Browse Topic: Advanced manufacturing

Items (1,048)
ABSTRACT As metallic parts are used, wear, fracture, galling, warpage, and other forms of obsolescence occur. When these issues progress beyond a predefined level, the parts are either replaced or repaired. Replacement leads to undesirable logistics requirements, especially for those parts requiring difficult-to-source, expensive and/or long-lead-time materials. Repair options are often limited due to strict performance requirements of the parts or concern over the quality of the repair. Two relatively new additive manufacturing (AM) process options exist to complete repairs, including repairs required in theater. Hybrid repair via metal AM followed by precision machining within a single setup offers unique repair options not previously available. Though somewhat limited with respect to the number of alloys currently tested, hybrid AM via directed energy deposition (i.e., powder sprayed into a laser-heated liquid metal pool) offers the possibility to quickly, economically and
Sabo, Kenneth M.Golesich, Brock T.Tims, Michael L.
ABSTRACT Laser powder bed fusion (LPBF) additive manufacturing often results in defective parts due to non-uniform temperature distribution during fabrication. To mitigate this issue, the authors recently introduced SmartScan, an intelligent method that employs modeling and optimization to generate scan sequences that improve temperature uniformity. However, the previous version of SmartScan could only be applied to single layers. This paper presents an extension of SmartScan to three-dimensional parts by adjusting the thermal model and optimization objective. Through simulations and experiments involving fabricating AISI 316L stainless steel parts, the study demonstrates that the proposed SmartScan approach significantly improves temperature uniformity, reduces part distortion, and mitigates residual stress, as compared to conventional heuristic sequences. Citation: C. He, C. E. Okwudire, “Scan Sequence Optimization for Reduced Residual Stress and Distortion in PBF Additive
He, ChuanOkwudire, Chinedum E.
ABSTRACT Midé Technology Corporation (Midé), a Hutchinson company, in collaboration with The University of Texas at Austin (UTA), have investigated the potential for novel negative stiffness (NS)-based structures as blast resistant vehicle panels. Protecting vehicles from blast shockwaves would ideally minimize added weight and maximize reusability. Homogenous metal panels provide such protection but without the benefit of reusability, absorbing energy via plastic deformation, while also adding significant weight to a vehicle, thereby sacrificing mobility. Although various emergent approaches, including the use of hexagonal honeycombs and auxetic materials, have proved promising in terms of higher energy absorption per unit mass, such approaches also rely on plastic deformation additionally suffering from the drawback of occasionally transmitting a higher peak force as compared to the incident
Nersessian, NersesseKeegan, JaredCourt, JeffGunsbury, ConnorSeepersad, Carolyn
ABSTRACT Today’s combat vehicle designs are largely constrained by traditional manufacturing processes, such as machining, welding, casting, and forging. Recent advancements in 3D-Printing technology offer tremendous potential to provide economical, optimized components by eliminating fundamental process limitations. The ability to re-design suitable components for 3D-printing has potential to significantly reduce cost, weight, and lead-time in a variety of Defense & Aerospace applications. 3D-printing will not completely replace traditional processes, but instead represents a new tool in our toolbox - from both a design and a manufacturing standpoint
Deters, Jason
ABSTRACT Timely part procurement is vital to the maintenance and performance of deployed military equipment. Yet, logistical hurdles can delay this process, which can compromise efficiency and mission success for the warfighter. Point-of-need part procurement through additive manufacturing (AM) is a means to circumvent these logistical challenges. An Integrated Computational Materials Engineering framework is presented as a means to validate and quantify the performance of AM replacement parts. Statistical modeling using a random forest network and finite element modeling were to inform the build design. Validation was performed by testing coupons extracted from each legacy replacement parts, as well as the new additively manufactured replacement parts through monotonic tensile and combined tension-torsion fatigue testing. Destructive full hinge assembly tests were also performed as part of the experimental characterization. Lastly, the collected experimental results were used to
Gallmeyer, Thomas GDahal, JineshKappes, Branden BStebner, Aaron PThyagarajan, Ravi SMiranda, Juan APilchak, AdamNuechterlein, Jacob
ABSTRACT Laser powder bed fusion (L-PBF) of entire assemblies is not typically practical for technical and economic reasons. The build size limitations and high production costs of L-PBF make it competitive for smaller, highly complex components, while the less complex elements of an assembly are manufactured conventionally. This leads to scenarios that use L-PBF only where it’s beneficial and requires integration and joining to form the final product. Today the welding process requires complex welding fixtures and tack welds to ensure correct alignment and positioning of parts for repeatable results. In this paper, both L-PBF and milled weld preparations are presented to simplify Tungsten inert gas (TIG) welding of rotationally symmetrical geometries using integrated features for alignment and fixation. All welds produced in this study passed the highest evaluation group B according to DIN 5817. Citation: Ole Geisen, Tad Steinberg, “Microstructure analysis of TIG welded additively
Geisen, OleSteinberg, Tad
ABSTRACT Standard requirements for directed energy deposition (DED) additive manufacturing (AM) of parts were needed for a new NAVSEA Technical Publication. DED procedure qualification schemes were developed for integrated and non-integrated build platforms and for both single-sided and double-sided build applications. A double-sided build platform approach is widely preferred for distortion control and build productivity. These procedure qualification requirements were developed for arc, laser, and electron beam welding-based DED processes using wire or powder consumables. Each procedure qualification scheme included a standard qualification build (SQB) design, nondestructive evaluation test map, property specimen test matrix and qualification records for each application and process combination. Since these metal AM processes cover a range of feature size capabilities that are defined by minimum deposit bead width, SQBs were designed for full-scale (~> 5 mm), sub-scale (~2 – 5 mm
Harwig, D.D.Mohr, W.Kapustka, N.Hay, J.Carney, M.Hovanec, S.Handler, E.Farren, J.Rettaliata, J.Hayleck, R.
ABSTRACT The industrial use of laser powder-bed fusion (L-PBF) in turbomachinery is gaining momentum rendering the inspection and qualification of certain post-processing steps necessary. This includes fusion techniques that allow to print multiple parts separately to take advantage of e.g., various print orientations and join them subsequently. The main motivation of this study is to validate the tungsten inert gas (TIG) welding process of L-PBF manufactured parts using industrial specifications relevant for gas turbines to pave the way for the industrial production of modular build setups. For this, two commonly used nickel-based super alloys for high-temperature applications, Inconel 718 and Inconel 625 are chosen. Since their defect-free printability has been established widely, we focus on the suitability to be joined using TIG welding. The process is evaluated performing microstructural examination and mechanical tests in as built as well as heat-treated samples. The welds are
Geisen, OleBogner, JanGhavampour, EbrahimMüller, VinzenzEissing, Katharina
ABSTRACT Titanium and its alloys offer superior strength at a fraction of the weight of steel or nickel-based alloys. Some α-β titanium alloys such as Ti-6Al-4V have been widely used in laser powder bed fusion additive manufacturing applications due to the historical cast-wrought data sets and the availability of this alloy in powder form, however this alloy presents challenges during the laser-based printing process of components due to the high residual stress in the material. Alternative β-rich Ti alloys such ATI Titan 23™ can offer superior printability, lower residual stress, and higher mechanical properties than Ti-6Al-4V in additive manufacturing applications. This study covers the assessment of ATI Titan 23™ as an alternative printable Ti alloy and the resulting microstructure, mechanical properties, and residual stress of the printed material. Citation: Garcia-Avila, Foltz, “Low Distortion Titanium Alloy in Laser Powder Bed Fusion Additive Manufacturing System,” In Proceedings
Garcia-Avila, MatiasFoltz, John
ABSTRACT The Applied Science and Technology Research Organization of America (ASTRO America), Ingersoll Machine Tool (Ingersoll), MELD Manufacturing (MELD), Siemens Digital Industries (Siemens), The American Lightweight Materials Manufacturing Innovation Institute (ALMII), and the US Army CCDC-GVSC have partnered to show the feasibility of fabricating very large metal parts using a combination of additive and subtractive manufacturing technologies. The Army seeks new manufacturing technology to support supply chain strategy objectives to replace costly inventories and reduce lead times. While additive manufacturing (AM) has demonstrated production of metallic parts for military applications, the scale of these demonstrations is much smaller than required for large vehicle components and/or complete vehicle hull structures. Leveraging AM for large scale applications requires enhancements in the size, speed, and precision of the current commercially available state-of-the-art equipment
Rodriguez, Ricardo X.Wells, CorrineCarter, Robert H.LaLonde, Aaron D.Goffinski, Curtis W.Cox, Chase D.Bell, Tim S.Kott, Norbert J.Gorey, Jason S.Czech, Peter A.Hoffmann, KlausHolmes, Larry (LJ) R.
ABSTRACT Track vehicle Final Drive torque transferring capacity is constrained by the availability of packaging space, weight constraints, and material / heat treat properties. These constraints create a paradigm where as the increase in load due to weight growth is inversely related to life due to fatigue. Funded under Phase II SBIR contract W56HZV-13-C-0056, Loc Performance Products, Inc. (Loc) developed manufacturing processes aligned to key selected materials and surface treatments to break through this paradigm. The results of the SBIR efforts produced an optimized Final Drive design that addressed the increasing Gross Vehicle Weight (GVW) of the Bradley Fighting Vehicle while maintaining the current Final Drive packaging space, reducing lifecycle cost and maximizing performance in terms of power density and extending the life of the product
Militello, AnthonyFowlkes, Edward
ABSTRACT The University of Delaware (UD) and the US Army DEVCOM-GVSC (GVSC) have partnered to show the feasibility of fabricating mission specific, man-packable, autonomous vehicles that are created by Computer Aided Design (CAD) and are then produced, from start-to-finish, in a single manufacturing unit-cell without human intervention in the manufacturing process. This unit-cell contains many manufacturing processes (e.g., additive manufacturing (AM), pick-and-place, circuit printing, and subtractive manufacturing) that work in concert to fabricate functional devices. Together, UD and GVSC have developed the very first mission specific autonomous vehicle that is fully fabricated in a single manufacturing unit-cell without being touched by human hand. Citation: Jacob W. Robinson, Thomas W. Lum, Zachary J. Larimore, Matthew P. Ludkey, Larry (LJ) R. Holmes, Jr. “AUTOMATED MANUFACTURING FOR AUTONOMOUS SYSTEMS SOLUTIONS (AMASS)”, In Proceedings of the Ground Vehicle Systems Engineering and
Robinson, Jacob W.Lum, Thomas W.Larimore, Zachary J.Ludkey, Matthew P.Holmes, Larry (LJ) R.
ABSTRACT The key to vehicle survivability in a combat or otherwise hostile environment is the capability to quickly resupply critical parts. Rapid production of hard to obtain components within the theater of operations can significantly increase the availability of combat vehicles or other equipment. Additive manufacturing enables significant reduction in lead time for these components and thus offers an enhancement of combat capability. However, AM operations have specific environmental and support requirements in order to function. In partnership with CESI and CAPSA, AddUp has developed a unique concept of a “modular plant” called the Anywhere Additive Factory. The unit can be adjusted to meet the manufacturing requirements and volumes needed, while also being easily dismantled and moved to another location. Citation: S. Pexton, “The FlexCare Deployable Additive Manufacturing Printing Facility”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
Pexton, Sean
ABSTRACT A prescriptive qualification scheme was completed for Arc Directed Energy Deposition (DED) metal Additive Manufacturing (AM) processes for austenitic single-sided builds. Robotic arc DED AM qualification builds used stainless steel consumables with the gas metal arc welding - pulse (GMAW-P) process. A matrix of standard qualification builds were made to develop, evaluate, and recommend the preferred process qualification build schemes. The qualification scheme explored a range of heat inputs, deposit sizes, and deposition rates; and the effects of interpass temperature that can be a limiting productivity factor for robotic arc DED metal AM builds. The standard qualification builds evaluated the effects of thickness (thin and thick geometric build features) where the process deposit (heat input) and process build thermal features (preheat and interpass temperature) are controlled over smaller ranges. The builds were examined with both ultrasonic and radiographic inspection, and
Harwig, D.DMohr, W.Hovanec, S.Rettaliata, J.Hayleck, R.Handler, EFarren, J.
ABSTRACT This paper focuses on the application of a novel Additive Molding™ process in the design optimization of a combat vehicle driver’s seat structure. Additive Molding™ is a novel manufacturing process that combines three-dimensional design flexibility of additive manufacturing with a high-volume production rate compression molding process. By combining the lightweighting benefits of topology optimization with the high strength and stiffness of tailored continuous carbon fiber reinforcements, the result is an optimized structure that is lighter than both topology-optimized metal additive manufacturing and traditional composites manufacturing. In this work, a combat vehicle driver’s seatback structure was optimized to evaluate the weight savings when converting the design from a baseline aluminum seat structure to a carbon fiber / polycarbonate structure. The design was optimized to account for mobility loads and a 95-percentile male soldier, and the result was a reduction in
Hart, Robert JPerkins, J. ScottBlinzler, BrinaMiller, PatrickShen, YangDeo, Ankit
ABSTRACT Barriers to the introduction of composite materials for ground vehicle applications include material property selection and cost effective material processing. Advancements in processing of thermoplastic composites for use in applications for semi structural and structural applications have created opportunities in “Out of Autoclave” processing utilizing preconsolidated unidirectional reinforced tapes. Traditional tooling for the bending formation of high temperature reinforced structural thermoplastic laminates typically involves matched metal tooling consisting of steel or aluminum and are costly and heavy. In this research, a comparative analysis was performed to evaluate the use of a large scale 3D printed forming tool in comparison to a traditional metallic mold. Material processing considerations included the development of a technique for localized laminate heating to achieve optimized energy input in the forming process. Considerations in tooling development included
Erb, DavidDwyer, BenjaminRoy, JonathanYori, WilliamLopez-Anido, Roberto A.Smail, AndrewHart, Robert
ABSTRACT Gas metal arc pulse directed energy deposition (GMA-P DED) offers large-scale additive manufacturing (AM) capabilities and lower cost systems compared to laser or electron beam DED. These advantages position GMA-DED as a promising manufacturing process for widespread industrial adoption. To enable this “digital” manufacturing of a component from a computer-aided design (CAD) file, a computer-aided manufacturing (CAM) solver is necessary to generate build plans and utilize welding parameter sets based on feature and application requirements. Scalable and robot-agnostic computer-aided robotics (CAR) software is therefore essential to provide automated toolpath generation. This work establishes the use of Autodesk PowerMill Ultimate software as a CAM/CAR solution for arc-based DED processes across robot manufacturers. Preferred aluminum GMA-P DED welding parameters were developed for single-pass wide “walls” and multi-pass wide “blocks” that can be configured to build a wide
Canaday, J.Harwig, D.D.Carney, M.
ABSTRACT An examination of the current state-of-the-art in additive manufacturing (AM) of metallic armor products for ground vehicles was conducted. Primary barriers to the implementation of AM on ground systems are related to elevated cost compared to traditional fabrication techniques, a lack of public engineering data, and lack of specifications. Initial ballistic testing against 0.30-cal. armor-piercing (AP)M2 and 0.30-cal. fragment-simulating projectile (FSP) threats was conducted on a range of test coupons made from Inconel 718 and Ti-6Al-4V (Grade 23) extra-low-interstitial (ELI) materials made by direct metal laser melting (DMLM), wire-laser directed-energy deposition (WL-DED), and wire arc additive manufacturing (WAAM). Initial attempts at evaluating lot-to-lot variation, machine-to-machine variation, process-to-process variation, and the effect of asprinted surface roughness on ballistic protection were made to direct future research and development. Given the elevated cost
Slocumb, William JamesHolm, BrandonKelsey, Vic
ABSTRACT A 3D printed battery bracket is strengthened via post-print thermal annealing, demonstrating a transitionable approach for additive manufacturing of robust, high performance thermoplastic components. Citation: E. D. Wetzel, R. Dunn, L. J. Holmes, K. Hart, J. Park, and M. Ludkey, “Thermally Annealed, High Strength 3D Printed Thermoplastic Battery Bracket for M998,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Wetzel, E. D.Dunn, R.Holmes, L. J.Shearrow, CaseyHart, K.Park, J.Ludkey, M.
ABSTRACT The U.S. Army - GVSC Materials Characterization and Failure Analysis team conducted a preliminary study in FY18 to address the issue of galvanic and pitting corrosion of U.S. Army ground vehicle system (GVS) structural surfaces. The objective of this study was to develop a permanent coating solution to supplement the existing corrosion protective coating of zinc rich primer and CARC paint, and extend the lifecycle of the armor. Twenty-five permanent, 0.1 inch layer, additively manufactured (AM) coated coupons of deposited Stellite 6 cobalt alloy on MIL-STD-46100 High Hard (HH) armor steel blocks were produced for cyclic testing using an un-optimized set of parameters. These coupons were subjected to a twenty-four week study in accelerated corrosive conditions of a fog spray chamber alongside primer-CARC coated and uncoated coupons. The resulting study showed no signs of pitting corrosion in the surface of the AM coated coupons, and minimal galvanic corrosion. Citation: I
Toppler, Ian JSchleh, Daniel CRomero, Claudio Gutierrez
ABSTRACT 3D printing is a rapidly evolving technique for alternative piston manufacturing that offers the ability to realize complex combustion bowl geometry, robust structure and advanced cooling channel geometries while delivering precise tolerance and mass control. IAV has designed, analyzed, optimized and produced 3D printed pistons for heavy-duty diesel engines. The key features include an innovative form of combustion bowl, 300 bar peak cylinder pressure capability and advanced cooling channels in a mass neutral to less capable design. During 2018, these pistons will undergo fired engine testing
Dolan, RobertBudde, RogerSchramm, ChristianRezaei, Reza
ABSTRACT The objective in this paper is to understand the challenges of making additive manufacturing a future source of supply for the Department of Defense through the redesign of a part for metal laser Powder Bed Fusion. The scope of this paper involved the redesign of a single cast-and-machined part for an Army ground vehicle system. The component was redesigned using topology optimization based on suitable replacement materials and design data from the representative part. In parallel, a brief review of AM standards identified a process to qualify the component through post-processing, non-destructive evaluation, and witness testing. Alongside this redesign analysis, a brief cost analysis was conducted to understand the cost associated with manufacturing and qualifying this part for multiple AM materials. The resulting analysis demonstrated that for this component, which was subject to high design loads, Scalmalloy, Ti-6Al-4V, and 17-4PH Stainless Steel could produce the most cost
Burke, RorySimpson, Timothy
ABSTRACT The United States Army is leveraging Advanced Manufacturing (AdvM) methods to solve both operational and tactical readiness gaps. AdvM includes not only Additive Manufacturing (AM), but also traditional manufacturing capabilities in the field and at Army production facilities. The Tank-Armaments and automotive Command (TACOM) and the Ground Vehicles Systems Center (GVSC) Materials-AdvM Branch have developed a strategy of five critical path key words oriented on three Lines of Effort (LOE) that enables a disciplined process to deliver final use qualified parts manufactured by the Organic Industrial Base (OIB) as an alternate source of supply that will improve readiness of TACOM’s combat and tactical wheeled fleets. Additionally, an alternate critical path has been developed to provide limited use parts for Battle Damage and Repair (BDAR). Citation: P. Burton, N. Kott, A. Kruz, A. Batjer, “Path to 450 Parts Qualified for Advanced Manufacturing”, In Proceedings of the Ground
Burton, PhilKott, N. JoeKruz, AndrewBatjer, Ashley
Electrohydrodynamic (EHD) technology, noted for its absence of moving mechanical parts and silent operation, has attracted significant interest in plane propulsion. However, its low thrust and efficiency remain key challenges hindering broader adoption. This study investigates methods to enhance the propulsion and efficiency of EHD systems, by examining the electrohydrodynamic flow within a wire-cylinder corona structure through both experimental and numerical approaches. A multi-wire-cylinder positive corona discharge experimental platform was established using 3D printing technology, and measurements of flow velocity, voltage, and current at the cathode outlet were conducted. A two-dimensional simulation model for multi-wire-cylinder positive corona discharge was developed using Navier-Stokes equations and FLUENT user-defined functions (UDF), with the simulation results validated against experimental data. The analysis focused on the effects of varying anode diameters and the
Huang, GuozhaoDong, GuangyuZhou, Yanxiong
This work aims to define a novel integration of 6 DOF robots with an extrusion-based 3D printing framework that strengthens the possibility of implementing control and simulation of the system in multiple degrees of freedom. Polylactic acid (PLA) is used as an extrusion material for testing, which is a thermoplastic that is biodegradable and is derived from natural lactic acid found in corn, maize, and the like. To execute the proposed framework a virtual working station for the robot was created in RoboDK. RoboDK interprets G-code from the slicing (Slic3r) software. Further analysis and experiments were performed by FANUC 2000ia 165F Industrial Robot. Different tests were performed to check the dimensional accuracy of the parts (rectangle and cylindrical). When the robot operated at 20% of its maximum speed, a bulginess was observed in the cylindrical part, causing the radius to increase from 1 cm to 1.27 cm and resulting in a thickness variation of 0.27 cm at the bulginess location
Srivastava, KritiKumar, Yogesh
Scientists have developed an innovative wearable fabric that is flexible but can stiffen on demand. Developed through a combination of geometric design, 3D printing, and robotic control, the new technology, RoboFabric, can quickly be made into medical devices or soft robotics
This article presents experimental investigations and machine learning-based analysis on depositions of super duplex stainless steel (SDSS ER2594) material in wire arc additive manufacturing (WAAM) considering the process parameters namely voltage, wire feed rate, torch travel speed, and gas flow rate. Deposition efficiency and surface height values of the accumulated material were measured to build machine learning models using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The developed ANN model could predict the deposition efficiency and surface height with mean absolute deviations (MADs) of 8.9% and 16.1%, respectively. The MAD for prediction of the two responses for ANFIS model was found to be 6.1% and 14.9% as compared to the experimental data. Multi-objective optimization was also performed to obtain optimal solutions to achieve desired deposition results. Mechanical properties and microstructures of the deposited materials with optimal
Kumar, PrakashMondal, SharifuddinMaji, Kuntal
Items per page:
1 – 50 of 1048