Browse Topic: Advanced manufacturing
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Fused Deposition Modeling (FDM) is a highly adaptable additive manufacturing method that is extensively employed for creating intricate structures using a range of materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability, making it well-suited for use in industries such as footwear, automotive, and consumer goods. Hoses, gaskets, seals, external trim, and interior components are just a few of the many uses for thermoplastic polyurethanes (TPU) in the automobile industry. The objective of this study is to enhance the performance of Fused Deposition Modeling (FDM) by optimizing the parameters specifically for Thermoplastic Polyurethane (TPU) material. This will be achieved by employing a Taguchi-based Grey Relational Analysis (GRA) method. The researchers conducted experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses
Additive Manufacturing (AM), particularly Fused Deposition Modeling (FDM), has revolutionized the manufacturing sector by enabling the production of complex geometries using various materials. Polylactic Acid (PLA) is a biodegradable thermoplastic often used in additive manufacturing (AM) because to its eco-friendliness, cost-effectiveness, and processing simplicity. This research seeks to enhance the parameters of Fused Deposition Modeling (FDM) for PLA material with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The researchers conducted experimental trials to investigate the influence of key FDM parameters, including layer thickness, infill density, printing speed, and nozzle temperature, on essential outcomes such as dimensional accuracy, surface quality, and mechanical qualities. The design of experiments (DOE) technique facilitated a systematic investigation of parameters. The TOPSIS method, a decision-making tool based on several
Soft-bending actuators have garnered significant interest in robotics and biomedical engineering due to their ability to mimic the bending motions of natural organisms. Using either positive or negative pressure, most soft pneumatic actuators for bending actuation have modified their design accordingly. In this study, we propose a novel soft bending actuator that utilizes combined positive and negative pressures to achieve enhanced performance and control. The actuator consists of a flexible elastomeric chamber divided into two compartments: a positive pressure chamber and a negative pressure chamber. Controlled bending motion can be achieved by selectively applying positive and negative pressures to the respective chambers. The combined positive and negative pressure allowed for faster response times and increased flexibility compared to traditional soft actuators. Because of its adaptability, controllability, and improved performance can be used for various jobs that call for careful
Additive Manufacturing (AM), particularly Fused Deposition Modeling (FDM), has emerged as a revolutionary method for fabricating complex geometries using a variety of materials. Polyethylene terephthalate glycol (PETG) is a thermoplastic material that is biodegradable and environmentally friendly, making it a preferred choice in additive manufacturing (AM) due to its affordability and ease of use. This study aims to optimize the FDM settings for PETG material and investigate the impact of key process parameters on printing performance. An experimental study was conducted to evaluate the influence of crucial factors in FDM, including layer thickness, infill density, printing speed, and nozzle temperature, on significant outcomes such as dimensional accuracy, surface quality, and mechanical properties. The use of the Grey Relational Analysis (GRA) approach enabled a systematic assessment of multi-performance characteristics, facilitating the optimization of the FDM process. The findings
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
Fused Deposition Modeling (FDM), a form of Additive Manufacturing (AM), has emerged as a groundbreaking technology for the production of complex shapes from a variety of materials. Acrylonitrile Butadiene Styrene (ABS) is an opaque thermoplastic that is frequently employed in additive manufacturing (AM) due to its affordability and user-friendliness. The purpose of this investigation is to enhance the FDM parameters for ABS material and develop predictive models that anticipate printing performance by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS). Through experimental trials, an investigation was conducted to evaluate the influence of critical FDM parameters, including layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including mechanical properties, surface polish, and dimensional accuracy. The utilization of design of experiments (DOE) methodology facilitated a systematic examination of parameters. A predictive model was
Fused Deposition Modeling (FDM) is a widely recognized additive manufacturing method that is highly regarded for its ability to create complex structures using thermoplastic materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability. TPU has several applications, including automobile instrument panels, caster wheels, power tools, sports goods, medical equipment, drive belts, footwear, inflatable rafts, fire hoses, buffer weight tips, and a wide range of extruded film, sheet, and profile applications.. The primary objective of this study is to enhance the FDM parameters for TPU material and construct regression models that can accurately forecast printing performance. The study involved conducting experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses, including dimensional accuracy, surface quality, and mechanical
Fused deposition modeling (FDM) is a rapidly growing additive manufacturing method employed for printing fiber-reinforced polymer composites. Nonetheless, the performance of printed parts is often constrained by inherent defects. This study investigates how the varying annealing parameter affects the tribological properties of FDM-produced polypropylene carbon fiber composites. The composite pin specimens were created in a standard size of 35 mm height and 12 mm diameter, based on the specifications of the tribometer pin holder. The impact of high-temperature annealing process parameters are explored, specifically annealing temperature and duration, while maintaining a fixed cooling rate. Two set of printed samples were taken for post-annealing at temperature of 85°C for 60 and 90 min, respectively. The tribological properties were evaluated using a dry pin-on-disc setup and examined both pre- (as-built) and post-annealing at temperature of 85°C for 60 and 90 min printed samples
Letter from the Guest Editors
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a highly promising method for creating intricate shapes using different materials. Polyethylene Terephthalate Glycol (PETG) is a highly utilized thermoplastic that is recognized for its exceptional strength, resistance to chemicals, and effortless processing. This study aims to optimize the process parameters of the FDM technique for PETG material using Taguchi Grey Relational Analysis (GRA). An empirical study was carried out to examine the impact of various FDM process parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on important outcome variables like dimensional accuracy, surface quality, and mechanical properties. The Taguchi method was used to systematically design a series of experiments, while GRA was used to optimize the process parameters and performance characteristics. The results unveiled the most effective parameter combinations for attaining
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a revolutionary technology for creating intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly properties, affordability, and ease of use. The objective of this study is to optimize the FDM parameters for PLA material and create predictive models using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast printing performance. An investigation was carried out through experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes such as dimensional accuracy, surface finish, and mechanical properties. The utilization of design of experiments (DOE) methodology enabled a methodical exploration of parameters. A predictive model using ANFIS was created to
Additive Manufacturing (AM), specifically Fusion Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of complex structures using a wide range of materials. The objective of this study is to enhance the FDM process for Thermoplastic Polyurethane (TPU) material by utilizing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) optimization method. The study examines the influence of FDM parameters, such as layer height, nozzle temperature, and infill density, on important characteristics of the printing process, such as tensile strength, flexibility, and surface finish. The collection of experimental data is achieved by conducting systematic FDM printing trials that cover a variety of parameter combinations. The TOPSIS optimization method is utilized to determine the optimal parameter settings by evaluating each parameter combination against the ideal and anti-ideal solutions. This method determines the optimal parameter
Researchers at the Johns Hopkins Applied Physics Laboratory have developed a machine learning method that could have a huge impact on understanding how material is formed during the additive manufacturing process. John Hopkins Applied Physics Laboratory, Laurel, MD Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin. “We anticipate that this new approach will be extremely impactful in helping design and understand material formation during additive manufacturing processes, and this fits into our overarching strategy focused on accelerating materials development for national security,” said
As “point of need” additive manufacturing emerges as a priority for the Department of Defense (DoD), Australian 3D printing provider SPEE3D is one of several companies demonstrating that its machines can rapidly produce castings, brackets, valves, mountings and other common replacement parts and devices that warfighters often need in an on-demand schedule when deployed near or directly within combat zones. DoD officials describe point of need manufacturing as a concept of operations where infantry and squadron have the equipment, machines, tools and processes to rapidly 3D print parts and devices that are being used in combat. Based in Melbourne, Australia, SPEE3D provides cold spray additive manufacturing (CSAM) machines that use a combination of robotics and high-speed kinetic energy to assemble and quickly bind metal together into 3D-printed parts without the need for specific environmental conditions or post-assembly cooling or temperature requirements. Over the last two years, the
Honda has long been at the cutting edge of mobility and tech, with everything from the Asimo robot of 20 years ago to plans for reusable rockets to launch lightweight satellites into orbit. During a Tech Day event in early October in Tochigi, Japan, the Japanese automaker announced further details of its upcoming Honda 0 architecture (Honda calls it “Honda Zero” but writes it with the number), its first in-house electric platform designed from the ground up. Honda also discussed some of the advanced manufacturing techniques it's pioneering to reach its core design and technology tenants.
In recent years, engineers at ETH Zurich have developed the technology to produce liquid fuels from sunlight and air. In 2019, they demonstrated the entire thermochemical process chain under real conditions for the first time, in the middle of Zurich, on the roof of ETH Machine Laboratory. These synthetic solar fuels are carbon neutral because they release only as much CO2 during their combustion as was drawn from the air for their production. Two ETH spin-offs, Climeworks and Synhelion, are further developing and commercializing the technologies.
Researchers have successfully demonstrated the four-dimensional (4D) printing of shape memory polymers in submicron dimensions that are comparable to the wavelength of visible light. 4D printing enables 3D-printed structures to change their configurations over time and is used in a variety of fields such as soft robotics, flexible electronics, and medical devices.
Researchers have developed a printing process that prints strong nonmetallic materials in record time — five times faster than traditional 3D printing. The process, called SWOMP, which stands for Selective dual-wavelength Olefin metathesis 3D printing, uses dual-wavelength light, unlike the traditional printing process.
Duke University Durham, NC
Biomedical engineers have developed a “bio-ink” for 3D-printed materials that could serve as scaffolds for growing human tissues to repair or replace damaged ones in the body. Bioengineered tissues show promise in regenerative, precision, and personalized medicine; product development; and basic research, especially with the advent of 3D printing of biomaterials that could serve as scaffolds or temporary structures to grow tissues.
Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin.
This work aims to define a novel integration of 6 DOF robots with an extrusion-based 3D printing framework that strengthens the possibility of implementing control and simulation of the system in multiple degrees of freedom. Polylactic acid (PLA) is used as an extrusion material for testing, which is a thermoplastic that is biodegradable and is derived from natural lactic acid found in corn, maize, and the like. To execute the proposed framework a virtual working station for the robot was created in RoboDK. RoboDK interprets G-code from the slicing (Slic3r) software. Further analysis and experiments were performed by FANUC 2000ia 165F Industrial Robot. Different tests were performed to check the dimensional accuracy of the parts (rectangle and cylindrical). When the robot operated at 20% of its maximum speed, a bulginess was observed in the cylindrical part, causing the radius to increase from 1 cm to 1.27 cm and resulting in a thickness variation of 0.27 cm at the bulginess location
Items per page:
50
1 – 50 of 1086