Browse Topic: Ferrous alloys
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties
This specification covers the requirements for electroless nickel deposited on various materials
Permanent-magnet rotary bearings with ferrofluid stabilization in the axial degree of freedom are undergoing development. These bearings are totally passive, yet stable in all degrees of freedom. In contrast, previously developed electromagnet and permanent-magnet bearings all exhibit instability in at least one degree of freedom, giving rise to the need for active electronic feedback and power-control circuitry. By making active control unnecessary, ferrofluid stabilization can enable reductions in the overall sizes, weights, and power consumptions of machines that contain permanent-magnet bearings. Unlike passive magnetic bearings based on superconductivity, which are restricted to operating temperatures far below room temperature, the developmental bearings are designed to function at temperatures from 0 to 50 °C
Items per page:
50
1 – 23 of 23