind tunnel (AAWT), and a climatic wind tunnel (CWT). The AAWT incorporates design features to provide both a very low fan power requirement and a very low background noise putting it amongst the quietest in the automotive world. These features are also combined with high flow quality, a full boundary layer control system with a 5-belt rolling road, an automated traversing system, and a complete acoustic measurement system including a 3-sided microphone array. The CWT, located in the same building as the AAWT, has a flexible nozzle to deliver 250 km/h with an 8.25 m2 nozzle, and 130 km/h with a 13.2 m2 nozzle. The temperature range of the CWT is -40 °C to +60 °C with a controlled humidity range of 5% to 95%. Additional integrated systems include a variable angle solar simulator array, and a rain and snow spray system. This
Waudby-Smith, PeterBender, TrevorSooriyakumaran, ChristopherZhang, YilunWang, HaiyangZhao, FengFan, GuangjunSun, JinhongLiu, Xuelong
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it. Subsequently, it delves into a diverse array of test techniques, encompassing aerodynamic force measurements, ventilation drag assessments, flow field analyses, and surface
Wittmeier, FelixBianco, AntonelloBratby, JamesHoward, KevinRoper, ThomasSenft, Victor
This ARP describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity analyses. Icing wind tunnel tests. Flight tests. CFD and other numerical analyses. This ARP also describes: The history of evaluation of the aerodynamic effects of fluids. The effects of fluids on aircraft aerodynamics. The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900. Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies, which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects, and Appendix F considers the modeling of fluid removal from
G-12ADF Aircraft Deicing Fluids
Protecting against atmospheric icing conditions is critical for the safety of aircraft during flight. Sensors and probes are often used to indicate the presence of icing conditions, enabling the aircraft to engage their ice protection systems and exit the icing cloud. Supercooled large drop icing conditions, which are defined in Appendix O of 14 CFR Part 25, pose additional aircraft certification challenges and requirements as compared to conventional icing conditions, which are defined in Appendix C of 14 CFR Part 25. For this reason, developing sensors that can not only indicate the presence of ice, but can also differentiate between Appendix O and Appendix C icing conditions, is of particular interest to the aviation industry and to federal agencies. Developing detectors capable of meeting this challenge is the focus of SENS4ICE, a European Union sponsored project. While participating in the SENS4ICE Project, Collins Aerospace has developed an ice detection and differentiation
Hamman, MatthewGelao, GiancarloRidouane, El HassanChabukswar, RohanBotura, Galdemir
The improvement of vehicle soiling behavior has increasing interest over the past few years not only to satisfy customer requirements and ensure a good visibility of the surrounding traffic but also for autonomous vehicles, for which soiling investigation and improvement are even more important due to the demands of the cleanliness and induced functionality of the corresponding sensors. The main task is the improvement of the soiling behavior, i.e., reduction or even prevention of soiling of specific surfaces, for example, windows, mirrors, and sensors. This is mostly done in late stages of vehicle development and performed by experiments, e.g., wind tunnel tests, which are supplemented by simulation at an early development stage. Among other sources, the foreign soiling on the side mirror and the side window depend on the droplet detaching from the side mirror housing. That is why a good understanding of the droplet formation process and the resulting droplet diameters behind the side
Kille, LukasStrohbücker, VeithNiesner, ReinholdSommer, OliverWozniak, Günter
The high-performance and motorsport vehicle sectors are pushing the performance frontiers of aerodynamically efficient vehicles. Well-balanced use of accurate and consistent numerical simulation tools in combination with wind tunnel experiments is crucial for cost-effective aerodynamic research and development processes. Therefore, this study assesses the simulation performance of four Reynolds-averaged Navier–Stokes (RANS) turbulence models in relation to experimental and high-fidelity delayed detached eddy simulation (DDES) data for the aerodynamic assessment of a high-performance variant of the DrivAer model (DrivAer hp-F). The influences of predominant wind tunnel conditions on the vehicle’s aerodynamic force coefficients and flow field are also investigated. Additionally, a novel CFD-based blockage correction method is introduced and applied to evaluate the accuracy of conventional blockage correction methods. Among the RANS models, the k-ω SST model exhibited notable relative
Rijns, StevenTeschner, Tom-RobinBlackburn, KimBrighton, James
Knowing the tire pressure during driving is essential since it affects multiple tire properties such as rolling resistance, uneven wear, and how prone the tire is to tire bursts. Tire temperature and cavity pressure are closely tied to each other; a change in tire temperature will cause an alteration in tire cavity pressure. This article gives insights into which tire temperature measurement position is representative enough to estimate pressure changes inside the tire, and whether the pressure changes can be assumed to be nearly isochoric. Climate wind tunnel and road measurements were conducted where tire pressure and temperature at the tire inner liner, the tire shoulder, and the tread surface were monitored. The measurements show that tires do not have a uniform temperature distribution. The ideal gas law is used to estimate the tire pressure from the measured temperatures. The results indicate that of the compared temperature points, the inner liner temperature is the most
Hyttinen, JukkaUssner, MatthiasÖsterlöf, RickardJerrelind, JennyDrugge, Lars
With increasing interest in the urban air traffic market for electric Vertical Take-Off and Landing (eVTOL) vehicles, there are opportunities to enhance flight performance through new technologies and control methods. One such concept is the propulsion wing, which incorporates a cross-flow fan (CFF) at the wing's trailing edge to drive the vehicle's flight. This article presents a wind tunnel experiment aimed at analyzing the aerodynamic characteristics of the propulsive wing for the novel eVTOL vehicle. The experiment encompasses variations in angels of attack, free stream velocities and fan rotational speeds. The result verifies that cross-flow fans offer unique flow control capabilities, achieving a tested maximum lift coefficient exceeding 7.6. Since flow from the suction surface is ingested into the CFF, the flow separation at large angle of attack (up to 40°) is effectively eliminated. The aerodynamic performance of the propulsive wing depends on the advance ratio and angle of
Wang, JunjieZhang, XinfengHan, Yue
The aerodynamic performance of automobile especially drag and lift was largely determined by the wake flow, which is three-dimensional, unsteady, and turbulent. The styling of the rear back of the vehicle body has much influence on the wake flow structure, typically including squareback, notchback, and hatchback. Bi-stability of the wake flow of vehicle body makes the aerodynamic force oscillating, which affects the energy consumption and driving stability. This article investigates the bi-stability of wake flow of a hatchback SUV in full-scale automotive wind tunnel. Both aerodynamic force and surface pressure on the rear back of the vehicle were measured. Time series of aerodynamic force and pressure footprint are used to confirm the existence of bi-stability. The effects of some sensitive factors on the bi-stability have been analyzed. The results show that for the given condition with bi-stability phenomenon existing, the change of drag and lift can be 6.36% and 111%, respectively
Yuan, HaidongWang, HaiyangFan, Guangjun
Ice prediction capabilities for Unmanned Aerial Systems (UAS) is of growing interest as UAS designs and applications become more diverse. This report summarizes the current state-of-the-art in modeling aircraft icing within a computational framework as well as a recent U.S. Army DEVCOM AvMC effort to evaluate ice prediction models for current use and future integration into the Computational Research and Engineering Acquisition Tools and Environments (CREATE) Air Vehicle (AV) framework. U.S. Army Combat Capabilities Development Command, Redstone Arsenal, Alabama Historically, smaller Unmanned Aerial Systems (UAS), such as Class 2 RQ-1B Raven and Class 3 RQ-7Bv2 Shadow, have been restricted to not be approved to fly in icing conditions under the assumption that any ice accretion would cause an unacceptable risk of loss of the aircraft. However, interest exists in better understanding potential icing accretion on UAS to determine if less extreme icing conditions could result in only
Historically, smaller Unmanned Aerial Systems (UAS), such as Class 2 RQ-1B Raven and Class 3 RQ-7Bv2 Shadow, have been restricted to not be approved to fly in icing conditions under the assumption that any ice accretion would cause an unacceptable risk of loss of the aircraft. However, interest exists in better understanding potential icing accretion on UAS to determine if less extreme icing conditions could result in only partial degradation and not total loss of the vehicle for the purpose of expanding approved flight envelopes. Icing accretion can be tested during a flight test, which is considered unacceptable due to lack of controlled conditions and risk to the UAS or in a controlled experiment, by using wind tunnel testing to evaluate a single icing condition. Cryogenic wind tunnel tests, such as those conducted at the National Aeronautical and Space Administration (NASA) Glenn Icing Research Tunnel (IRT), Cleveland, OH, as shown in figures 1 and 2, are prohibitively expensive
In recent years, the number of electric vehicles (EVs) has grown rapidly, as well as public interest in them. However, the lack of sufficient range is one of the most common complaints about these vehicles, which is particularly problematic for people with long daily commutes. Thus, this article proposed a solution to this problem by installing micro wind turbines (MWTs) on EVs as a range extender. The turbines will generate electricity by converting the kinetic energy of the air flowing through the MWT into mechanical energy, which can have a reasonable effect on the vehicle aerodynamics. The article uses mathematical modelling and numerical analysis. Regarding the modelling, a detailed EV model in MATLAB/SIMULINK was developed to analyze the EV performance using various driving cycles in real time. In terms of numerical analysis, a detailed computational fluid dynamics (CFD) model has been implemented on a sample EV (Kia Soul) and an MWT using the Moving Reference Frame (MRF) method
Ebaid, MunzerShahin, Zin Al Abdin A. E.Alshawabkeh, Mohammad M. D.
Many important physical problems in aero-sciences involve unsteady, separated flows. The ability to measure and compute these flows has been a persistent challenge. Unsteady aerodynamics leads to unsteady loads which ultimately decrease system performance and shortens the system lifetime. Currently, dynamic pressure transducers are used to study unsteady flow in wind tunnel tests, which are expensive and do not provide accurate integrated unsteady loads on a wind tunnel model
Since the steady-state computational fluid dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS) turbulence models offer low-cost and sensible accuracy, they are frequently utilized for bluff bodies’ external aerodynamics investigations (e.g., upwind, crosswind, and shape optimization). However, no firm certainty is made regarding the best model in terms of accuracy and cost. Based on cost and accuracy aspects, four RANS turbulence models were studied, which are Spalart–Allmaras, realizable k-ε, RNG k-ε, and SST k-ω. Ahmed body with a 25° slant angle benchmark case was introduced for this investigation. Two grids were generated to satisfy the near-wall treatment of each turbulence model. All grid settings were proposed and discussed in detail. Fluid-structure analysis was performed on five different planes. Regarding flow field prediction, realizable k-ε and renormalization group (RNG) k-ε models demonstrated a remarkable consistency with experimental data, while Menter’s shear stress
Kanagalingam, SivamoorthyWilliam, Youhanna E.
Brazil is significant grain (soy, corn, beans and rice) producer in the planet and the road transportation is needed even when rail and maritime mode is used. There are opportunities to improve the grain road transportation efficiency. This paper presents one opportunity which is the aerodynamic drag reduction and therefore the fuel and energy consumption reduction on grain road transportation. This paper will discuss some alternatives to reduce aerodynamic drag on such application considering Brazilian market regulation which has a low limit for front axle load (lower than European regulation for instance) and limit the total composition length. As an example of some alternatives to reduce drag there is the frontal area reduction and trailer to cab gap reduction. Some of those alternatives were implemented on a concept truck briefly presented on this paper, which was tested on a real application, this paper will illustrate some of those alternatives implemented. Also, this paper
Zarpelon, Fernando LuisBalcewicz, LuizFormolo, LucasGuarda, Ricardo
The thermal operational safety (TOS) of a vehicle ensures that no component exceeds its critical temperature during vehicle operation. To enhance the current TOS validation process, a data-driven approach is proposed to predict maximum component temperatures of a new vehicle project by leveraging the historical thermal wind tunnel data from previous vehicle projects. The approach intends to support engineers with temperature predictions in the early phase and reduce the number of wind tunnel tests in the late phase of the TOS validation process. In the early phase, all measurements of the new vehicle project are predicted. In the late phase, a percentage of measurements with the test vehicle used for the model training and the remaining tests are predicted with the trained ML model. In a first step, data from all wind tunnel tests is extracted into a joint dataset together with metadata about the vehicle and the executed load case. With the extracted dataset, different Machine Learning
Freytag, LukasEnke, WolframRottengruber, Hermann
In the scope of development or certification processes for the flight under known icing conditions, aircraft have to be tested in icing wind tunnels under relevant conditions. The documentation of these tests has to be performed at a high level of detail. The generated data is used to prove the functionality of the systems, to develop new systems and for scientific purposes, for example the development or validation of numerical tools for ice accretion simulation. One way of documenting the resulting ice geometry is the application of an optical 3D scanning or reconstruction method. This work investigates and reviews optical methods for three-dimensional reconstructions of objects and the application of these methods in ice accretion documentation with respect to their potential of time resolved measurement. Laboratory tests are performed for time-of flight reconstruction of ice geometries and the application of optical photogrammetry with and without multi-light approach. The results
Neubauer, ThomasKozomara, DavidPuffing, ReinhardTeufl, Luca
The Ice Crystal Environment Modular Axial Compressor Rig (ICE-MACR) was developed by the National Research Council of Canada (NRC) with support from the Federal Aviation Administration (FAA) in response to the need to understand ice crystal icing of aircraft engines at high altitudes. Icing wind tunnel tests on static hardware lack some of the real physics of turbofan compressor such as centrifuging and fracturing of particles, and melting of particles due to compression heating, heat transfer through a casing wall, as well as annular geometry effects. Since the commissioning of ICE-MACR in 2019 new insights have been gained on the physics behind ice crystal icing of turbofan engines. Additionally, the results of various test campaigns have been used to validate engine ice accretion numerical codes. This paper summarizes the key insights into ICI of turbofans gained from the ICE-MACR to date
Neuteboom, MartinDumont, ChristopherMason, JeanneChalmers, JenniferChow, Philip
The National Research Council Altitude Icing Wind Tunnel liquid water content calibrations have historically relied on a 2.4 mm diameter rotating cylinder for drop sizes up to 50 μm and a 6.2 mm diameter rotating cylinder for drop sizes from 50 μm to 200 μm. This study compares the facility calibration, derived from rotating cylinder measurements, to water content measurements from the Science Engineering Associates Multi-Element Probe and the National Research Council Compact Iso-Kinetic Probe over a range of airspeeds and drop sizes. The data show where the rotating cylinder measurements may start to underestimate the liquid water content (LWC), possibly due to splashing at higher airspeeds and drop sizes. The data also show that the LWC read by the Multi-Element Probe is higher than that provided by the rotating cylinders, and the Compact Iso-Kinetic Probe (CIKP) reads higher than both other methods. These trends are consistent with instrumentation comparison data from other icing
Clark, CatherineOrchard, David
Super-cooled large drops present serious threats to aviation safety and as a result, the problem has been addressed by the FAA with the additional icing certification requirement. SLD clouds often consist of bi-modal drop size spectra leading to great challenges when it comes to simulating and characterizing these conditions in situ and in icing wind tunnels. Legacy instrumentation for measuring drop size distributions and liquid water content has been challenged under these conditions. In this report, a high-resolution particle imaging instrument is described; this instrument addresses the need for measuring drop size distributions and liquid water content over a wide range of drop sizes (10 to 2500 μm or larger). A high-throughput megapixel digital camera is used to record shadow images of the particles. High-quality illumination of the particle field is provided with high-power LED illumination with driving electronics designed to provide pulse durations as short as 25ns with
Bachalo, William DonManin, JulienPayne, GregoryFidrich, MichaelIbrahim, Khalid
The simulation of natural-like snow conditions in a controlled environment such as an Icing Wind Tunnel (IWT) is a key component for safe, efficient and cost-effective design and certification of future aircraft and rotorcraft. Current capabilities do not sufficiently match the properties of natural snow, especially in terms of size and morphology. Within the Horizon 2020 project ICE GENESIS, a new technology has been developed aiming to better recreate natural snowflakes. The focus of the newly developed system was the generation of falling snow in a temperature range of +1°C to -4°C. Ground measurements and flight test campaigns have been performed to better characterize these conditions and provide requirements for wind tunnel facilities. The calibration results of the new snow generation system as well as snow accretion data on a NACA0012 test article with a chord length of 0.377 m are presented. The influence of different snow conditions on the accretion rate and the overall shape
Breitfuß, WolfgangFerschitz, HermannSchwarzenboeck, AlfonsHeller, RomyPervier, HugoDupuy, RegisJaffeux, LouisBerne, Alexis
Large icing wind tunnels typically have sufficient distance for drops from spray nozzles to spread evenly producing small spatial variations of cloud properties at the wind tunnel test section. As the size of a wind tunnel gets smaller, producing clouds with uniform properties becomes challenging because of 1) the reduced distance from the spray bar system to the test section and 2) the spray characteristics of most air-assisted nozzles used for spray generation. For this paper, discrete-phase simulations using FLUENT were used to explore droplet collection on a partial NACA 0012 model at different angles of attack in the Baylor Liquid Film and Cloud Tunnel (LFACT). McClain et al. (2022) used the LFACT to validate a new microwave sensor system to measure collection efficiency variations along the surface of a wind tunnel model. However, the sensors used in the investigation were essentially the same size as the measured non-uniform cloud features in the wind tunnel test section. A
McClain, StephenAhmed, Shakib
Items per page:
1 – 50 of 2184