Browse Topic: Manufacturing processes

Items (22,700)
This specification establishes process controls for the repeatable production of sintered parts by binder jet additive manufacturing (BJAM). It is primarily intended to be used to manufacture metallic or ceramic aerospace parts, but usage is not limited to such applications.
null, null
One of the most important components of an electric vehicle is the drive motor. Induction motors are often used for this purpose. During operation of these motors, power loss occurs, especially at high speeds. This power loss corresponds, among other things, to the sum of winding losses, iron core losses and mechanical losses. The power losses generate heat, which causes the temperature in the rotor and stator to rise. The increase in temperature of the components inside the motor can lead to premature wear and fatigue failure. To prevent overheating, the motors are air- or water-cooled. Water cooling can be achieved, for example, by means of jacket cooling. Here, the heat generated is dissipated directly by forced convection. However, the cooling jacket makes it difficult to determine the temperature inside the motor. Determining these temperatures is necessary to protect the motor from premature fatigue. The temperatures inside the motor during operation are of particular interest
Schamberger, StephanieReuss, Hans-Christian
This specification establishes process controls for the repeatable production of aerospace parts by EB-DED-Wire. It is intended to be used for metal aerospace parts produced by additive manufacturing (AM), but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
Aluminum-lithium alloys are extensively used across various industries due to their exceptional strength-to-weight ratio, excellent fatigue/corrosion resistance and good thermal stability. These attributes, combined with improved weldability and ease of fabrication, make them ideal for lightweight engineering applications in sectors such as aerospace, automotive, and defense. Additive manufacturing (AM) offers unique opportunities to fully leverage the potential of aluminum-lithium alloys by enabling the fabrication of complex geometries, minimizing material waste, and supporting on-demand production. This paper explores the significance of lightweight materials, traces the evolution of aluminum-lithium alloys and provides a comprehensive overview of their AM. It discusses the properties and real-world applications of these alloys and examines various AM techniques employed in their processing. Key advancements in the AM of aluminum-lithium alloys are reviewed, including novel alloy
Santhana Babu, A.V.Antony Benson, B.Danusha, M.
Automotive industry frequently uses 3D printed plastic proto parts during new product development phases as it bypasses the high tooling investment & development time at early part development stage. However, for some application, 3D printing technique & its limited material options are not fulfilling the required material properties in the part, resulting poor performance during product testing which may mislead the design engineer during validation process. To overcome this, we introduce a novel approach in constructing injection molding tool by 3D printing the core and cavity using Stereolithography (SLA). This enables production of parts with application-recommended material grades, facilitating traditional validation and increasing stakeholder confidence. This paper compares part quality from 3D printed molds against conventional metallic molds for a shifter gear housing cover, demonstrating a 45% reduction in tooling costs and a 75% decrease in tooling development time. Mold life
Gandhi, Sorna RajendranGunduboina, Chaitanya
Earthmoving machines are equipped with a variety of ground-engaging tools that are joined by bolted connections to improve serviceability. These tools are made from heat-treated materials to enhance their wear resistance. Attachments on earthmoving machines, including buckets, blades, rippers, augers, and grapples, are specifically designed for tasks such as digging, grading, lifting, and breaking. These attachments feature ground-engaging tools (GET), such as cutting bits or teeth, to protect the shovel and other earthmoving implements from wear. Torquing hardened plates of bolted joint components is essential to ensure uniform load distribution and prevent premature failure. Therefore, selecting the proper torque is an important parameter. This study focuses on analyzing various parameters that impact the final torque on the hardened surface, which will help to understand the torque required for specific joints. Several other parameters considered in this study include hardware
Parameswaran, Sankaran PottiBhosale, DhanajiKumar, Rajeev
Biodiesel acceptance and consumption increased rapidly from 2018 onwards because of government policies promoting and mandating (in few cases) the consumption of local made Biodiesel feedstock to replace/reduce the import crude oil to save fuel import costs. Currently biodiesel usage is unregulated and non-standardized in few countries and in cases it is mandated and well controlled by local government (e.g. Indonesia). This unregulated, non-standardized and rapidly increasing usage of Biodiesel started to show consequences such as reduced fuel filter life, degradation of engine and filter with material non-compatibility issues with biodiesel and this developed a need of in-depth study, research and creation of recommendations / best practices for the use of Biodiesel in various application. This paper will discuss the root causes of challenges related to usage of biodiesel (manufacturing process, storing and handling of biodiesel at application site), technical challenges and it’s
Bhalerao, HariprasadShah, AvaniKhedkar, Prashant
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
Singh, BhuvaneshwarTirumala, BhaskarBadgujar, SwapnilHK, Shashikiran
This paper presents a novel approach to automated robot programming and robot integration in manufacturing domain and minimizing the dependency on manual online/offline programming. Traditional industrial robots programming is typically done by online programing via teach pendants or by offline programming tools. This presents a major challenge as it requires skilled professionals and is a time-consuming process. In today’s competitive market, factories need to harness their full potential through smart and adaptive thinking to keep pace with evolving technology, customer demand, and manufacturing processes. This requires ability to manufacture multiple products on the same production line, minimum time for changeovers and implement robotic automation for efficiency enhancement. But each custom automation piece also demands significant human efforts for development and maintenance. By integrating the Robot Operating System (ROS) with vision-based 3D model generation systems, we address
Hepat, Abhijeet
With the global increase in demand for construction equipment, companies face immense pressure to produce more products in a competitive and sustainable way by utilizing advanced manufacturing technologies. Additionally, the need for data analytics and Industry 4.0 is increasing to take better decisions early in the development cycles and during the production phase. Advanced manufacturing processes & adopting Industry 4.0 is the only viable solution to address these challenges. However, the implementation of advanced manufacturing processes in heavy fabrication and construction equipment factories has been slow. A significant challenge is that the products being produced were originally designed for conventional manufacturing processes. When factories are becoming smart and connected through Industry 4.0 solutions, companies must reconsider many established assumptions about advanced manufacturing processes and their benefits. To maximize efficiency gains, improve safety standards
Bhorge, PankajSaseendran, UnnikrishnanRodge, Someshwar
The smart industrial revolution in any organization brings faster product delivery to the market, which can meet customer expectations and full life requirements without failure. Failure per machine (FPM) is a very critical metric for any organization considering warranty cost and customer perception. One such area which needs a detailed evaluation is bolted joints. Bolts play a pivotal role when integrating a subassembly with the main structure. Often, it is challenging to address bolt failure issues due to vibration induced in structures. Current bolt virtual evaluation methods help to evaluate bolts in simple loading conditions such as axial and bending loads. But it is quite complicated to evaluate the bolts which are prone to vibration loading. Traditional methods of using gravity loads miss out on dynamic characteristics, hence it must be simulated using modal dynamic analysis. With the current vADV (virtual accelerated design verification) method it is not possible to capture
Desale, Amit NanajiSingh, GurwinderVhatkar, RushikeshPatil, Akhil
Items per page:
1 – 50 of 22700