Browse Topic: Advanced manufacturing

Items (1,151)
Advancements in additive manufacturing (AM) technology have enabled the use of Triply Periodic Minimal Surface (TPMS) lattice structures to integrate thermal and structural functions into a single component. These structures offer advantages such as weight reduction, compactness and enhanced heat dissipation, making them promising for automotive, aerospace and electronics applications. TPMS structures, characterized by zero mean curvature and periodic crystalline geometry, have recently gained significant research attention thanks to their potential in thermal management. Among various TPMS geometries, the gyroid and diamond structures stand out for their thermal and fluid dynamic performance. This study explores the influence of cell geometry, unit cell size, and wall thickness on the efficiency of TPMS-based heat exchangers, as these parameters are crucial for their technical feasibility. Using Computational Fluid Dynamics (CFD) simulations, a comparative analysis is conducted for a
Cordisco, IlarioTorri, FedericoBerni, FabioTesta, VeronicaGiacalone, MauroFontanesi, Stefano
After 3D printing a habitat designed for Mars and working with NASA on print material made from synthetic Moon dust, AI SpaceFactory Inc. has commercialized two separate 3D printers. The Secaucus, NJ-based company’s latest offering, Starforge, is a large-capacity 3D printer that uses innovative print material inspired by SpaceFactory’s work with NASA’s Kennedy Space Center in Florida under an Announcement of Collaboration Opportunity agreement.
MIT researchers have used 3D printing to produce self-heating microfluidic devices, demonstrating a technique which could someday be used to rapidly create cheap, yet accurate, tools to detect a host of diseases.
Researchers at the Department of Energy’s Oak Ridge National Laboratory are using advanced manufacturing techniques to revitalize the domestic production of very large metal parts that weigh at least 10,000 pounds each and are necessary for a variety of industries, including clean energy.
This specification establishes process controls for the repeatable production of aerospace parts by Electron Beam Powder Bed Fusion (EB-PBF). It is intended to be used for aerospace parts manufactured using additive manufacturing (AM) metal alloys, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
This specification establishes process controls for the repeatable production of preforms by Wire Fed Plasma Arc Directed Energy Deposition (PA-DED). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
Imagine a robot that can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D printer. It can also be printed in one go, from one material.
By combining topology optimization and additive manufacturing, a team of University of Wisconsin-Madison engineers created a twisty high-temperature heat exchanger that outperformed a traditional straight channel design in heat transfer, power density and effectiveness.
Bosch bolstered its 3D printing capabilities when it added a new metal 3D printer at its Nuremberg, Germany, plant earlier this year. The NXG XII 600 metal 3D printer from Nikon SLM Solutions met the supplier's need - the need for speed - as well as the non-Top Gun-related precision, flexibility and energy efficiency when manufacturing complex metal parts for its in-house and third-party customers. The Nuremberg plant invested nearly six million euros in the center, including the purchase and installation of the new metal 3D printer. Bosch claims to be the first Tier 1 automotive supplier in Europe to have a facility in this performance class.
Gehm, Ryan
As medical technologies continue to evolve, the demand for miniaturized components with tight tolerances and high performance is accelerating. Meeting these requirements calls for advanced manufacturing methods that can deliver both precision and scalability. One process rising to the challenge is micromolding — a technology that is quietly powering some of the most significant advances in modern medical devices.
A long-lasting, 3D-printed, adhesive-free wearable provides a more comprehensive picture of a user’s physiological state. The device, which measures water vapor and skin emissions of gases, continuously tracks and logs physiological data associated with dehydration, metabolic shifts, and stress levels.
This research examined maraging steel (C300), which is widely used in the automotive industry. The study investigated how various 3D printing parameters—laser power (P), scanning speed (V), and layer spacing (H)—as well as post-processing heat treatment factors such as time (t) and temperature (T) affect the properties of C300 steel produced via selective laser melting (SLM). The primary properties assessed included relative density, porosity, hardness, and microstructure. The first part of the analysis focused on how processing parameters, time, and temperature influenced porosity types and manufacturing defects. Subsequently, ANOVA was employed to explore the sensitivity of relative density and microhardness to these parameters. The results revealed an optimal combination of parameters that improved both microstructural and mechanical properties. Additionally, the post-processing heat treatment was found to impact microhardness by modifying the microstructure and martensite lath size
Jaballah, OlaOmidi, NargesIltaf, AsimBarka, NoureddineEl Ouafi, Abderrazak
This study presents a novel biomimetic flow-field concept that integrates a triply periodic minimal surface (TPMS) porous architectures with a hierarchical leaf-vein-inspired distribution zone, fabricated through 3D printing. By mimicking natural transport systems, the proposed design enhances oxygen delivery and water removal in proton exchange membrane fuel cells (PEMFCs). The results showed that I-FF and G-FF significantly improved mass transport and water management compared to conventional CPFF. The integrated design I-FF-LDZ achieves up to 32% improvement in power density at 1.85 A/cm2@0.4 V and delays the onset of mass transport losses. The study also reveals that optimizing the volume fraction Vf significantly affects gas penetration, with lower Vf (30%) improving performance in the mass-limited region. These findings underscore the promise of nature-inspired, 3D-printed flow-field architectures in overcoming key transport limitations and advancing the scalability of next
Ho-Van, PhucLim, Ocktaeck
A team of UCLA engineers and their colleagues have developed a new design strategy and 3D printing technique to build robots in one single step. The breakthrough enabled the entire mechanical and electronic systems needed to operate a robot to be manufactured all at once by a new type of 3D printing process for engineered active materials with multiple functions (also known as metamaterials). Once 3D printed, a “meta-bot” will be capable of propulsion, movement, sensing, and decision-making.
The ported shroud casing treatment for turbocharger compressors is desirable for mitigating broadband/whoosh noise and enhancing boost pressures at low to mid flow rates. Yet, it is accompanied by elevated narrowband noise at the blade-pass frequency (BPF). Compressor BPF noise occurs at high frequencies where wave propagation is often multi-dimensional, rendering traditional planar wave silencers invalid. An earlier work introduced a novel reflective high-frequency silencer (baseline) targeting BPF noise in the 8-12 kHz range using an “acoustic straightener” that promoted planar wave propagation along arrays of quarter-wave resonators (QWRs). The design, however, faced challenges with high-amplitude tonal noise generation at specific flow conditions due to flow-acoustic coupling at the opening of the QWRs, thereby compromising the noise attenuation. The current study explores two QWR interface geometries that weaken the coupling, including linear and saw-tooth ramps on the upstream
Sriganesh, PranavSelamet, Ahmet
The process of producing aircraft parts involves the drilling of aluminum alloys. This creates a large amount of chips, which are removed using air, but sometimes they still remain within the holes. This is checked by inspectors through visual inspection. However, the quality of human inspection varies based on skill level and fatigue. Thus, image-based inspection should be used to stabilize and further improve inspection quality. This study aims to build a framework for chip detection based on image processing. Taking into account on-site implementation, the system must have low installation and running costs and be standalone. Therefore, we adopt the KIZKI algorithm, which satisfies these conditions. KIZKI means awareness in Japanese. This is a model of human peripheral vision and saccades. It does not require training like AI and can achieve high-speed and high-performance detection using a low-performance computer. In other words, there is no need for a computer with an expensive
Iinuma, MarinSato, JunyaTsuji, Masahiko
Industrial bearings are critical components in aerospace, industrial, and automotive manufacturing, where their failures can result in costly downtime. Traditional fault diagnosis typically depends on time-consuming on-site inspections conducted by specialized field engineers. This study introduces an automated Artificial Intelligence virtual agent system that functions as a maintenance technician, empowering on-site personnel to perform preliminary diagnoses. By reducing the dependence on specialized engineers, this technology aims to minimize downtime. The Agentic Artificial Intelligence system leverages agents with the backbone of intelligence from Computer Vision and Large Language Models to guide the inspection process, answer queries from a comprehensive knowledge base, analyze defect images, and generate detailed reports with actionable recommendations. Multiple deep learning algorithms are provisioned as backend API tools to support the agentic workflow. This study details the
Chandrasekaran, Balaji
Additive manufacturing has been a game-changer in helping to create parts and equipment for the Department of Defense's (DoD's) industrial base. A naval facility in Washington state has become a leader in implementing additive manufacturing and repair technologies using various processes and materials to quickly create much-needed parts for submarines and ships. One of the many industrial buildings at the Naval Undersea Warfare Center Division, Keyport, in Washington, is the Manufacturing, Automation, Repair and Integration Networking Area Center, a large development center housing various additive manufacturing systems.
Biomedical metal implant materials are widely used in clinical applications, including dental implants, hip replacement, bone plates, and screws. However, traditional manufacturing processes face limitations in meeting customized medical needs, internal structural control, and efficient material utilization. For example, when producing complex-shaped titanium alloy parts using conventional methods, the material consumption ratio is as high as 10:1–20:1, leading to significant material waste.
A system has been developed to optimize the electrical, thermal, and mechanical behavior of 3D printed materials. University Carlos III of Madrid (UC3M), in collaboration with the University of Oxford, Imperial College London, and the BC Materials research center in the Basque Country, has developed an innovative computational model that makes it possible to predict and improve the behavior of multifunctional structures manufactured using 3D printers.
An industry-academia collaboration to advance sustainable bioprocessing through innovative materials for additive manufacturing, also known as 3D printing, has been announced by Innovate UK (IUK), as part of the “Sustainable Medicines Manufacturing Innovation: Collaborative R&D Fund.”
In February, the Joint Interagency Field Experimentation (JIFX) team at the Naval Postgraduate School (NPS) executed another highly collaborative week of rapid prototyping and defense demonstrations with dozens of emerging technology companies. Conducted alongside NPS’ operationally experienced warfighter-students, the event is a win-win providing insight to accelerate potential dual-use applications.
As a result of advancements to the Industrial Internet of Things (IIoT), companies across the globe are realizing the potential of smart manufacturing and connected business models. In fact, IoT connections are projected to more than double over the coming years: from 18 billion dollars in 2024 to 39.6 billion by 2033.
The promise of additive manufacturing (AM) in the medical device industry has always been clear, the ability to create intricate geometries, patient-specific implants, and previously impossible structures. The reality, however, is far less inspiring. Often, manufacturers believe they are designing for AM, but in truth, most have only scratched the surface of what is possible. They are working within the confines of traditional design principles and are often defaulting to software-driven solutions, believing these tools will carry them across the finish line.
Lee-Jeffs, AnnSafi, JoannaMuelaner, Jody EmlynBarkan, Terrance
Phillips, PaulSlattery, KevinCoyne, JenniferHayes, Michael
The escalating weight of main battle tanks (MBTs) has compelled designers to innovate with Ultra-high hard armor (UHA) steel against the current generation rolled homogenous armor (RHA). This study delves into investigating the experimental and numerical ballistic performance of 15 mm–thick UHA steel and 15 mm–thick RHA steel against a 7.62 mm armor-piercing (AP) small-arm projectile. Finite element (FE) simulations were executed using ANSYS software, incorporating the Johnsons Cook model and shock Rankine–Hugoniot equations. The outcomes highlight that the UHA steel arrests the projectile’s advancement at a depth of penetration (DoP) of 3 mm, where the mode of failure is projectile break-up with cleavage failure. Conversely, the RHA base metal demonstrates perforation accompanied by ductile hole growth as the mode of failure. This perforation is attributed to plastic deformation and material extrusion, aligning well with the FE model. In the second scenario, the ballistic limit of a
Naveen Kumar, SubramaniBalasubramanian, V.Malarvizhi, S.Sonar, TusharHafeezur Rahman, A.Balaguru, V.
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Sahoo, PriyabrataGarg, IshanRawat, SudhanshuNarula, RahulGupta, AnkitBindra, RiteshRao, Akkinapalli VNGarg, Vipin
The advance of regulatory emission standards for light-duty vehicles, trucks and motorcycles, coupled with rising sustainability concerns, particularly United Nations' Sustainable Development Goal 12 (responsible consumption and production), has created an urgent need for lighter, stronger, and more ecological materials. Polylactic acid (PLA), a biodegradable polymer derived from plant sources, offers promising mechanical tensile strength and processability. Nanocomposites, a solution that combines a base matrix with a nanoreinforcing filler, provides a path toward developing sustainable materials with new properties. Cellulose nanofibrils (CNF) are a valuable nanofiller obtained through industrial waste or vegetal fibers, offer a promising avenue for strengthening PLA-based materials. Additive manufacturing (AM) has gained popularity due to its ability to create complex parts, prototyping designs, and to evaluate new nanocomposite materials such as PLA/CNF, showing significant
de Oliveira, ViníciusHoriuchi, Lucas NaoGoncalves, Ana PaulaDe Andrade, MarinaPolkowski, Rodrigo
Triply Periodic Minimal Surface (TPMS) structures have gained significant attention in recent years due to their excellent mechanical properties, lightweight characteristics, and potential for energy absorption in various engineering applications, particularly in automotive safety. This study explores the design, manufacturing, and mechanical performance of both general and hybrid TPMS structures for energy absorption. Three types of fundamental TPMS unit cells—Primitive, Gyroid, and IWP—were modeled using implicit functions and combined to form hybrid structures. The hybrid designs were optimized by employing Sigmoid functions to achieve smooth transitions between different unit cells. The TPMS structures were fabricated using Selective Laser Melting (SLM) technology with 316L stainless steel and subjected to quasi-static compression tests. Numerical simulations were conducted using finite element methods to verify the experimental results. The findings indicate that hybrid TPMS
Liu, ZheWang, MingJieGuo, PengboLi, YouguangLian, YuehuiZhong, Gaoshuo
As stepper motors become more and more widely used in engineering systems (vehicles, 3-D printers, manufacturing tools, and similar), the effects of their induced magnetic fields present a concern during the packing and orientation of components within the system. For applications requiring security, this is also a concern as the background electromagnetic radiation (EMF) can be captured at a distance and used to reproduce the motion of the motor during operation. One proposed alternative is to use customized non-magnetic plastic shields created using additive manufacturing. Some small studies have been completed which show some effectiveness of this approach but these studies have been small-scale and difficult to reproduce. To seek a more rigorous answer to this question and collect reproducible data, the present study used full factorial design of experiments with several replications. Three materials were used: Polylactide (PLA), PLA with 25% (weight) copper powder, and PLA with 15
Hu, HenryPatterson, Albert E.Karim, Muhammad FaeyzPorter, LoganKolluru, Pavan V.
The automotive industry leverages Fused Filament Fabrication (FFF) -based Additive Manufacturing (AM) to reduce lead time and costs for prototypes, rapid tooling, and low-volume customized designs. This paper examines the impact of print orientation and raster angle on the tensile properties of Polylactic Acid (PLA), selected for its ease of use and accessibility. Dog bone samples were designed to the ASTM D638 tensile testing standard and printed solid with a 0.2 mm layer height, two outer walls, and varying raster-fill angles, with layers alternating by 90°. Testing was conducted on the MTS Criterion Model 43, 50 kN system. Varying print orientation along the X and Y axes (double angle builds) produced a Young's modulus (YM) range of 0.7519, reflecting a 34.42% increase between the witnessed minimum and maximum values. These builds exhibited more brittle behavior than most single angle builds, except for X10 Y10 Z0 at a 45° raster (the lowest recorded YM) and X0 Y15 Z0 at a 30
Strelkova, DoraUrbanic, Ruth Jill
Triply periodic minimal surface (TPMS) structure, demonstrates significant advantages in vehicle design due to its excellent lightweight characteristics and mechanical properties. To enhance the mechanical properties of TPMS structures, this study proposes a novel hybrid TPMS structure by combining Primitive and Gyroid structures using level set equations. Following this, samples were fabricated using selective laser sintering (SLS). Finite element models for compression simulation were constructed by employing different meshing strategies to compare the accuracy and simulation efficiency. Subsequently, the mechanical properties of different configurations were comprehensively investigated through uniaxial compression testing and finite element analysis (FEA). The findings indicate a good agreement between the experimental and simulation results, demonstrating the validity and accuracy of the simulation model. For TPMS structures with a relative density of 30%, meshing with S3R
Tang, HaiyuanXu, DexingSun, XiaowangWang, XianhuiWang, LiangmoWang, Tao
A passenger vehicle hood is designed to meet Vulnerable Road User (VRU) regulatory requirements and consumer metric targets. Generally, hood inner design and its reinforcements, along with deformable space available under the hood are the main enablers to meet the Head Impact performance targets. However, cross functional balancing requirements, such as hood stiffness and packaging space constraints, can lead to higher Head Injury Criteria (HIC15) scores, particularly when secondary impacts are present. In such cases, a localized energy absorber is utilized to absorb the impact energy to reduce HIC within the target value. The current localized energy absorber solutions include the usage of flexible metal brackets, plastic absorbers etc. which have limited energy absorbing capacity and tuning capability. This paper focuses on usage of a novel 3D printed energy absorbers, based on various kinds of lattice structures. These absorbers are either sandwiched between the inner and the outer
Kinila, VivekanandaAgarwal, VarunV S, RajamanickamTripathy, BiswajitGupta, Vishal
With the development of additive manufacturing technology, the concept of integrated design has been introduced and deeply involved in the research of body design. In this paper, by analyzing the structural characteristics of the electric vehicle body, we designed a body in white with the additive manufacturing process, and analyzed its mechanical properties through finite element method. According to the structural characteristics of the body, the integrated structure was modeled in three dimensions using CATIA. For the mechanical properties of the body, the strength and stiffness of the body structure were simulated and analyzed based on ANSYS Workbench. The results show that for the strength of the body, the maximum stress of the simulation results was compared with the permissible stress, and the maximum stress was calculated to be less than the permissible stress under each working condition. For the body stiffness, the displacement of the body deformation was used to measure, and
Xu, ChengZhang, MingWang, TaoZhang, Tang-yunCao, CanWang, Liangmo
Purdue University material engineers have created a patent-pending process to develop ultrahigh-strength aluminum alloys that are suitable for additive manufacturing because of their plastic deformability.
Items per page:
1 – 50 of 1151