Browse Topic: Performance tests
This specification covers performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in road vehicle applications that are: low voltage (0 to 60 VDC) or coaxial. Incomplete (mechanical) specifications for jacketed twisted pair connectors are also provided. These procedures are only applicable to terminals used for in-line, header, and device connector systems. They are not applicable to edge board connector systems, twist-lock connector systems, >60 VAC or DC, or to eyelet terminals. No electrical connector, terminal, or related component may be represented as having met USCAR specifications unless conformance to all applicable requirements of this specification have been verified and documented. All required verification and documentation must be done by the supplier of the part or parts. If testing is performed by another source, it does not relieve the primary
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The vehicle holding or sliding on the grade, fully loaded or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and up grade directions.
For all the engineering that takes place at the Treadwell Research Park (TRP), Discount Tire's chief product and technical officer John Baldwin told SAE Media that there's actually something akin to magic in the way giga-reams of test data are converted into information non-engineers can usefully understand. TRP is where Discount Tire generates data used by the algorithms behind its Treadwell tire shopping guide. The consumer-facing Treadwell tool, available in an app, a website and in stores, provides tire shoppers with personalized, simple-to-understand recommendations that are mostly based on a five-star scale. Discount Tire and its partners have tested over 20,000 SKUs, representing 500 to 1000 different types of tires over the years, Baldwin said, including variants and updates. Testing a tire to discover it has an 8.2 rolling resistance coefficient is one thing. The trick is finding a way to explain it to someone standing in a tire shop.
Hypersonic platforms provide a challenge for flight test campaigns due to the application's flight profiles and environments. The hypersonic environment is generally classified as any speed above Mach 5, although there are finer distinctions, such as “high hypersonic” (between Mach 10 to 25) and “reentry” (above Mach 25). Hypersonic speeds are accompanied, in general, by a small shock standoff distance. As the Mach number increases, the entropy layer of the air around the platform changes rapidly, and there are accompanying vortical flows. Also, a significant amount of aerodynamic heating causes the air around the platform to disassociate and ionize. From a flight test perspective, this matters because the plasma and the ionization interfere with the radio frequency (RF) channels. This interference reduces the telemetry links' reliability and backup techniques must be employed to guarantee the reception of acquired data. Additionally, the flight test instrumentation (FTI) package needs
Most rechargeable batteries that power portable devices, such as toys, handheld vacuums, and e-bikes, use lithium-ion technology. But these batteries can have short lifetimes and may catch fire when damaged. To address stability and safety issues, researchers reporting in ACS Energy Letters have designed a lithium-sulfur (Li-S) battery that features an improved iron sulfide cathode. One prototype remains highly stable over 300 charge-discharge cycles, and another provides power even after being folded or cut.
This document establishes minimum performance criteria at GCWR and calculation methodology to determine tow-vehicle TWR for passenger cars, multipurpose passenger vehicles, and trucks. This includes all vehicles up to 14000 pounds GVWR.
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments.
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired and tracked asphalt pavers. Service, secondary, and parking brakes are included.
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The trailer holding or sliding on the grade, fully loaded, or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and upgrade directions.
This SAE Information Report relates to a special class of automotive adaptive equipment which consists of modifications to the power steering system provided as original equipment on personally licensed vehicles. These modifications are generically called “modified effort steering” or “reduced effort power steering.” The purpose of the modification is to alter the amount of driver effort required to steer the vehicle. Retention of reliability, ease of use for physically disabled drivers and maintainability are of primary concern. As an Information Report, the numerical values for performance measurements presented in this report and in the test procedure in the appendices, while based upon the best knowledge available at the time, have not been validated.
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of disc wheels, demountable rims, and bolt-together divided wheels intended for normal highway use on military trucks, buses, truck-trailers, and multipurpose vehicles. Users may establish design criteria exceeding the minimum performance requirement for added confidence in a design. For other (non-military) wheels and rims intended for normal highway use on trucks and buses, refer to SAE J267. For wheels intended for normal highway and temporary use on passenger cars, light trucks, and multipurpose vehicles, refer to SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. This document does not cover off-highway or other special application wheels and rims.
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated backup alarm devices primarily intended for use on off-road, self-propelled work machines as defined by SAE J1116 (limited to categories of (1) construction, and (2) general purpose industrial).
This AS covers Vertical Velocity Instruments which display the rate of change of pressure altitude of an aircraft, as follows: Type A - Direct reading, self-contained, pressure actuated Type B - Electrically or electronically operated, self-contained, pressure actuated Type C - Electrically or electronically operated, input from a remote pressure sensor
This SAE Aerospace Standard defines the requirements for establishing a nondestructive inspection (NDI) program for aerospace systems to include but not limited to aircraft structure, aircraft stores (external structures such as antennas, pods, fuel tanks, weapons, radomes, etc.) and missile/rocket structural components when an NDI Program Plan is required by contract. NDI Programs are essential to ensuring NDI processes are implemented to support the lifecycle design requirements of the system and its components. NDI Programs are applicable to all phases of the system life cycle, including acquisition, modification, and sustainment. This standard may also be applicable to mechanical equipment, subsystems, and propulsion systems, but the requirements defined by the NDI Program Plan should be tailored by the contracting agency for such use. An NDI Program Plan shall be developed at the beginning of the technology development phase and shall define all NDI requirements to be adhered to
Items per page:
50
1 – 50 of 1315