Browse Topic: Titanium alloys

Items (4,179)
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
The application of Thermal Barrier Coatings (TBC) has been widely utilized in aerospace turbines to enhance the operational temperature and thermal efficiency of titanium alloys, while preserving their properties such as low density, creep resistance, and corrosion resistance. TBC systems typically consist of a metallic substrate, a metallic coating (Bond Coat), a thermally grown oxide (TGO), and a ceramic topcoat (TC). This study investigated the fracture surface characteristics of Ti-6Al-4V with TBC after a creep test at a constant temperature of 600 °C, under stress levels of 125, 222, and 319 MPa, in order to understand the mechanisms involved. The TBC was composed of a NiCrAlY (BC) and a zirconia co-doped with yttria and nióbia (TC). The fracture characterization of the alloy after the creep test was conducted through stereoscopy and scanning electron microscopy. The fracture mechanism at 600 °C and 222 MPa was predominantly ductile, as evidenced by the presence of dimples and
Takahashi, Renata Jesuinade Assis, João Marcos KruszynskiRodrigues, Bianca Costade Andrade Acevedo Jimenez, Laila RibeiroReis, Danieli Aparecida Pereira
In view of the complex intertidal terrain challenges faced by offshore wind power maintenance, this paper optimizes the lightweight design of multi-terrain tracked vehicles. The structure was optimized by finite element analysis, and the maximum stress was 211.68 MPa ( lower than the safety limit of 230 MPa), and the maximum deformation was 5.25 mm, which ensured the stability and stiffness. Titanium alloy has the advantages of high strength, low density and corrosion resistance, which improves the durability of the frame while reducing the weight of the frame. Advanced manufacturing technologies such as phase transformation superplastic diffusion welding optimize the connection between TC4 titanium alloy and stainless steel. Modal analysis and optimization techniques refine the structural parameters and improve the complex load performance. The research promotes the lightweight of the frame and provides theoretical and technical support for the design of multi-terrain vehicles.
Xu, HanXu, ShilinMa, WenboZhu, Wei
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a titanium alloy in the form of forgings, 6.000 inches (152.40 mm) and under in cross-sectional thickness and forging stock of any size.
AMS G Titanium and Refractory Metals Committee
This specification covers established manufacturing tolerances applicable to titanium and titanium alloy extruded bars, rods, and shapes. These tolerances apply to all conditions, unless otherwise noted. The term “excl” applies only to the higher figure of the specified range.
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of wire, forgings, flash-welded rings 4.000 inches (101.60 mm), inclusive, and under in nominal diameter or distance between parallel sides, bars up through 10.000 inches (254 mm), inclusive, and under in nominal diameter with a maximum cross-sectional area for bars over 4.000 to 10.000 inches (101.60 to 254 mm) in diameter of 79 square inches (509.7 cm2), and stock for forging or flash-welded rings of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers established manufacturing tolerances applicable to sheet, strip, and plate of corrosion- and heat-resistant steels, iron alloys, titanium, and titanium alloys. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of the specified range.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm), inclusive, in nominal diameter or least distance between parallel sides and 32 square inches (206.46 cm2) maximum cross-sectional area and stock for forging of any size (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate through 4.000 inches (101.6 mm) nominal thickness.
AMS G Titanium and Refractory Metals Committee
This specification covers established manufacturing tolerances applicable to titanium and titanium alloy tubing. These tolerances apply to all conditions, unless otherwise noted. The term "excl" is used to apply only to the higher figure of the specified range.
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of forgings 3.000 inches (76.20 mm) and under in nominal diameter or least distance between parallel sides and 9 square inches (58 cm2) and under in cross-sectional area, and forging stock of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars, wire, flash-welded rings 3.00 inches (76.2 mm) and under in nominal diameter or least distance between parallel sides and 16 square inches (103 cm2) and under in cross-sectional area, and stock of any size for flash-welded rings (see 8.6).
AMS G Titanium and Refractory Metals Committee
Thermal nondestructive evaluation (NDE) is a widely used method for detecting defects such as cracks, corrosion, and dis-bond layers in metallic and composite structures. Traditional thermal inspection methods rely on a high-intensity, broadband light heat source (e.g., flash lamp, quartz lamp) that generates heat that is absorbed by the material, and an infrared camera captures the transient thermal response to generate inspection data. However, inspecting low emissivity surfaces (such as unpainted aluminum and titanium alloys) poses challenges including high reflection of the heat source light that can cause inaccurate measurement of the surface temperature response, produce false defect indications, and potential sensor damage due to high-intensity reflections.
TOC
Tobolski, Sue
This specification covers a titanium alloy in the form of bars, wire, forgings up to 4.000 inches (101.60 mm), inclusive, and forging stock.
AMS G Titanium and Refractory Metals Committee
This SAE Aerospace Standard (AS) defines the requirements for loop-type clamps primarily intended for general clamping of tubing for aircraft hydraulic systems.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Standard (AS) establishes the requirements for 24° cone flareless fluid connection fittings and nuts and bite type flareless sleeves for use in aircraft fluid systems at an operating pressure of 5000 psi for the fittings and nuts and 3000 psi for the bite type sleeves.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification establishes the engineering requirements for producing an anodic coating on titanium and titanium alloys and the properties of the coating.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip 0.005 inch (0.13 mm) and over in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip.
AMS F Corrosion and Heat Resistant Alloys Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Biomedical metal implant materials are widely used in clinical applications, including dental implants, hip replacement, bone plates, and screws. However, traditional manufacturing processes face limitations in meeting customized medical needs, internal structural control, and efficient material utilization. For example, when producing complex-shaped titanium alloy parts using conventional methods, the material consumption ratio is as high as 10:1–20:1, leading to significant material waste.
This specification covers a titanium alloy in the form of sheet and strip 0.125 inch (3.18 mm) and under in nominal thickness (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars up through 10.000 inches (2540 mm) in nominal diameter or least distance between parallel sides, inclusive, with bars having a maximum cross-sectional area of 79 square inches (509.67 cm2), and stock for forging of any size (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars, wire, forgings, flash-welded rings 4.000 inches (101.60 mm) and under in nominal diameter or least distance between parallel sides, and stock for forging and flash-welded rings of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
Primarily to provide recommendations concerning minimizing stress-corrosion cracking in wrought titanium alloy products.
AMS G Titanium and Refractory Metals Committee
The tensile and low-cycle fatigue (LCF) properties of Ti6Al4V specimens, manufactured using the selective laser melting (SLM) additive manufacturing (AM) process and subsequently heat-treated in argon, were investigated at elevated temperatures. Specifically, fully reversed strain-controlled tests were performed at 400°C to determine the strain-life response of the material over a range of strain amplitudes of industrial interest. Fatigue test results from this work are compared to those found in the literature for both AM and wrought Ti6Al4V. The LCF response of the material tested here is in-family with the AM data found in the literature. Scanning electron microscopy performed on the fracture surfaces indicate a marked increase in secondary cracking (crack branching) as a function of increased plastic deformation and demonstrating equivalent performance when compared to the wrought Ti6AL4V at RT (room temperature) at 1.4% strain amplitude and better performance when compared to the
Gadwal, Narendra KumarBarkey, Mark E.Hagan, ZachAmaro, RobertMcDuffie, Jason G.
This specification covers a titanium alloy in the form of seamless tubing (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of seamless tubing (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of seamless tubing (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of forgings 4.00 inches (101.6 mm) and under in nominal cross-sectional thickness and of forging stock of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their level of hardness. Due to the growing need for superior products and the requirement for quick design adjustments, decision-making in production has become more complex. This study focuses on Titanium Grade 7 and suggests creating predictive models utilizing a Taguchi-grey technique to achieve multi-objective optimization in ECM. The trials are structured based on Taguchi's principles, utilizing Taguchi-grey relational analysis (GRA) to simultaneously maximize several performance indicators. This entails optimizing the pace at which material is removed, decreasing the roughness of the surface, and attaining precise geometric tolerances. ANOVA is used to assess the relevance of process variables that affect these measures. The suggested predictive technique for Titanium Grade 7 outperforms current models in terms of flexibility
Pasupuleti, ThejasreeNatarajan, ManikandanKumar, VSagaya Raj, GnanaKrishnamachary, PCSilambarasan, R
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in electrically conductive materials, regardless of their hardness. Due to the growing demand for superior products and the necessity for quick design adjustments, decision-making in the manufacturing industry has become increasingly complex. This study specifically examines Titanium Grade 19 and suggests the creation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for predictive modeling in ECM. The study employs a Taguchi-grey relational analysis (GRA) methodology to attain multi-objective optimization, with the goal of concurrently maximizing material removal rate, minimizing surface roughness, and achieving precise geometric tolerances. Analysis of variance (ANOVA) is used to assess the relevance of process characteristics that impact these performance measures. The ANFIS model presented for Titanium Grade 19 provides more flexibility, efficiency, and accuracy in comparison to
Pasupuleti, ThejasreeNatarajan, ManikandanRaju, DhanasekarKiruthika, JothiKatta, Lakshmi NarasimhamuSilambarasan, R
Electrochemical machining (ECM) is a remarkably effective technique for producing detailed designs in materials that can conduct electricity, regardless of their level of hardness. As the desire for high-quality products and the necessity for rapid design changes grow, decision-making in the industrial sector becomes increasingly intricate. This work focuses on Titanium Grade 19 and proposes the development of prediction models using regression analysis to estimate performance measurements in ECM. The experiments are designed using Taguchi's methodology, employing a multiple regression approach to produce mathematical equations. The Taguchi technique is utilized for the purpose of single-objective optimization in order to determine the optimal combination of process parameters that will optimize the rate at which material is removed. ANOVA is a statistical method used to assess the relevance of process factors that impact performance indicators. The suggested prediction technique for
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSilambarasan, RD, Palanisamy
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in electrically conductive materials, irrespective of their hardness. Due to the growing need for superior products and quick design adjustments, decision-making in production has become increasingly complex. This study focuses on Titanium Grade 19 and proposes creating predictive models using a Taguchi-grey technique to achieve multi-objective optimization in ECM. The experiments are structured based on Taguchi's principles, utilizing Taguchi-grey relational analysis (GRA) to simultaneously optimize several performance indicators, including the material removal rate, surface roughness, and geometric tolerances. ANOVA is employed to assess the significance of process variables affecting these measures. The proposed predictive technique for Titanium Grade 19 outperforms current models in terms of flexibility, efficiency, and accuracy, providing enhanced capabilities for monitoring and control
Pasupuleti, ThejasreeNatarajan, ManikandanKrishnamachary, PCKatta, Lakshmi NarasimhamuSilambarasan, R
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their level of hardness. With the rising demand for superior products and the necessity for quick design modifications, decision-making in the industrial sector becomes increasingly complex. This study specifically examines Titanium Grade 7 and suggests creating prediction models through regression analysis to estimate performance measurements in ECM. The experiments are formulated based on Taguchi's ideas, utilizing a multiple regression approach to deduce mathematical equations. The Taguchi method is utilized for single-objective optimization in order to determine the ideal combination of process parameters that will maximize the material removal rate. ANOVA is a statistical method used to determine the relevance of process factors that affect performance measures. The suggested prediction technique for Titanium Grade 7 exhibits
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VKrishnamachary, PCSomsole, Lakshmi NarayanaSilambarasan, R
This specification covers a titanium alloy in the form of sheet and strip up to and including 0.125 inch (3.18 mm) in nominal thickness.
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars, wire, forgings, flash-welded rings, drawn shapes 5.000 inches (127.00 mm) and under, and stock for forging or flash-welded rings of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification defines limits of variation for determining acceptability of the composition of cast or wrought titanium and titanium alloy parts and material acquired from a producer.
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars, wire, forgings, flash-welded rings, and drawn shapes 4.000 inches (101.60 mm) and under and stock for forging, heading, or flash-welded rings of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 2.000 inches (50.80 mm), inclusive (see 8.6)
AMS G Titanium and Refractory Metals Committee
Items per page:
1 – 50 of 4179