Browse Topic: Nickel alloys

Items (2,063)
This specification covers established manufacturing tolerances applicable to sheet, strip, and plate of nickel, nickel alloys, and cobalt alloys ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of a specified range.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inch: a Wrenching Nuts: i.e., hexagon, double hexagon, and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion- and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers established manufacturing tolerances applicable to bars, rods, and wire of nickel, nickel alloy, and cobalt alloys ordered to inch-pound dimensions. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of a specified range.
AMS F Corrosion and Heat Resistant Alloys Committee
The process of electrochemical machining, often known as ECM, is capable of effectively shaping complicated structures in materials that conduct electricity, independent of the materials' level of hardness hence especially used for automobile and aerospace applications. As a result of the demand for high-quality products and the desire for rapid design changes, the manner in which decisions are made in the manufacturing industry has become increasingly contentious. With the assistance of regression analysis, this study proposes the development of predictive models for the purpose of forecasting the performance measures in electrochemical machining of Nimonic alloy. The trials are designed in accordance with Taguchi's principles, and a multiple regression model is utilized in order to derive the mathematical equations. Taguchi's method can be applied as a methodology for single objective optimization in order to attain the most optimal combination of process parameters for the purpose
Natarajan, ManikandanPasupuleti, ThejasreeSagaya Raj, GnanaSilambarasan, RKiruthika, Jothi
The aspiration of this exploration is to evolve an optimization technique for the Electrochemical Drilling process on Haste alloy material, considering various performance factors. The Taguchi approach, along with Grey Relational Analysis (GRA), forms the basis for optimization. Haste alloy has a wider range of uses in industries such as aerospace, nuclear, and marine, especially in harsh environments. The experimental trials conducted in accordance with Taguchi's approach have utilized three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. When doing this examination, we analyze not only the rate at which material is removed and the roughness of the surface, but also other characteristics that indicate performance, such as overcut, shape, and orientation tolerance. The analytical findings indicate that the feed rate is the primary factor that directly impacts the required performance standards. Regression models are constructed to make predictions
Natarajan, ManikandanPasupuleti, ThejasreeSagaya Raj, GnanaSilambarasan, RSomsole, Lakshmi Narayana
Wire Electrical Discharge Machining (WEDM) is a sophisticated machining technique that offers significant advantages for processing materials with elevated hardness and complex geometries. Invar 36, a nickel-iron alloy characterized by a reduced coefficient of thermal expansion, is extensively used in the aerospace, automotive, and electronic sectors due to its superior dimensional stability across a wide temperature range. The primary goals are to improve machining settings and develop regression models that can precisely forecast important performance metrics. Experimental trials were conducted using a WEDM system to mill Invar 36 under several machining parameters, including pulse-on time, pulse-off time, and current setting percentage (%). The machining performance was assessed by quantifying the material removal rate (MRR) and surface roughness (Ra). The design of experiments (DOE) methodology was used to systematically explore the parameter space and identify the optimal
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VSagaya Raj, GnanaKrishnamachary, PCSilambarasan, R
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, independent of their level of hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study primarily examines the use of Haste alloy in vehicle applications and suggests creating regression models to predict performance parameters in ECM. The experiments are formulated based on Taguchi's ideas, and mathematical equations are derived using multiple regression models. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. ANOVA is employed to evaluate the statistical significance of process parameters that impact performance indicators. The proposed regression models for Haste alloy are more versatile
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamySilambarasan, RKrishnamachary, PC
The Material Removal Rate (MRR) is a vital aspect of Electro-Chemical Machining (ECM), an engineering manufacturing method that depends on electrochemical reactions. The MRR is dependent on factors such as current, voltage, electrolyte concentration, and machining time. To investigate the effect of MRR on Inconel 718 super-alloy, experiments were conducted using stainless steel tool under different independent machining conditions. Machine Learning (ML) approaches could be utilized to predict machining outcomes based on specific input parameters. In this research, ML techniques were applied to ECM by developing models using multiple linear regression, Random Forest, K-Nearest Neighbors (KNN), and Xtreme gradient boosting algorithms. These models aimed to establish the association among the collaborative impacts of the electrolytic solution, volts, amps, and feed rate on MRR. Additionally, the study seeks to recognize the best ML technique for forecasting the MRR of Inconel 718 alloy
Seenivasan, MadhankumarPrasanna Kumar, T. J.Udhayakumar, GobikrishnanRajesh, S.Bhuvaneswari, M.Feroz Ali, L.
This specification covers a nickel alloy in the form of wire, rod, strip, foil, tape, and powder and a viscous mixture (paste) of the powder in a suitable binder.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, and flash-welded rings 4.00 inches (101.6 mm) and under in diameter or least nominal cross-sectional dimension and stock of any size for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welded and drawn tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, and flash-welded rings up to 4.00 inches (101.6 mm), exclusive, in least distance between parallel sides (thickness) or diameter, and stock of any size for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 1.000 inch (25.40 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a precision cold-rolled corrosion- and heat-resistant nickel alloy in the form of sheet and strip over 0.005 to 0.015 inch (0.13 to 0.38 mm), inclusive, in nominal thickness and foil up to 0.005 inch (0.13 mm), inclusive, in nominal thickness (see 8.4).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, wire, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 1.00 inch (25.4 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inches: a Wrenching Nuts: i.e., hexagon, double hexagon and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion and heat resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180,000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
E-25 General Standards for Aerospace and Propulsion Systems
This specification specifies the engineering requirements for heat treatment, by part fabricators (users) or subcontractors, of parts made of wrought or additively manufactured nickel or cobalt alloys, of raw materials during fabrication, and of fabricated assemblies in which wrought nickel or cobalt alloys are the primary structural components.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of wire up to and including 0.563 inches (14.30 mm) in diameter.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip up to 0.187 inch (4.75 mm) thick, inclusive, and plate up to 4.000 inches (101.6 mm) thick, inclusive.
AMS F Corrosion and Heat Resistant Alloys Committee
In the face of the world’s population growth and ensuing demands, the industrial sector assumes a crucial role in the management of limited energy supplies. Superalloys based on nickel, which are well-known for their remarkable mechanical qualities and resilience to corrosion, are now essential in vital applications like rocket engines, gas turbines, and aviation. However, these metals’ toughness presents a number of difficulties during machining operations, especially with regard to power consumption. This abstract explores the variables that affect power consumption during the machining of superalloys based on nickel in great detail and suggests ways to improve energy efficiency in this area. The effects of important variables on power consumption are extensively investigated, including cutting speed, feed rate, depth of cut, tool geometry, and cooling/lubrication techniques. A careful balance between these factors is necessary to maximize machining efficiency and reduce power usage
Başaran, AlperÖzer, MahmutKazan, Hakan
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip up to 0.1874 inch (4.76 mm), inclusive, in thickness and plate up to 4.000 inches (101.6 mm), inclusive, in thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip 0.010 to 0.250 inch (0.25 to 6.25 mm), inclusive, in thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings 10.0 inches (254 mm) and under in nominal diameter or distance between parallel sides, and stock of any size for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and foil 0.1874 inch (4.76 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a precipitation hardenable, corrosion- and heat-resistant nickel alloy in the form of seamless tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited. There are several dependencies
Schoeffmann, WolfgangKnollmayr, ChristofMehrabi, Kambiz
This procurement specification covers bolts and screws made from a corrosion and heat resistant, age hardenable, nickel base alloy of the type identified under the Unified Numbering System as UNS N07041 and of 155 ksi tensile strength at room temperature, with maximum test temperature of parts at 1400 °F.
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers aircraft-quality solid rivets and tubular end rivets made from a corrosion- and heat-resistant nickel alloy of the type identified under the Unified Numbering System as UNS N06002.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 0.010 to 2.000 inches (0.25 to 50.80 mm), inclusive, in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
Inconel 718 is a nickel-rich superalloy that can function in cryogenic to high-temperature applications. It has excellent mechanical and corrosion-resistant properties. This research focuses on developing Cu and Cu–alloy–tungsten disulfide (WS2) tools developed through a stir casting route, and the machining behaviour of Inconel 718 alloy in the EDM Process is investigated. The influence of output responses of Removal rate of material (RRM), surface roughness (SR), and tool wear loss rate (TWR) on input constraints pulse time-on, peak discharge current, and type of tool. The optimal parameters are studied with the aid of the Response Surface Methodology (RSM) and Analysis of Variance (ANOVA) combination, in response to maximize and decrease the RRM, TWR, and SR, respectively. It is found that using the Cu-WS2 tool provides an optimum finding with a peak discharge current of 18 Amps, and pulse on time of 8 μs yields the best value for RRM, TWR, and SR. In addition, a three-dimensional
Dinesh, D.Sangaravadivel, P.Jeevith, R.Kishore, M.Deepith, N.Srikanth, M.
The limitations of commonly used materials such as steel in withstanding high temperatures led to exploring alternative alloys. For instance, Inconel 825 is a nickel-based alloy known for its exceptional corrosion resistance. Thus, the Inconel 825 is used in various applications, including aerospace, marine propulsion, and missiles. Though it has many advantages, machining this alloy at high temperatures could be challenging due to its inadequate heat conductivity, increased strain hardening propensity, and extreme dynamic shear strength. The resultant hardened chips generated during high-speed machining exhibit elevated temperatures, leading to tool wear and surface damage, extending into the subsurface. This work investigated the influence of varying process settings on the machinability of Inconel 825 metal, using both uncoated and coated tools. Optimal surface roughness (Ra) machining conditions were found by considering factors such as depth of cut, cutting speed, feed rate, and
Balakrishnan, S.Natrayan, M.Senthilkumar, K.Rajkumar, V.
The quality of the finished product depends on the contribution of many factors along with the complex process involved to move forward towards the new product development. Many operations like turning, drilling, milling in metal machining deserves the quality as a predominant measurement. The tool and work piece plays a vital role in machining process which depends on machining parameters such as spindle speed, feed rate, depth of cut, approach angle. In the present work the turning operation was carried out on Nickel alloy (Nimonic 80) as a work piece and the carbide insert was used as a tool for performing the machining operations. The cutting parameters were optimized using Taguchi based grey relational analysis. Provided that, the ANOVA analysis to find the predominant factors that affects the quality were also determined. The experimental results were compared with the predicted results and found to be a promising agreement between the factors and responses.
Jashwanth, S.Rajaparthiban, J.Ganesamoorthy, R.Balaji, N.Padmavathi, K.R.
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, and flash-welded rings up to 4.00 inches (101.6 mm), inclusive, in nominal thickness or distance between parallel sides and having a maximum cross-sectional area of less than 12.6 square inches (81 cm2). Stock for forging or flash-welded rings may be of any size and condition as ordered.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 2063