Browse Topic: Computer integrated manufacturing

Items (45)
In the 1990s and early 2000s, the field of parallel kinematics was viewed as being potentially transformational in manufacturing, having multiple potential advantages over conventional serial machine tools and robots. Many prototypes were developed, and some reached commercial production and implementation in areas such as hard material machining and particularly in aerospace manufacturing and assembly. There is some activity limited to niche and specialist applications; however, the technology never quite achieved the market penetration and success envisaged. Yet, many of the inherent advantages still exist in terms of stiffness, force capability, and flexibility when compared to more conventional machine structures. This chapter will attempt to identify why parallel kinematic machines (PKMs) have not lived up to the original excitement and market interest and what needs to be done to rekindle that interest. In support of this, a number of key questions and issues have been identified
Muelaner, JodyWebb, Philip
Recycling of advanced composites made from carbon fibers in epoxy resins is required for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Currently, recycling and safe methods of disposal typically do not aim for full circularity, but rather separate fibers for successive downcycling while combusting the matrix in a clean burning process. Breakdown of the matrix, without damaging the carbon fibers, can be achieved by pyrolysis, fluidized bed processes, or chemical solvolysis. The major challenge is to align fibers into unidirectional tows of real value in high-performance composites
Muelaner, JodyRoye, Thorsten
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
Hayes, MichaelMuelaner, JodyRoye, ThorstenWebb, Philip
Digital twin technology has become impactful in Industry 4.0 as it enables engineers to design, simulate, and analyze complex systems and products. As a result of the synergy between physical and virtual realms, innovation in the “real twin” or actual product is more effectively fostered. The availability of verified computer models that describe the target system is important for realistic simulations that provide operating behaviors that can be leveraged for future design studies or predictive maintenance algorithms. In this paper, a digital twin is created for an offroad tracked vehicle that can operate in either autonomous or remote-control modes. Mathematical models are presented and implemented to describe the twin track and vehicle chassis governing dynamics. These components are interfaced through the nonlinear suspension elements and distributed bogies. The assembled digital twin’s performance was investigated using test data collected from the Clemson University Deep Orange
Daly, NicholasManvi, PranavChhatbar, TanmaySchmid, MatthiasCastanier, Matthew P.Wagner, John
With the progress of manufacturing industries being critical for economic development, there is a significant requirement to explore and scrutinize advanced materials, particularly alloy materials, to facilitate the efficient utilization of modern technologies. Lightweight and high-strength materials, such as aluminium alloys, are extensively suggested for various applications requiring strength and corrosion resistance, including but not limited to automotive, marine, and high-temperature applications. As a result, there is a significant necessity to examine and evaluate these materials to promote their effective use in the manufacturing sectors. This research paper presents the development of an Artificial Neural Network (ANN) model for Computer Numerical Control (CNC) drilling of AA6061 aluminium alloy with a coated textured tool. The primary aim of the study is to optimize the drilling process and enhance the machinability of the material. The ANN model utilizes spindle speed, feed
Katta, Lakshmi NarasimhamuPasupuleti, ThejasreeNatarajan, ManikandanSiva Rami Reddy, NarapureddySomsole, Lakshmi Narayana
As the world is moving toward optimized production strategies, third-world countries are also putting their efforts into contributing to this smart manufacturing approach. However, despite realizing the impact of its global significance and reduction in financial overheads, most of the third-world potential industries are hesitant to this transformation. The predominant reasons are huge capital investments and the cost of handling technology. In this study, a cost calculation methodology is recognized that analyze the cost benefits of technological investment. The case shows that the adaptation of Industry 4.0 is more economical than the traditional manufacturing approach. In an existing setup, a traditional TDABC is being applied, where cost id resources such as labor and material are included in a product cost at the end. This approach losses the visibility of associated labor and material cost used for the particular activity giving an offset in a product cost. Therefore, it is
Fatima, AnisAli, Syed Sajjad
Many design points go into electric vehicle (EV) battery assembly cells that ensure high reliability and repeatability, optimum overall equipment effectiveness, maximum throughput, and Industry 4.0 concepts of digitalization. Examining an EV battery degassing automated cell that is widely installed across the industry exemplifies many of these design features
A battery intelligence pioneer will work with a venerable semiconductor yield-improvement firm in a partnership that promises to drastically accelerate the production ramp for the many new EV battery factories on the horizon. Voltaiq, the battery-analysis experts, and PDF Solutions announced the partnership in late March. Tal Sholklapper, Voltaiq's CEO and cofounder, said the EV battery industry is in sore need of help in reducing the manufacturing development cycle, which can take anywhere from four to 10 years from shovels in the ground to output of a consistent, quality product. “The automotive battery industry is really behind.” he said in an interview with SAE Media. “There is a lot of manual analysis and semi-empirical learning going on,” and that slows the discovery of future problems. He said the partnership had the potential to cut battery factory development time in half
Clonts, Chris
The manufacturing industries are undergoing a digital transformation worldwide, spurred by the COVID-19 pandemic, which is speeding up the adoption of Industry 4.0. This shift to digital is fueling advances in smart sensors that not only capture sensing data, but also interpret that data into actionable insights for a variety of applications in the Industrial Internet of Things (IIoT) space
With the addition of computers, laser cutters have rapidly become a relatively simple and powerful tool, with software controlling machinery that can chop metals, woods, papers, and plastics. But users still face difficulties distinguishing among stockpiles of visually similar materials
In recent years, the emergence of Industry 4.0 has been steadily transforming the manufacturing sector into an ultra-high-tech industry. Innovative smart technologies such as robotics, artificial intelligence (AI), robotic process automation (RPA), the IoT, sensors, and machine vision are powerful tools that many companies are starting to integrate into both their manufacturing techniques and business practices
As often happens in the medical industry, innovative ideas hatched in university research settings spawn innovative companies, which create innovative products. A case in point: HemoSonics. The Charlottesville, VA-based medical device company was started in 2005 by two professors and a post-doctoral research student at the University of Virginia School of Medicine's Bio-Medical Engineering program — Bill Walker, Mike Lawrence, and Francesco Viola, respectively. The trio identified a method for measuring the stiffness of blood clots by using ultrasound imaging technology and created a system built around that technology aimed to improve patient outcomes and reduce costs
Researchers from the Singapore University of Technology and Design's Digital Manufacturing and Design Centre have developed UV-curable elastomers that can be stretched by up to 1100%. The 3D-printing process supports the fabrication of soft actuators and robots, flexible electronics, and acoustic metamaterials
Items per page:
1 – 45 of 45