Browse Topic: Manufacturing processes
With rising environmental concerns, developing lead-free solders is crucial for sustainable electronics. Traditional lead-based solders, while effective, pose health and environmental risks, prompt a shift to safer alternatives that retain reliability. Sn-9Zn alloys, when alloyed with elements such as cerium (Ce) and chromium (Cr), show enhanced mechanical and thermal properties suited for modern electronics. This study examines the effects of Ce and Cr, and their combination in Sn-9Zn solder alloy, analyzing improvements in microstructure, thermal, wettability, and hardness properties. Microstructural analysis reveals that Ce and Cr additions refine the alloy’s structure, benefiting performance. Wettability testing shows that Sn-9Zn-0.05Ce achieves the lowest wetting angle, while Sn-9Zn-0.05Ce-0.1Cr displays a balanced angle between Sn-9Zn-0.05Ce and Sn-9Zn-0.1Cr. Differential scanning calorimetry (DSC) results indicate that Sn-9Zn-0.05Ce has the lowest melting temperature, while Sn
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) from 0.375 to 1.300 inches (9.53 to 33.02 mm) in diameter or thickness, produced with cross-sectional area of 22.5 square inches (145 cm2), maximum, and a circumscribing circle diameter (circle size) of 17.4 inches (44.2 cm), maximum (see 2.4 and 8.8).
This specification covers procedures for tab marking of bare welding wire to provide positive identification of cut lengths and spools.
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings machined from AMS3617 polyamide material. It shall be used for procurement purposes.
This specification controls surface condition, manufacturing defects and inspection requirements, and defines methods of measurement for elastomeric toroidal sealing rings (O-rings) for static (including gasket) applications.
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
This specification and part standard specifies polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (backup rings) previously specified by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings.
This specification, in conjunction with the general requirements for steel heat treatment in AMS2759, establishes requirements for thermal stress-relief treatments of parts manufactured from the following materials: a Carbon and low-alloy steels b Tool steels c Precipitation-hardening, corrosion-resistant, and maraging steels d Austenitic corrosion-resistant steels e Martensitic corrosion-resistant steels
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
This specification covers a corrosion- and heat-resistant iron alloy in the form of investment castings.
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys using gold-nickel alloy filler metal.
This SAE Standard covers complete general and dimensional specifications for refrigeration tube fittings of the flare type specified in Figures 1 to 42 and Tables 1 to 15. These fittings are intended for general use with flared annealed copper tubing in refrigeration applications. Dimensions of single and double 45 degree flares on tubing to be used in conjunction with these fittings are given in Figure 2 and Table 1 of SAE J533. The following general specifications supplement the dimensional data contained in Tables 1 to 15 with respect to all unspecified details.
This specification establishes requirements for three types of corrosion-preventative coatings for protection of aircraft integral fuel tanks.
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing, and SAE
This specification establishes the requirements for a waterborne, corrosion-inhibiting, chemical- and solvent-resistant, anodic electrodeposition epoxy primer capable of curing at 200 to 210 °F (93 to 99 °C).
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys by use of silver alloy filler metals and the properties of such joints.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing up to 32 square inches (206 cm2) in area (see 8.6).
This specification covers the requirements for a hard anodic coating on magnesium alloys and the properties of the coating.
The scope of this SAE Aerospace Recommended Practice (ARP) is to establish the procedure for creating titles of aerospace tubing and clamp installation documents generated by SAE Subcommittee G-3E.
A pacemaker is a small device that helps control your heartbeat so you can return to your normal life. It has three main parts: a pulse generator that creates electrical signals, a controller-monitor that manages these signals, and leads that deliver the signals to the heart. One key benefit of the pacemaker is its strong titanium casing. Titanium is very strong and lightweight, and it is biocompatible, meaning it works well with the body without causing harmful reactions. This metal is highly resistant to corrosion, which helps keep the casing intact and protective even when exposed to bodily fluids.
Repartly, a startup based in Guetersloh, Germany, is using ABB’s collaborative robots to repair and refurbish electronic circuit boards in household appliances. Three GoFa cobots handle the sorting, visual inspection and precise soldering tasks enabling the company to enhance efficiency and maintain high quality standards.
Aqueous zinc-ion batteries (ZIBs) have attracted extensive attention due to their high safety, abundant reserves, and environmental friendliness. Iodine with high abundance in seawater (55 μg L-1) is highly promising for fabricating zinc-iodine batteries due to its high theoretical capacity (211 mAh g-1) and appropriate redox potential (0.54V). However, the low electrical conductivity of iodine hinders the redox conversion for an efficient energy storage process with zinc. Additionally, the formed soluble polyiodides are prone to migrate to the Zn anode, leading to capacity degradation and Zn corrosion.
For years the NVH community has known that openings in the dash sheet metal, such as holes to pass wire harnesses through, creates an acoustical weak point that limits the potential noise reduction of the dash insulation system. These pass-throughs can also be a source of water leaks into the vehicle’s interior. With internal combustion engines and now electric inverter power plants generating significant high frequency sound, the need to seal this area is vital. By molding a lightweight barrier that draws through the fiber/absorber interior decoupler and dash sheet metal which mates to a secondary seal molded into an outer engine dash decoupler, the two opposing molded barriers meet in the engine compartment and compress together forming a seal around the wire harness. This male/female molded seal replaces the conventional snap in grommet and eliminates noise/water leaks. The system Sound Transmission Loss (STL) is equivalent to similarly insulated sheet metal with no holes
This article follows a companion article [1] presented at the SAE NVC 2021, in which a new system for the measurement on small samples of the normal-incidence Insertion Loss (IL) of multilayers used for the manufacturing of automotive sound package parts was first introduced. In addition to simplifying the evaluation of the sound-insulation of multi-layers used to produce sound-package components, the system aims at overcoming the limitations of the test procedure based on the ASTM E2611 standard. In this article, the latter point is demonstrated by comparing the insertion loss results obtained with the new system with those obtained with the test procedure based on the ASTM E2611 standard on a few multilayers commonly used for the manufacturing of automotive sound package parts. Results indicate that the data obtained by means of the newly developed system are more meaningful, practically usable and less prone to edge-effects, compared to those obtained according to the ASTM E2611
The Electroimpact Automatic Fan Cowl Riveter uses two novel drill processes to control exit burr height and achieve the required hole quality in CRES (Corrosion-Resistant Steel, also called stainless steel) material stacks. Both processes use piloted cutters on the OML (Outer Mold Line, referring to the exterior surface of an airframe) side, and two different tools are used in a backside spindle on the IML (Inner Mold Line, referring to the inside surface of an airframe) side of the component. The first process uses a shallow-angle shave tool in the IML spindle to directly control the exit burr height after it is produced by the OML spindle and is called the “burr shave” technique. The second process uses a countersink tool in the IML spindle and produces an “intermediate countersink” after the pilot hole is drilled by the OML spindle, but before the final hole diameter is drilled. These drill processes were able to achieve the required hole quality in a challenging CRES material stack
Items per page:
50
1 – 50 of 22721