Browse Topic: Computer integrated manufacturing

Items (65)
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Sahoo, PriyabrataGarg, IshanRawat, SudhanshuNarula, RahulGupta, AnkitBindra, RiteshRao, Akkinapalli VNGarg, Vipin
Soft-bending actuators have garnered significant interest in robotics and biomedical engineering due to their ability to mimic the bending motions of natural organisms. Using either positive or negative pressure, most soft pneumatic actuators for bending actuation have modified their design accordingly. In this study, we propose a novel soft bending actuator that utilizes combined positive and negative pressures to achieve enhanced performance and control. The actuator consists of a flexible elastomeric chamber divided into two compartments: a positive pressure chamber and a negative pressure chamber. Controlled bending motion can be achieved by selectively applying positive and negative pressures to the respective chambers. The combined positive and negative pressure allowed for faster response times and increased flexibility compared to traditional soft actuators. Because of its adaptability, controllability, and improved performance can be used for various jobs that call for careful
Lalson, AbiramiSadique, Anwar
Predictive maintenance is crucial for Industry 4.0, and deep neural networks are a promising approach for predicting the capacity of electric batteries. However, few applications effectively utilize neural networks for this purpose with lithium-ion batteries. In this work, different deep learning models are developed, starting with simple neural networks, dense neural networks, convolutional networks, and recurrent networks. Using a public domain dataset, training, testing, and validation datasets were generated to predict battery capacity as a function of the number of cycles. Despite the limited number of samples in the dataset, deep learning techniques are employed to ensure robust prediction performance. The work presents the loss functions for each iteration of the algorithms and the average absolute error. The models made good generalizations over the test dataset within a short prediction time window. Finally, the work presents an average absolute error below 0.3, ensuring good
Branco, César Tadeu Nasser Medeiros
The COVID-19 pandemic has reshaped public transportation dynamics globally, prompting shifts in passenger behavior and payment methods. Concurrently, the rise of fintech and Industry 4.0 has accelerated the adoption of digital payment solutions, aligning with the trend towards cashless societies. This study investigates the impact of the pandemic on the transition from cash to card payments for public transport fares in Belo Horizonte, Brazil. Leveraging data from the city's transparency portal, analyses were conducted on passenger numbers, payment methods, and card usage from November 2019 to November 2021. Findings reveal a steady usage of card payments compared to cash, with a notable increase in individual ticket card transactions post-vaccination. Conversely, employer-provided transportation voucher card usage experienced a decline. These trends suggest a preference among users for card-based payments, potentially driven by concerns over direct cash handling and adherence to
Rodrigues, CádmoSantos Júnior, Wagner
Competitive companies constantly seek continuous increases in productivity, quality and services level. Lean Thinking (LT) is an efficient management model recognized in organizations and academia, with an effective management approach, well consolidated theoretically and empirically proven Within Industry 4.0 (I4.0) development concept, manufacturers are confident in the advantages of new technologies and system integration. The combination of Lean and I4.0 practices emerges from the existence of a positive interaction for the evolutionary step to achieve a higher operational performance level (exploitation of finances, workload, materials, machines/devices). In this scenario where Lean Thinking is an excellent starting point to implement such changes with a method and focus on results; that I4.0 offers powerful technologies to increase productivity and flexibility in production processes; but people need to be more considered in processes, in a context aligned with the Industry 5.0
Braggio, LuisMarinho, OsmarSoares, LuisLino, AlanRabelo, FábioMuniz, Jorge
This work aims to define a novel integration of 6 DOF robots with an extrusion-based 3D printing framework that strengthens the possibility of implementing control and simulation of the system in multiple degrees of freedom. Polylactic acid (PLA) is used as an extrusion material for testing, which is a thermoplastic that is biodegradable and is derived from natural lactic acid found in corn, maize, and the like. To execute the proposed framework a virtual working station for the robot was created in RoboDK. RoboDK interprets G-code from the slicing (Slic3r) software. Further analysis and experiments were performed by FANUC 2000ia 165F Industrial Robot. Different tests were performed to check the dimensional accuracy of the parts (rectangle and cylindrical). When the robot operated at 20% of its maximum speed, a bulginess was observed in the cylindrical part, causing the radius to increase from 1 cm to 1.27 cm and resulting in a thickness variation of 0.27 cm at the bulginess location
Srivastava, KritiKumar, Yogesh
An industry-first 3D laser-based, computer-vision system can monitor and control the application of adhesive beads as tiny in width as two human hairs. This unique inspection system for electronic assemblies operates at speeds of 400 to 1,000 times per second, considerably quicker and more effective than conventional 2D systems. “Difficulty in precisely dispensing adhesives or sealants, especially in extremely small or complex electronic assemblies, can lead to over-application, under-application, bubbles, or incorrect location of the adhesive bead,” Juergen Dennig, president of Ann Arbor, Michigan-headquartered Coherix, told SAE Media. Improper application of joining material on electronic control units (ECUs) and power control units (PCUs) can result in poor adhesion, material voids and short circuits.
Buchholz, Kami
If you're just getting comfortable with Industry 4.0, which saw the beginnings of smart manufacturing, digitization and real-time decision-making in factories, a senior leader at Intel says the world is already moving on to Industry 5.0. What's Industry 5.0? A joint study by many researchers (link: Industry 5.0: A Survey on Enabling Technologies and Potential Applications (oulu.fi)) describes 5.0 as merging human creativity with intelligent and efficient machines to deliver customized products quickly. But it will take a lot of change and learning to get there.
Clonts, Chris
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
Hayes, MichaelMuelaner, JodyRoye, ThorstenWebb, Philip
In the 1990s and early 2000s, the field of parallel kinematics was viewed as being potentially transformational in manufacturing, having multiple potential advantages over conventional serial machine tools and robots. Many prototypes were developed, and some reached commercial production and implementation in areas such as hard material machining and particularly in aerospace manufacturing and assembly. There is some activity limited to niche and specialist applications; however, the technology never quite achieved the market penetration and success envisaged. Yet, many of the inherent advantages still exist in terms of stiffness, force capability, and flexibility when compared to more conventional machine structures. This chapter will attempt to identify why parallel kinematic machines (PKMs) have not lived up to the original excitement and market interest and what needs to be done to rekindle that interest. In support of this, a number of key questions and issues have been identified
Muelaner, JodyWebb, Philip
Recycling of advanced composites made from carbon fibers in epoxy resins is required for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Currently, recycling and safe methods of disposal typically do not aim for full circularity, but rather separate fibers for successive downcycling while combusting the matrix in a clean burning process. Breakdown of the matrix, without damaging the carbon fibers, can be achieved by pyrolysis, fluidized bed processes, or chemical solvolysis. The major challenge is to align fibers into unidirectional tows of real value in high-performance composites.
Muelaner, JodyRoye, Thorsten
Digital twin technology has become impactful in Industry 4.0 as it enables engineers to design, simulate, and analyze complex systems and products. As a result of the synergy between physical and virtual realms, innovation in the “real twin” or actual product is more effectively fostered. The availability of verified computer models that describe the target system is important for realistic simulations that provide operating behaviors that can be leveraged for future design studies or predictive maintenance algorithms. In this paper, a digital twin is created for an offroad tracked vehicle that can operate in either autonomous or remote-control modes. Mathematical models are presented and implemented to describe the twin track and vehicle chassis governing dynamics. These components are interfaced through the nonlinear suspension elements and distributed bogies. The assembled digital twin’s performance was investigated using test data collected from the Clemson University Deep Orange
Daly, NicholasManvi, PranavChhatbar, TanmaySchmid, MatthiasCastanier, Matthew P.Wagner, John
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle. The digital thread framework
Rencher, RobertVeluri, SastryChidambaran, NarayananWalthall, RhondaFabre, ChrisMarkou, ChrisJones, KenBudeanu, DragosG.V.V., Ravi KumarRajamani, Ravi
With the progress of manufacturing industries being critical for economic development, there is a significant requirement to explore and scrutinize advanced materials, particularly alloy materials, to facilitate the efficient utilization of modern technologies. Lightweight and high-strength materials, such as aluminium alloys, are extensively suggested for various applications requiring strength and corrosion resistance, including but not limited to automotive, marine, and high-temperature applications. As a result, there is a significant necessity to examine and evaluate these materials to promote their effective use in the manufacturing sectors. This research paper presents the development of an Artificial Neural Network (ANN) model for Computer Numerical Control (CNC) drilling of AA6061 aluminium alloy with a coated textured tool. The primary aim of the study is to optimize the drilling process and enhance the machinability of the material. The ANN model utilizes spindle speed, feed
Katta, Lakshmi NarasimhamuPasupuleti, ThejasreeNatarajan, ManikandanSiva Rami Reddy, NarapureddySomsole, Lakshmi Narayana
As the world is moving toward optimized production strategies, third-world countries are also putting their efforts into contributing to this smart manufacturing approach. However, despite realizing the impact of its global significance and reduction in financial overheads, most of the third-world potential industries are hesitant to this transformation. The predominant reasons are huge capital investments and the cost of handling technology. In this study, a cost calculation methodology is recognized that analyze the cost benefits of technological investment. The case shows that the adaptation of Industry 4.0 is more economical than the traditional manufacturing approach. In an existing setup, a traditional TDABC is being applied, where cost id resources such as labor and material are included in a product cost at the end. This approach losses the visibility of associated labor and material cost used for the particular activity giving an offset in a product cost. Therefore, it is
Fatima, AnisAli, Syed Sajjad
ABSTRACT As technology continues to improve at a rapid pace, many organizations are attempting to define their place within this modern age and the Department of Defense (DoD) is no exception. The DoD’s primary focus on modernization ensures that its design, development, and sustainment of systems demonstrate unparalleled strength that outpaces our adversaries and continue to solidify our position quickly and efficiently as the world’s mightiest through fundamental change. Digital Engineering (DE) is the foundation of that fundamental change. Speed-to-Warfighter, reliability, maintainability, resiliency, and performance are all improved through DE techniques. Accelerating technical integration by connecting once isolated data to a digital thread encompassing all domains, and further facilitating the evolution of the traditional approach/processes into an effective DE strategy. DE’s goal supports a reduction of inefficient process/procedures/communications that traditionally can yield
Granville, Alanzo D.
The Software Production Factory (SPF) is a cyber physical construct of computers, hardware and software integrated together to serve as an ideation and rapid prototyping environment. SPF is a virtual dynamic environment to analyze requirements, architecture, and design, assess trade-offs, test Ground Vehicle development artifacts such as structural and behavioral features, and deploy system artifacts and operational qualifications. SPF is utilized during the product development as well as during system operations and support. The white paper describes the components of the SPF to build relevant Ground Vehicle Rapid Prototyping (GVRP) models in accordance with the model-centric digital engineering process guidelines. The factory and the processes together ensure that the artifacts are produced as specified. The processes are centered around building, maintaining, and tracing single source of information from source all the way to final atomic element of the built system.
Thukral, AjayGriffin, Kevin W.Kanon, Robert J.
A battery intelligence pioneer will work with a venerable semiconductor yield-improvement firm in a partnership that promises to drastically accelerate the production ramp for the many new EV battery factories on the horizon. Voltaiq, the battery-analysis experts, and PDF Solutions announced the partnership in late March. Tal Sholklapper, Voltaiq's CEO and cofounder, said the EV battery industry is in sore need of help in reducing the manufacturing development cycle, which can take anywhere from four to 10 years from shovels in the ground to output of a consistent, quality product. “The automotive battery industry is really behind.” he said in an interview with SAE Media. “There is a lot of manual analysis and semi-empirical learning going on,” and that slows the discovery of future problems. He said the partnership had the potential to cut battery factory development time in half.
Clonts, Chris
Many design points go into electric vehicle (EV) battery assembly cells that ensure high reliability and repeatability, optimum overall equipment effectiveness, maximum throughput, and Industry 4.0 concepts of digitalization. Examining an EV battery degassing automated cell that is widely installed across the industry exemplifies many of these design features.
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Holden, RogerPortsmore, AndyCheetham, SimonChacin, MarcoSelby, Oliver
The making of a quilt is an interesting process. Historically, a quilt is a canvas of work made from old pieces of cloth cut into squares or whatever shape that make a nice connected pattern and then stitched together. The quilt could be random pieces that is not related to each other. In most recent years and more common cases, a quilt is made of different pieces of patches that are connected and laid out in a special way to tell a story. Not only does it portray a story that is put together in a certain sequence, but it also stiches the pieces of the quilt into a nice and complete narrative. A story that one can understand just by looking at the quilt spread and unfolded. Much like the making of a quilt that has a story to tell, a Product Digital Quilt will tell the story of a product. The Digital Product Quilt replaces the conventional way of telling a product story. The traditional product story is a method that is serially connecting multiple product life cycle silos together
Hamada, Mohamed Y.Rabelo, Luis
CAD / CAM Services Celina, TX 800-938-7226
ABSTRACT The DoD Digital Engineering Strategy [1] released in June 2018 outlined the DoD’s strategic goals which “promote the use of digital artifacts as a technical means of communication across a diverse set of stakeholders” In addition to build, test, field and sustainment of defense systems, emphasis was placed on the acquisition and procurement of systems and the importance of digital engineering. This was further reinforced in the Feb 2022 release of the Engineering of Defense Systems Guidebook [2] which contains Digital Engineering sections in each chapter. The norm for Systems Engineering has become Model-Based Systems Engineering (MBSE) in which models are used at all phases of development. To complete the digital thread from concept to disposal, models will be required for the acquisition phase. This paper will describe Model-Based Acquisition (MBAcq), and how it can be used to increase clarity compliance and understanding in Capability Systems and Software Acquisition for
Hause, Matthew CHart, Laura E
ABSTRACT Digital Engineering (DE) strategy is defined by the Department of Defense and establishes five goals [1]. One of the goals includes providing an enduring, authoritative source of truth, which moves the primary means of communication from documents to digital models and data. This enables access, management, analysis, use, and distribution of information from a common set of digital models and data. As a result, stakeholders have the current, authoritative, and consistent information for use over the lifecycle. The DE Model Based Systems Engineering (MBSE) Reference Architecture Framework (RAF) defines, at a minimum, the digital model authoritative source of truth, model structure, stakeholder needs, systems and subsystem context, process model elements, architecture types, views, viewpoints, and supporting methodologies and best practices. This framework is defined using the Systems Modeling Language, semantics, and constructs. The RAF structure is expressed to support DE
Griffin, Kevin W.Suffredini, Giuseppe D.Kanon, Robert J.Dua, Surender K.Yeh, Jihsiang J.Alexander, Eric J.Feury, Mark R.Kouba, Russell D.
The manufacturing industries are undergoing a digital transformation worldwide, spurred by the COVID-19 pandemic, which is speeding up the adoption of Industry 4.0. This shift to digital is fueling advances in smart sensors that not only capture sensing data, but also interpret that data into actionable insights for a variety of applications in the Industrial Internet of Things (IIoT) space.
With the addition of computers, laser cutters have rapidly become a relatively simple and powerful tool, with software controlling machinery that can chop metals, woods, papers, and plastics. But users still face difficulties distinguishing among stockpiles of visually similar materials.
Additive manufacturing (AM), also known as “3D printing,” now provides the ability to have an almost fully digital chain from part design through manufacture and service. This “digital thread” can bring great benefits in improving designs, processes, materials, operations, and the ability to predict failure in a way that maximizes safety and minimizes cost and downtime. Unsettled Aspects of the Digital Thread in Additive Manufacturing discusses what the interplay between AM and a digital thread in the mobility industry would look like, the potential benefits and costs, the hurdles that need to be overcome for the combination to be useful, and how an organization can answer these questions to scope and benefit from the combination. Click here to access The Mobility Frontier: Metals, Polymers, or Composites Click here to access the full SAE EDGETM Research Report portfolio.
Slattery, Kevin
The traditional acquisition and development cycles of a weapon system by government agencies goes through multiple stages throughout the life cycle of the product. Over the last few decades, many of the United States military equipment had experienced acquisition cost growth. Many studies by the Department of Defense indicates that the cost growth is a result of multiple factors including the development and manufacturing stages of the product. Organizations with multiple operation sites that goes across multiple states or even countries and continents are finding it increasingly difficult to share informational databases to ensure the corporate synergy between multiple sites or divisions. For such organizations, there exist the need to synchronize the operations and have standard and common database where everything is stored and equally accessed by different sites. Digital transformation sounds real exotic and futuristic and promise to reduce operation costs of big organizations
Hamada, Mohamed Yousef
Researchers have developed artificial intelligence (AI) software for powder bed 3D printers that assesses the quality of parts in real time without the need for expensive characterization equipment. The software, named Peregrine, supports the advanced manufacturing “digital thread” that collects and analyzes data through every step of the manufacturing process, from design and feedstock selection, to print build and material testing.
In recent years, the emergence of Industry 4.0 has been steadily transforming the manufacturing sector into an ultra-high-tech industry. Innovative smart technologies such as robotics, artificial intelligence (AI), robotic process automation (RPA), the IoT, sensors, and machine vision are powerful tools that many companies are starting to integrate into both their manufacturing techniques and business practices.
As often happens in the medical industry, innovative ideas hatched in university research settings spawn innovative companies, which create innovative products. A case in point: HemoSonics. The Charlottesville, VA-based medical device company was started in 2005 by two professors and a post-doctoral research student at the University of Virginia School of Medicine's Bio-Medical Engineering program — Bill Walker, Mike Lawrence, and Francesco Viola, respectively. The trio identified a method for measuring the stiffness of blood clots by using ultrasound imaging technology and created a system built around that technology aimed to improve patient outcomes and reduce costs.
Researchers from the Singapore University of Technology and Design's Digital Manufacturing and Design Centre have developed UV-curable elastomers that can be stretched by up to 1100%. The 3D-printing process supports the fabrication of soft actuators and robots, flexible electronics, and acoustic metamaterials.
ABSTRACT This paper will discuss the systematic operations of utilizing the BOXARR platform as the ‘Digital Thread’ to overcome the inherent and hidden complexities in massive-scale interdependent systems; with particular emphasis on future applications in Military Ground Vehicles (MGVs). It will discuss how BOXARR can enable significantly improved capabilities in requirements-capture, optimized risk management, enhanced collaborative relationships between engineering and project/program management teams, operational analysis, trade studies, capability analysis, adaptability, resilience, and overall architecture design; all within a unified framework of BOXARR’s customizable modeling, visualization and analysis applications.
Smith, Robert E.Hamilton, Fraser
Tooling structures to make wing/wing, fuselage/fuselage, and wing/fuselage mates have long been rather massive tools. Not only are these tools large and expensive, but they often obstruct the very drilling and fastening work to be done in the mate tool. Furthermore, these legacy mate tools can only do one job - a mate tool cannot be used for a different airplane, or even a different part of the same airplane. A flexible, more versatile system will lower the cost of aircraft with a low quantity production run planned, and a more open design can reduce the cost of assembly on a high production aircraft. This paper will discuss the development and recent breakthroughs that allow the mating of any size aircraft sections with very high precision using only a set of specialized jacks that provide six degrees-of-freedom coupled with a non-contact measurement system. Data extracted directly from a CAD 3-D model is fed into a computer system that is then used with a closed-loop control system
Richardson, Roger C.
Items per page:
1 – 50 of 65