Browse Topic: Manufacturing

Items (47,165)
Abstract Saft America, inc. Space and Defense Division (SDD), located in Cockeysville, Maryland, is the world leader in providing state of the art lithium ion systems for the demanding defense and space markets. Saft has been manufacturing batteries at its facility in Cockeysville for over 26 years. The major focus of the facility today is large format high power lithium ion cells and battery systems for defense applications. Saft SDD has been developing lithium ion cells and batteries since 1993. Recent efforts have focused on the industrialization of the technology for use in military hybrid vehicles. Since 2004 Saft SDD has been developing US based manufacturing capability of the entire cell and battery manufacturing processes. This effort is focused under the ManTech program with TARDEC. Overall goals of the program are aimed at improving the technology readiness to support the production of military hybrid vehicles, with areas of focus on improved performance, reliability
Ferguson, ScottNechev, KamenKelley, Dan
ABSTRACT The Bradley Combat Vehicle Motor Chatter case study focuses on one aspect of a combat vehicle program, specifically, responding to a vehicle production situation where combat vehicles produced with in-spec components and subsystems exhibit out-of-spec and failing system behavior. This typically results in an extended production line-down or line-degraded situation lasting for several quarters until the problem can be diagnosed, fixed, validated and verified. Subsequently, adequate quantities of the modified or replaced sub-systems must be put back into the production flow. The direct and indirect costs of an occurrence like this in peace-time are measured in the 10’s to 100’s of Millions of dollars. The schedule, program and perception impact to the vehicle platform can be potentially devastating. In war-time all of these impacts are magnified greatly by the added risk to soldiers’ lives. This paper describes the Bradley Combat Vehicle Motor Chatter case study and the
Scheitrum, MarkWillhoft, MarkSmith, AlanDavis, Annette
ABSTRACT Lower cost aluminum silicon carbide (Al-SiC) metal matrix composite (MMC) produced by stir-casting is emerging as an important material in cost effectively improving the reliability of high power electronic devices; e.g. electronic (IGBT) baseplates, thermal spreaders & stiffeners for flip-chip microelectronics, and heat slugs or MCPCB base layers for high brightness LEDs. This paper will review the properties and competitive cost of these new Al-SiC materials as well as the ability to tailor the coefficient of thermal expansion (CTE) of the Al-SiC to minimize thermal fatigue on solder joints and reduce component distortion. The impact on the final component cost through the use of conventional forming techniques such as (a) rolling sheet followed by stamping, and, (b) die casting, will be described, as will be the opportunity of eliminating a thermal interface material (TIM) layer by integrating the thermal spreader with the heat sink for high power microelectronic packages
Drake, AllenSchuster, DavidSkibo, Michael
Summary This paper discusses the latest techniques in vehicle modeling and simulation to support ground vehicle performance and fuel economy studies, enable system design optimization, and facilitate detailed control system design. The Autonomie software package, developed at Argonne National Laboratory, is described with emphasis on its capabilities to support Model-in-the-Loop, Software-in-the-Loop (SIL), Component-in-the-Loop (CIL), and Hardware-in-the-Loop simulations. Autonomie supports Model-Based Systems Engineering, which is growing in use as ground vehicles become more sophisticated and complex, with many more subsystems interacting within the vehicle and the environmental conditions in which the vehicles operate becoming more challenging and varied. With the advent of hybrid powertrains, the additional dimension of vehicle architecture has become one of the design variables that must be considered. This complexity results in the need for a simulation tool that is capable of
Michaels, LarryHalbach, ShaneShidore, NeerajRousseau, Aymeric
ABSTRACT Integration risk differentiates from other program risk in that it always involves interfaces between various systems or subsystems. The level of integration required is different depending on the phase of the Acquisition Life Cycle (i.e. Materiel Solution Analysis Phase, Technology Development Phase, Engineering and Manufacturing Development Phase, Production and Deployment Phase and Operation and Support Phase). This paper focuses on the process used to assess the integration risks of integrating various technologies or subsystems into a vehicle platform. The process presented provides a step by step instruction on how to perform an integration risk assessment. A new Integration Readiness Level (IRL) rating system has been developed by the TARDEC System Engineering and Integration Group to help acquisition vehicle programs as well as science and technology teams to evaluate the health of their technology or subsystem integration into their vehicles. The rating system is
Tzau, Jerome
ABSTRACT Ground vehicles are complex systems with many interrelated subsystems - finding the sweet-spot among competing objectives such as performance, unit cost, O&S costs, development risk, and growth potential is a non-trivial task. Whole Systems Trade Analysis (WSTA) is a systems analysis and decision support methodology and tool that integrates otherwise separate subsystem models into a holistic system view mapping critical design choices to consequences relevant to stakeholders. As a highly integrated and collaborative effort WSTA generates a holistic systems and Multiple Objective Decision Analysis (MODA) model. The decision support model and tool captures and synthesizes outputs from individual analyses into trade-space visualizations designed to facilitate rapid and complete understanding of the trade-space to stakeholders and provide drill down capability to supporting rationale. The approach has opened up trade space exploration significantly evaluating up to 1020+ potential
Edwards, ShatielCilli, MatthewPeterson, TroyZabat, MikeLawton, CraigShelton, Liliana
ABSTRACT This paper will document the development of the Combat Identification (CombatID) System. The CombatID System was designed to create a platform agnostic payload that could be attached to any fielded Unmanned Ground Vehicle (UGV) to assist the Soldier in contingency basing operations. This paper will describe the approach taken to develop the system, providing a detailed description of the system, including sample results for individual modules. This paper will also provide insight on the evaluation of CombatID system’s performance
Salgian, GarbisKira, ZsoltHadsell, RaiaChiu, Han-PangZhou, XunChai, Bing-BingSamarasekera, SupunTheisen, BernardRamsey, Jeffery
ABSTRACT There is a dire need for low-cost mobile robots for the purpose of mine detection and disposal. Countries with low gross domestic product (GDP) and infected with landmines generally cannot support expensive high-tech solution. A de-mining mobile robot has to be cost effective compared to local labor costs. Presently commercially available mobile robots consist of mainly custom made parts. The design and manufacturing of such parts make the robots very expensive. This paper describes how careful selection of commercially available parts leads to reducing the development time and costs for a demining robot while ensuring its reliability, convenient operation and application domain. An actual example of how a low cost mine detection robot was successfully integrated within two months is outlined
Pajaziti, A.Cheok, K.Radovnikovich, M.Baftiu, I.Godo, G.
ABSTRACT Saft America, inc. Space and Defense Division (SDD), located in Cockeysville, Maryland, is the world leader in providing state of the art Li-ion systems for the demanding defense and space markets. Recent efforts have focused on the industrialization of the technology. Since 2004 Saft SDD has been developing a higher volume manufacturing capability of the entire cell and battery manufacturing processes. This effort is focused under two ManTech programs. The Army ManTech Program with TARDEC focuses on high power batteries for use in military ground vehicles. The USAF ManTech Program with AFRL focuses on ultra high power cells for use in aviation batteries. The goals of both programs are to industrialize the high performance technology so that they are available to the military as reliable products at an affordable cost, while improving the technology. Efforts to date have yielded improvements in performance, reliability, and cost. Advances have been realized for improving the
Ferguson, ScottNechev, KamenKelley, DanGoldwasser, Elisabeth
ABSTRACT Building battery packs for various, significantly different applications, is often complex and risky. Detailed cell and pack modeling and simulation tools, along with existing and predicted power and energy profiles significantly reduce the risk of designing and integrating a new pack for new applications on the battlefield. This paper will discuss a number of modeling and simulation techniques, using case studies as examples, that ensure a battery pack, when integrated to the application, will meet the predicted performance goals and specifications. Actual data will also be shown to validate these techniques that significantly reduce development time and risk when providing power to the Warfighter
Carmen, DavidMarcel, MichaelAlexander, Les
ABSTRACT This paper discusses the packaging characteristics of a family of power-packs for military land vehicles in the 21st century. 3 classes of vehicles are considered: light vehicles (300 - 600 Hp), medium weight vehicles (600-1000 Hp) and heavy vehicles (1000-1500 Hp). The paper highlights that a common bore engine approach provides both very good performance and a very compact power-pack. 2 different engine styles are examined. The results are expected to be applicable for a spectrum of modernized engine platforms that would employ a common bore engine approach. The approach offers many product development and production advantages, including lower development and tooling costs, and reduced product inventory needs, lead times, development costs, in addition to reduced product development risk. Various trade study parameters are considered in addition to engine power. Power-pack configurations based on a common bore approach shows significant commonality advantages and
Kacynski, KenBauman, AndreasJohnson, S. Arnie
ABSTRACT Supporting Open Architecture is a key to most major automation and control suppliers. In every industry, there is a desire to make a unified control system architecture that can easily integrate control system equipment from multiple suppliers. Whether it is a Navy military application or an industrial application, the needs are almost identical. Some of the keys to providing this transparency among control systems are utilizing an open standard that can pull together communications from multiple suppliers. In this paper, SIEMENS will demonstrate the capabilities of utilizing an open standard, which is PROFINET. By adhering to the PROFINET standards, Open Architecture is achieved at many levels in a naval application. Open Architecture is intended to yield modular, interoperable systems that adhere to open standards with published interfaces. As will be demonstrated by this paper, PROFINET provides these capabilities and more. By implementing PROFINET as the infrastructure for
Cantrell, Wayne
Abstract On the Mobile Detection Assessment Response System (MDARS) production program, General Dynamics Robotics Systems (GDRS) and International Logistics Systems (ILS), are working with the US Army’s Product Manager – Force Protection Systems (PM-FPS) to reduce system costs throughout the production lifecycle. Under this process, GDRS works through an Engineering Change Proposal (ECP) process to improve the reliability and maintainability of subsystem designs with the goal of making the entire system more producible at a lower cost. In addition, GDRS recommends substitutions of Government requirements that are cost drivers with those that reduce cost impact but do not result in reduced capability for the end user. This paper describes the production lifecycle process for the MDARS system and recommends future considerations for fielding of complex autonomous robotic systems
Frederick, BrianVirtz, PaulGrinnell, Michal
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
RADAR antennae come in varying sizes and shapes. They are often employed in heterogeneous systems (i.e., systems that use multiple detection methods) that are employed to detect and visualize objects. Object identification in the context of automated vehicle behavior design could require extensive data sets to train algorithms that have the potential to make dynamic driving decisions. A widely available platform would increase the ability of researchers learn about automated systems and to gather data, which may be necessary for training automated vehicle systems. This work describes the application of a 77 GHz, portable antenna to the description of standard fleet vehicles as well as a suite of soft targets contextualized within polar plots. This work shows that object detection and identification is possible in off-the-shelf portable systems that combine readily available materials and software in a reproducible manner. The described system and algorithm create a visual correlate
Chen, AaronHartman, EthanLin, VincentManahan, TaylorSidhu, AnmolEichaker, Lauren
Leak Before Break (LBB) is now widely applied in pressure vessels and other pressurized components to detect the failure by unstable crack initiation and propagation. This concept is also applied in pneumatic brake system components to validate the structural rigidity of the devices. Pneumatic brake system component plays a vital role in the commercial vehicle platform. It consists of four major systems such as charging systems, actuating systems, control systems and actuators. Charging System includes compressor, reservoir, air dryer, and system protection valves. Compressor acts as an energy source for pneumatic air brake systems, reservoir is used to store the compressed air generated by the compressor, and system protection valves are used to divide and distribute the air flow to the brake system. Air dryers are used to absorb moisture, oil particles and tiny foreign contaminants, regulate the system pressure, and blow off the excess pressure from the system. It contains a
Govindarasu, AnbarasuT, SukumarSubramanian, Vivek
Original equipment manufacturers have already begun to transition their vehicles from traditional internal combustion engines (ICEs) to electric drives (EVs). As the industry continues to move towards electrification, the entire industry, and especially Valeo, is focusing on lean product development (LPD) with the help of numerical simulation. Optimization techniques help industry achieve the most accurate product at the lowest cost without sacrificing performance. Generally gears are mainly used for power transmission in the advanced technologies of electric vehicles. There are many factors that must be taken into account when designing a gear transmission system. Finding the most appropriate design parameters for a gear transmission system can be a challenge, and optimization parameters will help to find the best compromise between them. The main objective of this study is to increase the contact safety factor of the gear system by fulfilling 14 constraints, which are continuous (5
C, LokeshLawrence, LeonsDrouet, BenjaminG, Rajesh KumarGopalakrishnan, Hemanth Kumar
Mode identification, particularly Modal Map Generation, is pivotal within the NVH (Noise, Vibration, and Harshness) domain for managing the performance of complex systems like TBIW/Powertrain. This study addresses the critical task of accurately identifying Global / Local behavior of a particular system as single entity (Complete TBIW, Power train) or all the systems attached to main structure (Sub Systems i.e Seat , Fuel Tank , Pump etc), which is crucial for effective NVH post-processing. Introducing a novel tool/methodology developed by the Applus IDIADA team, this paper presents an efficient approach to Global & Local mode identification across subsystems, TBIW, and Powertrain levels. Leveraging ".op2" file content, mainly Strain Energy Density[1] and Displacement [2], the tool integrates Machine Learning Techniques [3] to produce mode predictions along with detailed visual outputs such as graphs , pie chart , modal charts etc. Implemented as a Python-based solution compatible with
Naphad, AniruddhaLama Borrajo, InesPatil Sr, HitendraChandratre, SudipRana, Upendra
Additive Manufacturing (AM) techniques, particularly Fusion Deposition Modeling (FDM), have received considerable interest due to their capacity to create complex structures using a diverse array of materials. The objective of this study is to improve the process control and efficiency of Fused Deposition Modeling (FDM) for Thermoplastic Polyurethane (TPU) material by creating a predictive model using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The study investigates the impact of FDM process parameters, including layer height, nozzle temperature, and printing speed, on key printing attributes such as tensile strength, flexibility, and surface quality. Several experimental trials are performed to gather data on these parameters and their corresponding printing attributes. The ANFIS predictive model is built using the collected dataset to forecast printing characteristics by analyzing input process parameters. The ANFIS model utilizes the learning capabilities of neural networks
Pasupuleti, ThejasreeNatarajan, ManikandanD, PalanisamyA, GnanarathinamUmapathi, DKiruthika, Jothi
Items per page:
1 – 50 of 47165