Browse Topic: Performance tests
Rotor skewing is a commonly used technique to mitigate noise and vibration challenges of permanent magnet synchronous motor. The intention of rotor skewing is to minimize targeted electromagnetic forces, thereby enhancing motor NVH performance. However, achieving improved NVH performance may be attainable by merely altering the rotor skew pattern while keeping the summation of radial and tangential electromagnetic forces the same. This research investigates the impact of different rotor skewing patterns on the NVH performance of permanent magnet synchronous motor. With summation of radial and tangential electromagnetic forces remaining the same, four different skew patterns are applied to generate electromagnetic forces across each motor slice. Multi-slice method is used for different skew patterns when applying electromagnetic forces on the motor model. Noise and vibration level will be compared to identify the best skew pattern for proposed motor.
A test and signal processing strategy was developed to allow a tire manufacturer to predict vehicle-level interior response based on component-level testing of a single tire. The approach leveraged time-domain Source-Path-Contribution (SPC) techniques to build an experimental model of an existing single tire tested on a dynamometer and substitute into a simulator vehicle to predict vehicle-level performance. The component-level single tire was characterized by its acoustic source strength and structural forces estimated by means of virtual point transformation and a matrix inversion approach. These source strengths and forces were then inserted into a simulator vehicle model to predict the acoustic signature, in time-domain, at the passenger’s ears. This approach was validated by comparing the vehicle-level prediction to vehicle-level measured response. The experimental model building procedure can then be adopted as a standard procedure to aid in vehicle development programs.
To define a test procedure that will provide repeatable measurements of a vehicle’s maximum acceleration performance for launch and passing maneuvers and standardize time zero used in reported results.
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: Establishes uniform vehicle level test procedures Identifies target equipment, test scenarios, and measurement methods Identifies and explains the performance data of interest Does not exclude any particular system or sensor technology Identifies the known limitations of the information contained within (assumptions and “gaps”) Is intended to be a guide toward standard practice and is subject to change on pace with the technology Focuses on “Vehicle Front to Rear, In Lane Scenarios” expanded to include additional offset impacts This document describes the equipment, facilities, methods, and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, clearance gaps
Battery cell aging and loss of capacity are some of the many challenges facing the widespread implementation of electrification in mobility. One of the factors contributing to cell aging is the dissimilarities of individual cells connected in a module. This paper reports the results of several aging experiments using a mini-module consisting of seven 5 Ah 21700 lithium-ion battery cells connected in parallel. The aging cycle comprised a constant current-constant voltage charge cycle at a 0.7C C-rate, followed by a 0.2C constant current discharge, spanning the useful voltage range from minimum to maximum according to the cell manufacturer. Charge and discharge events were separated by one-hour rest periods and were repeated for four weeks. Weekly reference performance tests were executed to measure static capacity, pulse power capability and resistance at different states of charge. All diagnostics were normalized with respect to their starting numbers to achieve a percentage change
Anduril Industries Orange County, CA Contact@anduril.com
Letter from the Guest Editors
This specification covers performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in road vehicle applications that are: low voltage (0 to 60 VDC) or coaxial. Incomplete (mechanical) specifications for jacketed twisted pair connectors are also provided. These procedures are only applicable to terminals used for in-line, header, and device connector systems. They are not applicable to edge board connector systems, twist-lock connector systems, >60 VAC or DC, or to eyelet terminals. No electrical connector, terminal, or related component may be represented as having met USCAR specifications unless conformance to all applicable requirements of this specification have been verified and documented. All required verification and documentation must be done by the supplier of the part or parts. If testing is performed by another source, it does not relieve the primary
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The vehicle holding or sliding on the grade, fully loaded or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and up grade directions.
Hypersonic platforms provide a challenge for flight test campaigns due to the application's flight profiles and environments. The hypersonic environment is generally classified as any speed above Mach 5, although there are finer distinctions, such as “high hypersonic” (between Mach 10 to 25) and “reentry” (above Mach 25). Hypersonic speeds are accompanied, in general, by a small shock standoff distance. As the Mach number increases, the entropy layer of the air around the platform changes rapidly, and there are accompanying vortical flows. Also, a significant amount of aerodynamic heating causes the air around the platform to disassociate and ionize. From a flight test perspective, this matters because the plasma and the ionization interfere with the radio frequency (RF) channels. This interference reduces the telemetry links' reliability and backup techniques must be employed to guarantee the reception of acquired data. Additionally, the flight test instrumentation (FTI) package needs
For all the engineering that takes place at the Treadwell Research Park (TRP), Discount Tire's chief product and technical officer John Baldwin told SAE Media that there's actually something akin to magic in the way giga-reams of test data are converted into information non-engineers can usefully understand. TRP is where Discount Tire generates data used by the algorithms behind its Treadwell tire shopping guide. The consumer-facing Treadwell tool, available in an app, a website and in stores, provides tire shoppers with personalized, simple-to-understand recommendations that are mostly based on a five-star scale. Discount Tire and its partners have tested over 20,000 SKUs, representing 500 to 1000 different types of tires over the years, Baldwin said, including variants and updates. Testing a tire to discover it has an 8.2 rolling resistance coefficient is one thing. The trick is finding a way to explain it to someone standing in a tire shop.
Most rechargeable batteries that power portable devices, such as toys, handheld vacuums, and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
This document establishes minimum performance criteria at GCWR and calculation methodology to determine tow-vehicle TWR for passenger cars, multipurpose passenger vehicles, and trucks. This includes all vehicles up to 14000 pounds GVWR.
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments.
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired and tracked asphalt pavers. Service, secondary, and parking brakes are included.
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The trailer holding or sliding on the grade, fully loaded, or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and upgrade directions.
Items per page:
50
1 – 50 of 1309