Browse Topic: Road tests

Items (960)
As countries around the world attach more importance to carbon emissions and more stringent requirements are put forward for vehicle emissions, hybrid vehicles, which can significantly reduce emissions compared with traditional fuel vehicles, as well as low-viscosity lubricating oil, have become significant trends in the industry. In this article, a total of nine vehicles of 48 V mild-hybrid models and full-hybrid models are tested. Using three kinds of low-viscosity lubricating oil and driving a total of 120,000 km in environments with low temperature, high humidity, high temperature, or high altitude, the engines are then disassembled and scored. The effects of the four extreme environments on the engine starts–stops, ignition advance angle, engine power, state of charge (SOC), acceleration performance, and oil consumption characteristics of hybrid vehicles are studied; the oxidation characteristics and iron content change characteristics of low-viscosity lubricating oil are analyzed
Zhu, GezhengtingHu, HuaPan, JinchongLuo, YitaoHua, LunJiao, YanJiang, JiandiShao, HengXu, ZhengxinYan, JingfengWei, GuangyuanZhang, Heng
In this paper, a single-chip based design for an automotive 4D millimeter -wave radar is proposed. Compared to conventional 3D millimeter-wave radar, this innovative scheme features a MIMO antenna array and advanced waveform design, significantly enhancing the radar's elevation measurement capabilities. The maximum measurement error is approximately ±0.3° for azimuth within ±50° and about ±0.4° for elevation within ±15°. Extensive road testing had demonstrated that the designed radar can routinely measure targets such as vehicles, pedestrians, and bicycles, while also accurately detecting additional objects like overpasses and guide signs. The cost of this radar is comparable to that of traditional automotive 3D millimeter-wave radar, and it has been successfully integrated into a forward radar system for a specific vehicle model
Cai, YongjunZhang, XianshengBai, JieShen, Hui-LiangRao, Bing
Torsional vibration generated during operation of commercial vehicles can negatively affect the life of driveline components, including the transmission, driveshafts, and rear axle. Undesirable vibrations typically stem from off-specification parts, or excitation at one or more system resonant frequencies. The solution for the former involves getting the system components within specification. As for the latter, the solution involves avoiding excitation at resonance, or modifying the parameters to move the system’s resonant frequencies outside the range of operation through component changes that modify one, or more, component inertia, stiffness, or damping characteristics. One goal of the effort described in this article is to propose, and experimentally demonstrate, a physics-based gear-shifting algorithm that prevents excitation of the system’s resonant frequency if it lies in the vehicle’s range of operation. To guide that effort, analysis was conducted with a numerical simulation
Dhamankar, ShvetaAli, JunaidParshall, EvanShaver, GregoryEvans, JohnBajaj, Anil K.
Accurate estimation of vehicle energy consumption plays an important role in developing advanced energy-saving connected automated vehicle technologies such as Eco Approach and Departure, PHEV mode blending, and Eco-route planning. The present study developed a reduced-order energy model with second-order response surfaces and torque estimation to estimate the energy consumption while just relying on the drive cycle information. The model is developed for fully electric Chevrolet Bolt using chassis dynamometer data. The dyno test data encompasses the various EPA test cycles, real-world, and aggressive maneuvers to capture most powertrain operating conditions. The developed model predicts energy consumption using vehicle speed and road-grade inputs for a drive cycle. The accuracy of the model is validated by comparing the prediction results against track and road test data. The developed model was able to accurately predict the energy consumption for track drive cycles within the error
Goyal, VasuDudekula, Ahammad BashaStutenberg, KevinRobinette, DarrellOvist, GrantNaber, Jeffery
This research aims at understanding how the driver interacts with the steering wheel, in order to detect driving strategies. Such driving strategies will allow in the future to derive accurate holistic driver models for enhancing both safety and comfort of vehicles. The use of an original instrumented steering wheel (ISW) allows to measure at each hand, three forces, three moments, and the grip force. Experiments have been performed with 10 nonprofessional drivers in a high-end dynamic driving simulator. Three aspects of driving strategy were analyzed, namely the amplitudes of the forces and moments applied to the steering wheel, the correlations among the different signals of forces and moments, and the order of activation of the forces and moments. The results obtained on a road test have been compared with the ones coming from a driving simulator, with satisfactory results. Two different strategies for actuating the steering wheel have been identified. In the first strategy, the
Previati, GiorgioMastinu, GianpieroGobbi, Massimiliano
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment. For this purpose, an ASAM Open Simulation Interface (OSI
Hofrichter, KristofLinnhoff, ClemensElster, LukasPeters, Steven
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model. The open-loop architecture on steering rack level shows adequate results and generate a nearly delay-free
Dieing, AndreasReuss, Hans-ChristianSchlüter, Marco
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability. Simulation and on-road testing results indicated that this control strategy effectively monitored the state of the ATV and
Hong, HanchiWang, Kuand’Apolito, LuigiQuan, KangningYao, Xu
In order to efficiently predict and investigate a vehicle’s vertical dynamics, it is necessary to consider the suspension component properties holistically. Although the effects of suspension stiffness and damping characteristics on vertical dynamics are widely understood, the impact of suspension friction in various driving scenarios has rarely been studied in both simulation and road tests for several decades. The present study addresses this issue by performing driving tests using a special device that allows a modification of the shock absorber or damper friction, and thus the suspension friction to be modified independently of other suspension parameters. Initially, its correct functioning is verified on a shock absorber test rig. A calibration and application routine is established in order to assign definite additional friction forces at high reproducibility levels. The device is equipped in a medium-class passenger vehicle, which is driven on various irregular road sections as
Deubel, ClemensSchneider, Scott JarodProkop, Günther
By installing an automated mechanical transmission (AMT) on heavy-duty vehicles and developing a reasonable shift strategy, it can reduce driver fatigue and eliminate technical differences among drivers, improving vehicle performance. However, after detaching from the experience of good drivers, the current shifting strategy is limited to the vehicle state at the current moment, and cannot make predictive judgment of the road environment ahead, and problems such as cyclic shifting will occur due to insufficient power when driving on the ramp. To improve the adaptability of heavy-duty truck shift strategy to dynamic driving environments, this paper first analyzes the shortcomings of existing traditional heavy-duty truck shift strategies on slopes, and develops a comprehensive performance shift strategy incorporating slope factors. Based on this, forward-looking information is introduced to propose a predictive intelligent shift strategy that balances power and economy. The vehicle power
Zhang, JunfengChen, DaxinWang, Gaoxiang
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration. A multi-body dynamic model of the semi-trailer is established for
Tang, HaoShangguan, Wen-BinKang, YingziZheng, Jing-YuanLan, Wen-Biao
Emissions and fuel economy certification testing for vehicles is carried out on a chassis dynamometer using standard test procedures. The vehicle coastdown method (SAE J2263) used to experimentally measure the road load of a vehicle for certification testing is a time-consuming procedure considering the high number of distinct variants of a vehicle family produced by an automaker today. Moreover, test-to-test repeatability is compromised by environmental conditions: wind, pressure, temperature, track surface condition, etc., while vehicle shape, driveline type, transmission type, etc. are some factors that lead to vehicle-to-vehicle variation. Controlled lab tests are employed to determine individual road load components: tire rolling resistance (SAE J2452), aerodynamic drag (wind tunnels), and driveline parasitic loss (dynamometer in a driveline friction measurement lab). These individual components are added to obtain a road load model to be applied on a chassis dynamometer. However
Singh, YuvrajJayakumar, AdithyaRizzoni, Giorgio
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed. Subsequently, a multi-body dynamics model of the commercial vehicle was established using ADAMS software, and the effectiveness of the model in predicting brake
Huang, DehuiZhang, KaiSun, JichaoLi, WenboPei, Kaikun
During the pure electric vehicle high speed cruise driving condition, the unsteady air flow in the chassis cavity is susceptible to self-sustaining oscillations phenomenon. And the aerodynamic oscillation excitation could be coupled with the cabin interior acoustic mode through the body pressure relief vent, the low frequency booming noise may occur and seriously reduces the driving comfort. This paper systematically introduces the characteristics identification and the troubleshooting process of the low frequency aerodynamic noise case. Firstly, combined with the characteristics of the subjective jury evaluation and objective measurement, the acoustic wind tunnel test restores the cabin booming phenomenon. The specific test procedure is proposed to separate the noise excitation source. Secondly, according to the road test results, it is inferenced that the formation mechanism of low frequency noise is the self- sustaining oscillation with the underbody shedding vortex feedback
Shen, LongZhang, JunGu, Perry
A fully instrumented Tesla Model 3 was used to collect thousands of hours of real-world automated driving data, encompassing both Autopilot and Full Self-Driving modes. This comprehensive dataset included vehicle operational parameters from the data busses, capturing details such as powertrain performance, energy consumption, and the control of advanced driver assistance systems (ADAS). Additionally, interactions with the surrounding traffic were recorded using a perception kit developed in-house equipped with LIDAR and a 360-degree camera system. We collected the data as part of a larger program to assess energy-efficient driving behavior of production connected and automated vehicles. One important aspect of characterizing the test vehicle is predicting its car-following behavior. Using both uncontrolled on-road tests and dedicated tests with a lead car performing set speed maneuvers, we tuned conventional adaptive cruise control (ACC) equations to fit the vehicle’s behavior. We
Duoba, MichaelVellamattathil Baby, TinuPulpeiro Gonzalez, JorgeHomChaudhuri, Baisravan
Autonomous Vehicles are being widely tested under diverse conditions with expectations that they will soon be a regular feature on roads. The development of Autonomous Vehicles has become an important policy in countries around the world, and the technologies developed by countries and car manufacturers are different, and at the same time to adapt to the road environment and traffic management facilities of different countries, so some countries have built self-driving test sites, and the test content is also different, so it is impossible to compare its relative difficulty. This study surveyed experts and scholars to develop a means of weighting the respective difficulty of various autonomous vehicle testing conditions based on the analytic hierarchy process and fuzzy analytic hierarchy process, applied to a sample of 33 sets of testing conditions based on road type, management actions and operational capabilities. Weights are also adjusted in response to environmental impact factors
Lin, Da-JieLiu, Hsin HsienCHOU, AI-CHENHuang, Pin-ChengWU, CHENG HSINCHANG, CHUN-YICHEN, MING-HSU
The challenges concerning noise, vibration, and harshness (NVH) performance in the vehicle cabin have been significantly changed by the powertrain shift from a conventional drive unit with an internal-combustion engine (ICE) to electric drive units (eAxles). However, there is few research regarding the impact of electrification on NVH considering the influence of the context such as multi-stimuli and traffic rules during a real-life driving. In this study, the authors conducted test drives using EVs and ICEVs on public roads in Europe and conducted a statistical analysis of the difference in driver impression of NVH performance based on interviews during actual driving. The impression data were categorized into clusters corresponding to related phenomena or features based on driver comments. Furthermore, the vehicles data (vehicle speed, acceleration, GPS information, etc.) were recorded to associate the driver impressions with the vehicle’s conditions when the comments were made
Mise, ShionTorii, KenjiSellerbeck, PhilippHank, StefanIwano, HidetakaNishikoji, Takuya
In vehicle development, reducing noise is a major concern to ensure passenger comfort. As electric vehicles become more common and engine and vibration noises improve, the aerodynamic noise generated around the vehicle becomes relatively more noticeable. In particular, the fluctuating wind noise, which is affected by turbulence in the atmosphere, gusts of wind, and wake caused by the vehicle in front, can make passengers feel uncomfortable. However, the cause of the fluctuating wind noise has not been fully understood, and a solution has not yet been found. The reason for this is that fluctuating wind noise cannot be quantitatively evaluated using common noise evaluation methods such as FFT and STFT. In addition, previous studies have relied on road tests, which do not provide reproducible conditions due to changing atmospheric conditions. To address this issue, automobile manufacturers are developing devices to generate turbulence in wind tunnels. However, in wind tunnels, it is
Tajima, AtsushiIkeda, JunNakasato, KosukeKamiwaki, TakahiroWakamatsu, JunichiOshima, MunehikoLi, ChungGangTsubokura, Makoto
Fuel efficiency is one of the most important customer requirement in Indian market as well as very crucial to meet the upcoming regulation like CAFÉ for Indian Automotive manufacturers. Most of the technology changes to meet this challenge, always come with a cost penalty with hardware addition. To counter the above challenge, a strategy has been identified in the EMS software that will dynamically adapt the spark timing based on fuel octane rating. This strategy has resulted in fuel efficiency improvement on Modified Indian Drive Cycle on chassis dynamometer test and as well as on real life road tests using fuels with various octane number
Tyagarajan, SethuramalingamKavekar, PratapSuna, BhagyashreeAgarwal, NishantShaikh, Wasim
In order to improve the efficiency of safety performance test for intelligent vehicles and construct the test case set quickly, critical scenarios based on graded hazard disposal model of human drivers are proposed, which can be used for extraction of test cases for safety performance. Based on the natural driving data in China Field Operational Test (China-FOT), the four-stage collision avoidance process of human drivers is obtained, including steady driving stage, risk judgment stage, collision reaction stage and collision avoidance stage. And there are two human driver states: general state and alert state. Then the graded hazard disposal model of human drivers is constructed. According to the parameter distribution of natural driving data, the risk perception point, risk response point and collision reaction time of deceleration scenario and cut-in scenario are obtained, and the deceleration gradient and the maximum deceleration of each collision avoidance difficulty level are
Fang, XiaoweiMa, ZhixiongZhu, XichanYin, Qi
Potential fleet customers had their first hands-on time with “fully production-intent” Bollinger B4 all-electric Class 4 chassis cab trucks during a recent ride-and-drive event. “All of the components, all of the wiring, all of the software and the manner in which the truck is being manufactured is production-intent,” Robert Bollinger, CEO and founder of Bollinger Motors, said in an interview with Truck & Off-Highway Engineering. The Oak Park, Michigan-based electric truck manufacturer chose the Mcity Test Facility, a 32-acre site on the University of Michigan's North Campus in Ann Arbor, for the B4 test drive. Potential customers, Bollinger Motors employees and media attended the event that unfolded in waves over 10 days in September 2023. “Our manufacturing partner, Roush Industries, has produced 20 design-verification B4 vehicles. Five of the vehicles are for marketing purposes and 15 will be used for testing,” Bollinger said, adding that the B4 is slated to enter full production in
Buchholz, Kami
Since the emission gap of nitrogen oxides between the measurements in the indoor emission certification test and the driving in real road conditions has revealed to be significant, the RDE(Real Driving Emissions) regulations of exhaust emissions in real road driving in Europe were adopted in 2017 at the Euro 6d-TEMP stage and gradually strengthened thereafter. Many countries including Korea are applying equivalent and similar regulations. In order to identify whether vehicles in use comply with the emission standards within the exhaust emissions warranty period, it is necessary to add real road tests to ongoing in-use inspections. Thus, a study on the development of an indoor test cycle in order to use for in-use inspection instead of an real road test becomes required while satisfying RDE criteria. This study shows that the RDE test conducted in real road driving can be simulated in an indoor chassis dynamometer, and confirms that the RDE regulations including dynamic characteristics
Park, JeonghyunChoi, ByeongheeChoi, SungwoonKim, BadaLee, Chul-heeLee, DaeyupKwon, SangilChung, TaekhoLee, Jongtae
The concept of autonomous driving has gained increasing relevance, leading to a need for the development of innovative drive concepts for motor vehicles. Therefore, this paper presents a model-based optimal multivariable control for the wheel slip, which allows specifying the wheel slip and thus the tire force individually for each wheel. The plant model consists of a multibody two-track model of a vehicle, a tire model, an air resistance model and a motor model. In addition, the contact forces of the individual wheels are calculated dynamically. The resulting nonlinear model is linearized and used for the design of a linear optimal static state space controller with reference and disturbance feedforward. The contact point velocities at the wheels are defined as the controlled variables, since they are proportional to the wheel slip and thus to the driving forces within the operating range of the controller. In addition, the rates of change of the contact point velocities are also
Irmer, MarcusRosenthal, RobertNüßgen, AlexanderDegen, RenéThomas PhD, KarinRuschitzka PhD, Margot
Brake-by-wire (BbW) systems are one key technology in modern vehicles. Due to their great potential in the areas of energy efficiency and automated driving, they receive more and more attention nowadays. However, increased complexity and reliance on electric and electrical components in BbW systems bring about new challenges. This applies in particular to the fault tolerance of the brake system. Since drivers cannot form a fallback layer of braking functions due to the mechanical decoupling of the brake pedal, known BbW concepts provide a redundant system layer. However, driving is significantly limited in the event of a failure in the BbW system and is only possible under certain restrictions. The reason for that is a further possible failure (double point of failure scenario), which can result in a significant loss of braking performance. To improve the availability level of the braking functions, a principally new redundancy concept for the double point of failure scenario is
Schlimme, Hauke ChristianHenze, Roman
One evening earlier this year, I found myself at a convenience-store gas station with eight pumps and one EV fast-charger. I'd been vectored there by the charge provider's phone app. As I exited the freeway, the app indicated the charger was in service and unoccupied. Good news, as the EV that I was test-driving was “running on fumes” - that old-school term for when IC-engine vehicles' fuel tanks are close to dry. “Seek charging immediately,” the vehicle warned! I didn't want to risk trying to make it home, eight miles away
Brooke, Lindsay
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1
Light Duty Vehicle Performance and Economy Measure Committee
Autonomous vehicles must be able to function safely in complex contexts, involving unpredictable situations and interactions. To ensure this, the system must be tested at various stages as described by the V-model. This process iteratively tests and validates distinct parts of the system, starting with small components to system level assessment. However, this framework presents challenges when adapted to deal with testing problems that face autonomous vehicles. Open road testing is an effective way to expose the system to real world scenarios in combination with specific driving situations described by the Operational Design Domain (ODD). The task of finding a path between two points that maximizes the ODD exposure is not a trivial task, without mentioning that in most cases, the developers must design routes in unfamiliar regions. This represents a significant effort and resources consumption, which makes it important to optimize this task. This paper approaches this problem by
Rodriguez Zarazua, PedroAlrousan, QusayAlzu'bi, HamzehTasky, Tom
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles. These loads will be then applied on the virtual vehicle CAE model with
Zhang, WeidongWang, LiangFeng, GuanminTangella, ChandramouliKirtane, VivekMorley, John
The heat pump with low global warming potential (GWP) refrigerants is imperative for the electric vehicle (EV) to slow down global warming and extend the driving range while meeting passengers' thermal comfort in low ambient temperatures. However, there are no appropriate refrigerants. To provide long-term and environmental-friendly refrigerants in the heat pump for EVs, herein, we reported newly developed low-GWP refrigerant mixtures, i.e., DL3B, whose GWP is lower than 140, the flammability (lower flammability limit and burning velocity), saturation pressure, lubricant miscibility, material compatibility were experimentally tested. A test bench that can investigate the performance of an R410A prototype was built. The drop-in tests of the DL refrigerant were carried out to evaluate the capacities and COPs for both cooling and heating modes in the EV heat pump system. Results showed that DL3B has similar saturation pressure to R410A, good miscibility with original lubricant and is
Yu, BinbinQian, ChenyiOuyang, HongshengShi, Jun-YeGuo, ZhikaiChen, Jiangping
The measurement protocol of solid particle number with the lower detection limit (D50) at 10 nm (SPN10) is planned to be implemented in European emission regulations by means of laboratory-grade measurement systems. Furthermore, SPN10 measurement as the real driving emissions (RDE) regulations is under development by defining appropriate technical specifications for the portable emissions measurement system (PEMS). It is under discussion to implement SPN10 limits as one of additional pollutants to the new European emissions regulations, so-called “Euro 7”. As the Consortium for ultra LOw Vehicle Emissions (CLOVE) has proposed, RDE testing by means of PEMS will be the primary means of emissions determination for certification purposes. Measurement equivalency between laboratory-grade emissions measurement systems and PEMS is still important due to the necessity of validation in laboratories before on-road testing by comparing determined emissions by both. The current draft technical
Otsuki, YoshinoriFukushima, SuguruNakamura, HiroshiKojima, KentaroSakurai, Hiromu
As consumers transition from internal combustion engine (ICE)-powered vehicles to battery electric vehicles (BEV), they will expect the same fuel economy label-to-on-road correlation. Current labeling procedures for BEVs allow a 0.7 or higher multiplier to be applied to the unadjusted fuel economy and range values. For ICE-powered vehicles, the adjustment factor decreases with increasing unadjusted fuel economy and can be lower than 0.7. To better inform consumers, starting in 2016, Car and Driver added an on-road highway fuel-economy test, conducted at 120 kph (75 mph), that augments the performance metrics that it's been measuring since the 1950s. For electric vehicles, testing includes an evaluation of the all-electric range. The on-road test results were aligned with the certification information for each vehicle model including unadjusted and label fuel economy and range, road load force coefficients, and labeling options. Tractive energy and kinetic energy available for
Pannone, GregoryVanderWerp, Dave
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating. This novel methodology for fatigue life calculation involves finding independent load channels and mapping all load history through converting single or multichannel load-displacement history into stress
Zarrin-Ghalami, TouhidDatta, Sandip
In a military off-road vehicle, generally designed to operate in an aggressive operating environment, the typical comfort requirements for trucks and passenger cars are revised for robustness, safety and security. An example is the cabin space optimisation to provide easy access to many types of equipment required on-board. In this field, racks hung to the cabin chassis are generally used to support several electronic systems, like radios. The dynamic loads on a rack can reach high values in the operative conditions of a military vehicle. Rack failures should be prevented for the safety of driver, crew and load and the successful execution of a mission. Therefore, dynamic and durability tests of these components, including the fixtures to the vehicle, are required. The capability to apply in a laboratory a dynamic load equivalent to the one experienced in a real mission opens the possibility to make durability tests in a controlled environment, to repeat them according to a defined
Velardocchia, MauroBonisoli, ElvioTota, AntonioLisitano, DomenicoPaciullo, GennyTrevisi, Marco
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located. The stress response spectrums under fatigue simulation were obtained by combining the road test load spectrums at the excitation points
Xie, FurongGao, YunkaiXu, YananGao, DePan, Ting
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method. The coasting-speed overshoot of the two-level
Sun, YongzhengHan, ZhiyuZhao, Shuiping
This SAE Recommended Practice provides test performance requirements for air disc brake actuators for service and combination service parking brake actuators with respect to function, durability, and environmental performance when tested according to SAE J2902
Truck and Bus Brake Actuator Committee
In this work, tailpipe carbon monoxide emission from a gasoline powertrain case study vehicle was analyzed for off-cycle (i.e., on road) driving to develop a virtual sensor. The vehicle was equipped with a portable emissions measurement system (PEMS) that measured carbon monoxide concentration and exhaust volumetric flowrate to calculate the mass of carbon monoxide emitted from the tailpipe. The vehicle was also equipped with a tailpipe electrochemical NOx sensor, and a correlation between its linear oxygen signal and the PEMS-measured carbon monoxide concentration was observed. The NOx sensor linear oxygen signal depends on the concentration of several reducing species, and a machine learning model was trained using this data and other features to target the PEMS-measured carbon monoxide mass emission. The model demonstrated a mean absolute percentage error (MAPE) of 19% when using 15 training drive cycles. Finally, a virtual carbon monoxide sensor was developed by removing the
Kempema, Nathan J.Sharpe, ConnerWu, XiaoShahabi, MehrdadKubinski, David
Radar scene emulation helps bridge the gap between simulation and real-world testing of autonomous systems for SAE Level 4 capability. The vision of fully autonomous vehicles (SAE Levels 4 and 5) is fast approaching. Making this vision a reality requires automotive OEMs to move beyond the current levels of vehicle autonomy to deliver on the promise of highly efficient transportation systems, more driver freedom and improved passenger safety. While road testing is a vital part of the development process, the cost, time and challenge of repeatability makes relying on real-world road testing alone unrealistic. Using this approach, it would take hundreds of years for vehicles to be reliable enough to navigate urban and rural roadways safely 100% of the time
Tuca, Silviu
The future of heavy trucking will require greater aerodynamic improvements and will involve active and automated systems that tailor varied parameters to optimize energy efficiency over a broad operational range. Continuous advancement of accuracy and precision is needed to realize these ever-smaller aerodynamic gains and to generate more detailed aerodynamic characterizations to feed these system-wide optimizations. To accomplish this, a comprehensive aerodynamic development approach is needed and should include computational fluid dynamics, operational testing, and wind tunnel testing. In 2016, a high-fidelity 1/3 scale wind tunnel model of a tractor-trailer heavy truck was developed for Reynolds equivalent wind tunnel testing with full coverage rolling road ground simulation. The model and support system were designed and built for use in the Windshear rolling road wind tunnel. The Windshear wind tunnel offers a large high-speed rolling road system enabling a more advanced
Brady, BenBrzustowicz, John
Brake wear particles are recognized as one of the dominant sources of road transport particulate matter emissions and are linked to adverse health effects and environmental impact. The UNECE mandated the Particle Measurement Program to address this issue, by developing a harmonized sampling and measurement methodology for the investigation of brake wear particles on a brake dynamometer (dyno). However, although the brake dyno approach with tightly controlled test conditions offers good reproducibility, a multitude of changing vehicle and surrounding conditions make real-driving emissions measurement a highly relevant task. Here we show two different prototypes for on-road particle measurement with minimal impact of the measurement setup on the emission behavior, tested on a brake dyno. The prototypes cover only a part of the brake disc and allow for installation with minimal interventions on a commercial passenger car, while still closely following the harmonized methodology for brake
Huber, Michael PeterFischer, PeterMamakos, AthanasiosSteiner, GeraldKlug, Andreas
Enhancing the performance of a ride-oriented algorithm to provide ride comfort and vehicle stability throughout different terrains is a challenging task. This article aims to improve the performance of the state-of-the-art continuous skyhook algorithm in coupled motion modes with an optimally tuned stability augmentation system (SAS). The tuning process is carried out using a chaotic map-initialized particle swarm optimization (C-PSO) approach with ride comfort and roll stability as a performance index. A large van model built-in CarSim is co-simulated with a C-PSO algorithm and control system designed in MATLAB. To realize the feasibility and effectiveness of the proposed system, a software-in-loop test is conducted on five complex ride terrains with different dominant vehicle body motion modes. The test results are compared against the passive system, four corner continuous skyhook control, and four corner type-1 fuzzy control. The test results confirm the effectiveness of the
Rajasekharan Unnithan, Anand RajSubramaniam, Senthilkumar
Air pollution is a major threat to the environment and human health being responsible of more than 350 000 premature deaths every year in the European Union (EU). Road transport accounts for circa 40% of the total NOx emissions and 10% of the particulates emissions of the EU. However, these shares increase significantly in urban areas where 75% of the citizens live. In order to curb pollutant emissions from new vehicles entering the European market, the Euro 6 regulation, setting emission limits for cars and vans, was recently updated with the introduction of a new test procedure in the laboratory, the Worldwide Harmonized Light Vehicle Test Procedure (WLTP), and a novel on-road test performed with Portable Emissions Measurement Systems, the Real Driving Emissions regulation (RDE). Both test procedures WLTP and RDE were designed to represent typical driving conditions and thus help characterizing exhaust emissions of light-duty vehicles in real life operation. This manuscript presents
Valverde Morales, Victor
Energy flow control and management in a vehicle is an essential aspect of the design process. These solutions are particularly important in the case of vehicles that do not have an external energy source, such as railway vehicles equipped with innovative energy storage technologies. The article presents analyzes of the theoretical energy consumption in a three-car passenger rail vehicle of Polish production, which was equipped with electric energy storage for the purposes of the simulation. An algorithm was developed in the Matlab program for research purposes, which was used to calculate the energy flow in a vehicle traveling along the test route between stations A and B, 73.5 km long, with 18 intermediate stations. During one simulation, the vehicle travels this route back and forth. The article presents the results of six theoretical test runs, which differed in the charging procedure of the vehicle energy storage systems during the travel along the test route. For the test drive
Bryk, KarolUrbański, PatrykGallas, DawidTarnawski, PiotrMichalak, PiotrStobnicki, Paweł
Battery Electric Vehicle (BEV) sales have been spiking up due to a series of factors: zero tailpipe emissions, wider model availability, increased customer acceptance, reduced purchase price, improved performance and range. The latter is a crucial factor the consumers consider when purchasing a BEV, and it largely depends on how the vehicle operates (e.g. average speed), traffic, ambient conditions, and battery size. When driven on the roads, the actual range of BEVs can be significantly smaller than the certified value obtained from laboratory testing at standard conditions. To understand the factors influencing vehicle range in real-world operation, the study team performed on-road tests on three production passenger vehicles currently available in the European market. The measured quantities, including vehicle signals from OBD/UDS, were used to quantify the vehicle energy consumption. Global Navigation Satellite System (GNSS) data was used to calculate vehicle positioning and
Tansini, AlessandroDi Pierro, GiuseppeFontaras, GeorgiosGil-Sayas, SusanaKomnos, DimitriosCurrò, Davide
Items per page:
1 – 50 of 960