Browse Topic: Manufacturing processes

Items (22,720)
The rapid development of civil aviation industry makes it difficult for traditional flight scheduling methods to cope with the increasingly complex air transport demand. In this study, an AI-based civil aviation transportation scheduling optimisation system is designed, integrating a novel deep reinforcement learning framework with a validated multimodal fusion algorithm (MMFA) to address spatiotemporal dependencies in aviation data to construct the core architecture of the system. Measurement results show that the system effectively reduces the average flight delay time by 58.1%, improves the slot utilisation rate by 21.3%, increases the flight punctuality rate to 93.7%, and shortens the response time to emergencies by 62.5%. The high performance and significant economic benefits demonstrated by the system in the real environment provide a feasible solution for the intelligent upgrading of civil aviation transport.
Li, Mohan
Objective:Methods:Conclusion:
Dai, HongzhouLi, JianZhao, DiLiu, Haoran
2
Santana, JessicaCurti, GustavoLima, TiagoSarmento, MatheusCallegari, BrunaFolle, Luis
Reliability and performance are critical for product success in engineering. With this aim, the Focus Matrix is a strategic tool designed to enhance the development process by effectively managing technical requirements and prioritizing resources. This paper outlines the application of the Focus Matrix in product development to organize technical packages based on complexity and the technical expertise of the project team. The methodology will be illustrated through a case study on the second-generation Flex Fuel (EVO) fuel pump developed by Bosch. The Fuel pump is responsible for delivering fuel to the engine while maintaining optimal pressure and flow rate. Transitioning to a second generation of a fuel pump focuses on optimizing performance to keep the product relevant in the market, necessitating a thorough analysis of lessons learned and current technological trends. Throughout the development phase, the Focus Matrix provided a structured approach for identifying and mitigating
de Souza, Ana Laura Limade Oliveira Melo, Lazaro BeneditoAguiar, Rayssa Moreno SilvaAzevedo Fernandes, Luiz Eduardo deBoa, Nathan Barroso Fonte
The work presented here was developed within the scope of the Tire-Tooling Benchmark Project – Mover – FUNDEP – Line IV – in response to demands from the tire manufacturing sector for solutions to monitor tire molds. This study presented the development and validation of an embedded device that integrates RFID technology, wireless communication (LoRa and Wi-Fi), and local processing via an ESP32 microcontroller. The system was capable of collecting and processing data related to mold lifecycle, such as usage cycles, inspections, and maintenance activities, enabling predictive maintenance strategies. A functional prototype was successfully built and tested, validating reliable cycle readings, stable communication with a remote database, and consistent embedded logic. Based on these results, a custom Printed Circuit Board (PCB) was designed, focusing on robustness, compactness, and industrial applicability. Although the PCB has not yet been fabricated or tested in the production
Pivetta, Italo MeneguelloCecone, Eduardo ChristianoDel Conte, Erik Gustavo
Additive manufacturing is one of the pillars of technologies of the industry 4.0 and enables rapid prototyping, testing of new materials, and customized manufacturing of parts with personalized design. Poly(lactic acid) (PLA) is a bio-based and biodegradable polymer that is used in packaging, medical applications, and consumer goods. However, it presents low mechanical strength and thermal stability, which limits its use in automotive parts. The use of reinforcement materials such as cellulose nanofibers (CNF) aim to increase the mechanical strength and thermal stability of PLA without reducing its ecological appeal. However, the addition of nanofibers in the 3D printing process can lead to reproducibility problems and constant clogging of the extruder nozzle due to the material’s lower printability. These difficulties may restrict its application to industrial processes due to reduced productivity. To address the challenges in the production of automotive parts with PLA/CNF composites
Oliveira, ViníciusHoriuchi, Lucas NaoGonçalves, Ana PaulaSouza, MarianaPolkowski, Rodrigo
Nanosilica-treated fabrics have a variety of properties, such as durability, water resistance, and specific surface characteristics. Due to that, many applications of those components are highlighted in literature. Some examples include waterproofing and water repellency, stain resistance, flame retardancy, improved durability, UV protection, improved comfort, antimicrobial properties, and textile coatings for electronics. These applications demonstrate how nanosilica-based treatments can enhance the performance of fabrics, making them more suitable for various specialized uses. In this work, a technical fabric with a mesh opening of 45 μm and an open area of 29.6% was surface treated. The treatments were performed by the dip-coating method using poly(dimethylsiloxane) (PDMS) and nanosilica at different concentrations. Optical microscopy (OM) images of the fabrics’ surface and water contact angle (WCA) measurements were carried out before and after the fabrics’ treatments. The results
Kerche, Eduardo FischerLeal, DéboraRomano, PauloOliveira, ViníciusPolkowski, Rodrigo
The mobility electrification process is currently of great interest due to its environmental appeal, but it is accompanied by new technical requirements for vehicle systems, the powertrain being one of those with the most significant trade-offs to be solved. Higher power densities, higher torque efficiency and lower noise and vibration generation are simultaneously required. The literature shows that the manufacturing chain can influence the final state of surface integrity of a part, which affects the operational behavior and service life of a component. Therefore, a customized transmission system design for electric propulsion requires several analyses, from the raw material to the gear manufacturing processes, so that surface integrity plays a significative role in the required performance. From the perspective of their capability to meet the e-mobility requirements in terms of surface integrity is essential to conduct a comparative analysis of gear manufacturing processes. So, the
Gomes, Caio F. S.Gomes, Gilberto M. O.Colombo, Tiago C. A.Rego, Ronnie R.Michelotti, Alvaro C.Berto, Lucas F.
Musa sapientumSaccharum officinarum L
Santos Borges, LarissaDias, Roberto Yuri CostaBrandao, Leonardo William MacedoMendonca Maia, Pedro VictorSilva de Mendonça, Alian GomesFujiyama, Roberto Tetsuo
The need to reduce vehicle weight without compromising safety drives the use of advanced high-strength steels (AHSS) in the automotive industry. Laser welding is a widely employed technique for joining dissimilar materials due to its high precision and small heat-affected zone (HAZ). However, differences in the chemical composition and thermomechanical properties of the materials can create heterogeneous microstructures in the fusion zone (FZ) and HAZ, directly impacting the mechanical properties of the welded joint. This study aims to evaluate the relationship between microstructure and mechanical properties in laser-welded joints of dissimilar automotive steels. The objective is to understand how microstructural transformations affect weld strength, ductility, and toughness, contributing to process parameter optimization and improved structural performance. Microstructural analysis will be performed using optical microscopy, and mechanical tests, such as tensile testing and
Santos, dos Flávio NunesReis de Faria Neto, dos AntonioDias, Erica XimenesMartins, Marcelo SampaioSantos Pereira, dos Marcelo
3
Horiuchi, Lucas NaoKerche, Eduardo FischerGonçalves, Everaldo CarlosPolkowski, Rodrigo
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This SAE Aerospace Standard (AS) establishes the requirements for various types of identification sleeving that will shrink to a predetermined size upon the application of heat after it has been marked using AS23053 sleeves as basis material. This AS does not cover specific carrier configuration.
AE-8D Wire and Cable Committee
Items per page:
1 – 50 of 22720