Browse Topic: Manufacturing

Items (47,262)
ABSTRACT Today’s combat vehicle designs are largely constrained by traditional manufacturing processes, such as machining, welding, casting, and forging. Recent advancements in 3D-Printing technology offer tremendous potential to provide economical, optimized components by eliminating fundamental process limitations. The ability to re-design suitable components for 3D-printing has potential to significantly reduce cost, weight, and lead-time in a variety of Defense & Aerospace applications. 3D-printing will not completely replace traditional processes, but instead represents a new tool in our toolbox - from both a design and a manufacturing standpoint
Deters, Jason
ABSTRACT This paper addresses cross-domain optimization of lean technologies developed through motorsports as applied to military vehicle design. Optimization of performance objectives eliminates the reiterative assessments utilized in standard validation and verification of product development. This paper describes the enhancement of overall vehicle reliability, durability, and performance through utilization of front-loaded design, development, engineering, and prototyping activity. Cross-domain optimization, using a Design of Experiments approach (DOE) and the integration of CAE tools, predictably allows for the efficient and accurate solution of challenges prior to full scale prototype build and, congruently, eliminates the necessity for multiple variants often required throughout many testing phases. This paper illustrates, systematically, the reduction of build phases while introducing a new paradigm for military vehicle design
Bishop, Lynn W.Houghton, Kristian
ABSTRACT Semiconductor manufacturers are creating new System on Chips that allow embedded system developers to design consolidated architectures to reduce size, weight, power, and cost. However, combining software functions onto a single computing resource creates safety and security concerns due to reduced fault containment and increased coupling between software components. Safety and security-conscious industries use various software separation solutions to isolate software functions logically in order to achieve a comparable level of decoupling and fault containment that distributed/federated systems enjoy as a by-product of their system architecture. This paper will assess the suitability of common separation solutions for use in embedded systems and explain our preference for Xen, an open source Type I hypervisor. This paper will also examine reasons for porting operating systems to run in virtual machines, also known as paravirtualization, and evaluate how certain properties of
Roach, Jarvis
ABSTRACT Flash® Bainite Processing employs rapid thermal cycling (<10s) to strengthen commercial off the shelf (COTS) steel sheet, plate, and tubing into Ultra Hard 600 Armor, High Hard 500 Armor, and advanced high strength steel (AHSS). In a continuous process, induction technology heats a narrow segment of the steel cross section in just seconds to atypically high temperature (1000-1300°C). Quenching substantially immediately follows. A report by Benet Labs and Picatinny Arsenal, investigating a less mature flash technology in 2011, surmised that the novel flash bainite process for steels has the potential to reduce cost and weight while also enhancing mechanical performance [1]. Receiving five financial grants, the US Dept of Energy has greatly matured flash technology in the last few years and its metallurgical understanding in collaboration with Oak Ridge National Lab and others. DOE has named Flash Bainite as the “SBIR Small Business of the Year” in May 2018 and awarded a Phase 3
Cola, Gary M
ABSTRACT Timely part procurement is vital to the maintenance and performance of deployed military equipment. Yet, logistical hurdles can delay this process, which can compromise efficiency and mission success for the warfighter. Point-of-need part procurement through additive manufacturing (AM) is a means to circumvent these logistical challenges. An Integrated Computational Materials Engineering framework is presented as a means to validate and quantify the performance of AM replacement parts. Statistical modeling using a random forest network and finite element modeling were to inform the build design. Validation was performed by testing coupons extracted from each legacy replacement parts, as well as the new additively manufactured replacement parts through monotonic tensile and combined tension-torsion fatigue testing. Destructive full hinge assembly tests were also performed as part of the experimental characterization. Lastly, the collected experimental results were used to
Gallmeyer, Thomas GDahal, JineshKappes, Branden BStebner, Aaron PThyagarajan, Ravi SMiranda, Juan APilchak, AdamNuechterlein, Jacob
In the realm of low-altitude flight power systems, such as electric vertical take-off and landing (eVTOL), ensuring the safety and optimal performance of batteries is of utmost importance. Lithium (Li) plating, a phenomenon that affects battery performance and safety, has garnered significant attention in recent years. This study investigates the intricate relationship between Li plating and the growth profile of cell thickness in Li-ion batteries. Previous research often overlooked this critical aspect, but our investigation reveals compelling insights. Notably, even during early stage of capacity fade (~ 5%), Li plating persists, leading to a remarkable final cell thickness growth exceeding 20% at an alarming 80% capacity fade. These findings suggest the potential of utilizing cell thickness growth as a novel criterion for qualifying and selecting cells, in addition to the conventional measure of capacity degradation. Monitoring the growth profile of cell thickness can enhance the
Zhang, JianZheng, Yiting
ABSTRACT Automatic guided vehicles (AGV) have made big inroads in the automation of assembly plants and warehouse operations. There are thousands of AGV units in operation at OEM supplier and service facilities worldwide in virtually every major manufacturing and distribution sector. Although today’s AGV systems can be reconfigured and adapted to meet changes in operation and need, their adaptability is often limited because of inadequacies in current systems. This paper describes a wireless navigated (WN) omni-directional (OD) autonomous guided vehicle (AGV) that incorporates three technical innovations that address the shortfalls. The AGV features consist of: 1) A newly developed integrated wireless navigation technology to allow rapid rerouting of navigation pathways; 2) Omnidirectional wheels to move independently in different directions; 3) Modular space frame construction to conveniently resize and reshape the AGV platform. It includes an overview of the AGVs technical features
Cheok, Ka CRadovnikovich, MichoFleck, PaulHallenbeck, KevinGrzebyk, SteveVanneste, JerryLudwig, WolfgangGarner, Robert
ABSTRACT At the onset of the Second World War, it was noticed that equipment being shipped overseas to the frontlines arrived corroded. The Department of Defense rapidly escalated the use of corrosion inhibitors in packaging materials to reduce the severity of the corrosion of those assets. This paper provides an overview of vapor corrosion inhibitors, describes how they are incorporated into anti-corrosion covers, and summarizes field test results showing typical protection provided to Department of Defense assets. The paper describes the environmental conditions that warrant the use of anti-corrosion covers and presents independent ground vehicle focused return-on-investment analysis. Citation: David J. Sharman, Robert R. Danko, Bill Scheible, “Light-weight drapable anti-corrosion covers,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
Sharman, David JDanko, Robert R.Schieble, Bill
ABSTRACT Laser powder bed fusion (LPBF) additive manufacturing often results in defective parts due to non-uniform temperature distribution during fabrication. To mitigate this issue, the authors recently introduced SmartScan, an intelligent method that employs modeling and optimization to generate scan sequences that improve temperature uniformity. However, the previous version of SmartScan could only be applied to single layers. This paper presents an extension of SmartScan to three-dimensional parts by adjusting the thermal model and optimization objective. Through simulations and experiments involving fabricating AISI 316L stainless steel parts, the study demonstrates that the proposed SmartScan approach significantly improves temperature uniformity, reduces part distortion, and mitigates residual stress, as compared to conventional heuristic sequences. Citation: C. He, C. E. Okwudire, “Scan Sequence Optimization for Reduced Residual Stress and Distortion in PBF Additive
He, ChuanOkwudire, Chinedum E.
ABSTRACT The armor research and development community needs a more cost-effective, science-based approach to accelerate development of new alloys (and alloys never intended for ballistic protection) for armor applications, especially lightweight armor applications. Currently, the development and deployment of new armor alloys is based on an expert-based, trial-and-error process, which is both time-consuming and costly. This work demonstrates a systematic research approach to accelerate optimization of the thermomechanical processing (TMP) pathway, yielding optimal microstructure and maximum ballistic performance. Proof-of-principle is being performed on titanium alloy, Ti-10V-2Fe-3Al, and utilizes the Hydrawedge® unit of the Gleeble 3800 System (a servo-hydraulic thermomechanical testing device) to quickly evaluate mechanical properties and simulate rolling schedules on small samples. Resulting mechanical property and microstructure data are utilized in an artificial intelligence (AI
Lillo, ThomasChu, HenryAnderson, JeffreyWalleser, JasonBurguess, Victor
ABSTRACT Friction stir welding is a solid state joining technique in which no melting of the metals is involved. The technique is very attractive for aluminum alloys due to the low heat input involved in the process, which leads to improved mechanical properties as compared to conventional fusion welds. In this work, different aluminum series alloys were friction stir welded together. The aluminum alloys consisted of a solid solution/strain hardened aluminum alloy 5083-H131, and precipitation strengthened aluminum alloys 2139-T8 and aluminum 7085-T721. The joint combinations were aluminum alloys 5083-H131 to 7085-T721, aluminum alloys 2139-T8 to 7085-T721, and aluminum alloys 5083-H131 to 2139-T8. Their mechanical properties were analyzed and compared to base metal properties. Optical microscopy was used to analyze the grains in the welds. Good mixing of the different aluminum alloys was optically observed in all of the welds, which lead to good joint properties, opening the
Martinez, NelsonMcDonnell, Martin
ABSTRACT Most studies conducted on friction stir welded (FSW) Al alloys are on plates that are 2.5-7 mm thick. However, the U.S. Army utilizes materials that are 25 mm thick and greater for structure and armor. In order to properly apply FSW to Al-Cu-Mg-Ag alloys for use in next generation ground vehicles, data must be generated and available for model and simulation databases. One key type of data is the tensile-creep behavior of FSW AA 2139-T8. Creep is the time dependent, plastic deformation of a material under a constant load, usually observed at a constant temperature where T>0.3Tm. The objective of this study is to provide information regarding the tensile-creep behavior of the stir zone in comparison to the heat affected zone (HAZ) through the depth of the weld. The results from this research provide information on the effect of FSW processing on the microstructure and creep behavior. Pre- and post-deformation samples were analyzed via SEM and TEM and the results are discussed
Okeke, UchechiBoehlert, Carl
ABSTRACT Situations exist that require the ability to preposition a basic level of energy infrastructure. Exploring and developing the arctic’s oil potential, providing power to areas damaged by natural or man-made disasters, and deploying forward operating bases are some examples. This project will develop and create a proof-of-concept electric power prepositioning system using small autonomous swarm robots each containing a power electronic building block. Given a high-level power delivery requirement, the robots will self-organize and physically link with each other to connect power sources to storage and end loads. Each robot mobile agent will need to determine both its positioning and energy conversion strategy that will deliver energy generated at one voltage and frequency to an end load requiring a different voltage and frequency. Although small-scale robots will be used to develop the negotiation strategies, scalability to existing, large-scale robotic vehicles will be
Weaver, Wayne W.Mahmoudian, NinaParker, Gordon G.
ABSTRACT The age of large autonomous ground vehicles has arrived. Wherever vehicles are used, autonomy is desired and, in most cases, being studied and developed. The last barrier is to prove to decision makers (and the general public) that these autonomous systems are safe. This paper describes a rigorous safety testing environment for large autonomous vehicles. Our approach to this borrows elements from game theory, where multiple competing players each attempt to maximize their payout. With this construct, we can model an environment that as an agent that seeks poor performance in an effort to find the rare corner cases that can lead to automation failure
Penning, RyanEnglish, JamesMelanz, DanielLimone, BrettMuench, PaulBednarz, David
Related to traditional engineering materials, magnesium alloy-based composites have the potential for automobile applications and exhibit superior specific mechanical behavior. This study aims to synthesize the magnesium alloy (AZ61) composite configured with 0 wt%, 4 wt%, 8 wt%, and 12 wt% of silicon nitride micron particles, developed through a two-step stir-casting process under an argon environment. The synthesized cast AZ61 alloy matrix and its alloy embedded with 4 wt%, 8 wt%, and 12 wt% of Si3N4 are subjected to an abrasive water jet drilling/machining (AJWM) process under varied input sources such as the diameter of the drill (D), transverse speed rate (v), and composition of AZ61 composite sample. Influences of AJWM input sources on metal removal rate (MRR) and surface roughness (Ra) are calculated for identifying the optimum input source factors to attain the best output responses like maximum MRR and minimum Ra via analysis of variant (ANOVA) Taguchi route with L16 design
Venkatesh, R.
ABSTRACT Protection Engineering Consultants (PEC) has performed static and dynamic-pendulum tests on bolted and welded connection sub-assemblies to generate data for development and validation of modeling approaches capable of accurately predicting the behavior of connections exposed to shock loads. The connections consisted of Rolled Homogeneous Armor (RHA) steel plates, Grade 8 bolts, and fillet welds of ER80-S wire, as typically used in armored vehicles. A summary of the forty physical tests on nine connection configurations are provided along with strain gage and Digital Image Correlation (DIC) data. The specimens were designed to have typical failure modes, i.e. bolt shear, plate tear-out, and weld shear fracture. Using these data, high-fidelity numerical models were developed, with exceptionally good comparisons to the experimental data. During the development of the numerical models, crucial modeling parameters were identified and were shown to have significant influence to the
Hadjioannou, MichalisBarsotti, MattSammarco, EricStevens, David
ABSTRACT Many recent advances in autonomy are derived from algorithm optimization and analysis with a large volume of data. The Autonomous Mobility Through Intelligent Collaboration (AMIC) program established a resource to host and access data to accelerate autonomy capability development across the U.S. Army Robotics and Autonomous Systems enterprise. The repository is seeded with high-quality multi-modal Autonomous Ground Vehicle sensor data collected from relevant operating environments. Development of unmanned air-ground teaming capability that extends the perception and planning horizon of an individual ground vehicle exercises and informs the development of the data warehouse. Collected data was also used to train a convolutional neural network to estimate relative vehicle position from camera images for communication-free formation control. Citation: M. Boulet, E. Cristofalo, P. DeBitetto, D. Griffith, A. Heier, S. Kassoumeh, A. Plotnik, A. Wu, “Applications of a Shared Data
Boulet, MichaelCristofalo, EricDeBitetto, PaulGriffith, DanielHeier, AndrewKassoumeh, SamPlotnik, AaronWu, Alan
ABSTRACT The International Council on Systems Engineering https://www.incose.org/ is a recognized standards body defining a system engineering knowledge-base, but this knowledge falls short of fully recognizing manufacturing in the Systems Engineering (SE) framework. To be inclusive, Manufacturing needs to join in the initiative of Model Based Systems Engineering to be relevant and succeed in the digital transformation in the field of systems engineering. This paper addresses this need in manufacturing by applying Model Based System Engineering (MBSE) to the identification and management of key characteristics so that a more relevant set of Manufacturing requirements can be introduced into the MBSE construct and help realize manufacturing resilience and become a full SE partner. Citation: “Identification and Management of Key Characteristics in Product Development Using Model Based Systems Engineering,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
Ireland, William
ABSTRACT Laser powder bed fusion (L-PBF) of entire assemblies is not typically practical for technical and economic reasons. The build size limitations and high production costs of L-PBF make it competitive for smaller, highly complex components, while the less complex elements of an assembly are manufactured conventionally. This leads to scenarios that use L-PBF only where it’s beneficial and requires integration and joining to form the final product. Today the welding process requires complex welding fixtures and tack welds to ensure correct alignment and positioning of parts for repeatable results. In this paper, both L-PBF and milled weld preparations are presented to simplify Tungsten inert gas (TIG) welding of rotationally symmetrical geometries using integrated features for alignment and fixation. All welds produced in this study passed the highest evaluation group B according to DIN 5817. Citation: Ole Geisen, Tad Steinberg, “Microstructure analysis of TIG welded additively
Geisen, OleSteinberg, Tad
ABSTRACT Given the complex nature of systems today, systems engineering’s primary focus is typically consumed with optimizing function and performance. This condition often causes producibility and cost to become an after-thought, leading to late, over budget production. Therefore an objective and relevant method is required to provide real-time feedback to system engineers relative to producibility and confidence that facilitates better systems design and programmatic decisions. This paper will discuss the use of producibility model metrics to score several key design elements for the creation of a single standardized producibility index (PI) to encourage engineers to improve their designs for producibility earlier in the development life-cycle. Additionally monitoring certain analysis activities to gauge the level of accuracy in the producibility model will provide metrics to create a single standardized producibility confidence index (PCI) that can be used to mitigate risk in
Hadley, James R.McCarthy, Daniel J.
ABSTRACT The University of Delaware (UD) and the US Army DEVCOM-GVSC (GVSC) have partnered to show the feasibility of fabricating mission specific, man-packable, autonomous vehicles that are created by Computer Aided Design (CAD) and are then produced, from start-to-finish, in a single manufacturing unit-cell without human intervention in the manufacturing process. This unit-cell contains many manufacturing processes (e.g., additive manufacturing (AM), pick-and-place, circuit printing, and subtractive manufacturing) that work in concert to fabricate functional devices. Together, UD and GVSC have developed the very first mission specific autonomous vehicle that is fully fabricated in a single manufacturing unit-cell without being touched by human hand. Citation: Jacob W. Robinson, Thomas W. Lum, Zachary J. Larimore, Matthew P. Ludkey, Larry (LJ) R. Holmes, Jr. “AUTOMATED MANUFACTURING FOR AUTONOMOUS SYSTEMS SOLUTIONS (AMASS)”, In Proceedings of the Ground Vehicle Systems Engineering and
Robinson, Jacob W.Lum, Thomas W.Larimore, Zachary J.Ludkey, Matthew P.Holmes, Larry (LJ) R.
Items per page:
1 – 50 of 47262