Browse Topic: Manufacturing systems

Items (2,292)
This specification establishes process controls for the repeatable production of aerospace parts by EB-DED-Wire. It is intended to be used for metal aerospace parts produced by additive manufacturing (AM), but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
In today’s competitive landscape, industries are relying heavily on the use of warranty data analytics techniques to manage and improve warranty performance. Warranty analytics is important since it provides valuable insights into product quality and reliability. It must be noted here that by systematically looking into warranty claims and related information, industries can identify patterns and trends that indicate potential issues with the products. This analysis helps in early detection of defects, enabling timely corrective actions that improve product performance and customer satisfaction. This paper introduces a comprehensive framework that combines conventional methods with advanced machine learning techniques to provide a multifaceted perspective on warranty data. The methodology leverages historical warranty claims and product usage data to predict failure patterns & identify root causes. By integrating these diverse methods, the framework offers a more accurate and holistic
Quadri, Danishuddin S.F.Soma, Nagaraju
This paper introduces a comprehensive solution for predictive maintenance, utilizing statistical data and analytics. The proposed Service Planner feature offers customers real-time insights into the health of machine or vehicle parts and their replacement schedules. By referencing data from service stations and manufacturer advisories, the Service Planner assesses the current health and estimated lifespan of parts based on metrics such as days, engine hours, kilometers, and statistical data. This approach integrates predictive analytics, cost estimation, and service planning to reduce unplanned downtime and improve maintenance budgeting, aligning with SAE expectations for review-ready manuscripts. The user interface displays current part health, replacement due dates, and estimated replacement costs. For example, if air filter replacement is recommended every six months, the solution uses manufacturer advisories to estimate the remaining life of the air filter in terms of days or
Chaudhari, Hemant Ashok
The Operator’s Field of Vision (FOV) test, conducted in accordance with IS/ISO 5006:2017, is a vital assessment to ensure the safety and operational comfort of personnel operating Construction Equipment Vehicles (CEVs) / Earth-Moving Machinery. IS/ ISO 5006:2017 defines rigorous guidelines for evaluating the operator’s visibility from the driver's seat, with particular emphasis on the Filament Position Centre Point (FPCP), determined from the Seat Index Point (SIP) coordinates. The test includes assessment of masking areas, focusing on the Visibility Test Circle (a 24-meter diameter ground-level circle around the machine), and on the Rectangular Boundary on which a vertical test object is placed at a height specific to the machine type and its operating mass. These parameters are designed to simulate real-world operating conditions. This paper introduces a portable testing setup developed specifically for conducting the Operator’s FOV test as per IS/ISO 5006:2017. The setup facilitates
Ghodke, Dhananjay SunilTambolkar, Sonali AmeyaBelavadi Venkataramaiah, Shamsundara
With the global increase in demand for construction equipment, companies face immense pressure to produce more products in a competitive and sustainable way by utilizing advanced manufacturing technologies. Additionally, the need for data analytics and Industry 4.0 is increasing to take better decisions early in the development cycles and during the production phase. Advanced manufacturing processes & adopting Industry 4.0 is the only viable solution to address these challenges. However, the implementation of advanced manufacturing processes in heavy fabrication and construction equipment factories has been slow. A significant challenge is that the products being produced were originally designed for conventional manufacturing processes. When factories are becoming smart and connected through Industry 4.0 solutions, companies must reconsider many established assumptions about advanced manufacturing processes and their benefits. To maximize efficiency gains, improve safety standards
Bhorge, PankajSaseendran, UnnikrishnanRodge, Someshwar
Over the past 25 years, the heavy fabrication and construction equipment industry has experienced significant transformation. Driven by a global surge in demand for construction machinery, manufacturers are under increasing pressure to deliver higher volumes within shorter timelines and at competitive costs. This demand surge has been compounded by workforce-related challenges, including a declining interest among the new generation in acquiring traditional manufacturing skills such as welding, heat treatment, and painting. Furthermore, the industry faces difficulties in staffing third-shift operations, which are essential to meet production targets. The adoption of automation technologies in heavy fabrication and construction equipment manufacturing has been gradual and often hindered by legacy product designs that were optimized for conventional manufacturing methods. As the industry transitions toward smart, connected manufacturing environments under the industry 4.0 paradigm, it
Saseendran, UnnikrishnanBhorge, Pankaj
Direct current (DC) systems are increasingly used in small power system applications ranging from combined heat and power plants aided with photovoltaic (PV) installations to powertrains of small electric vehicles. A critical safety issue in these systems is the occurrence of series arc faults, which can lead to fires due to high temperatures. This paper presents a model-based method for detecting such faults in medium- and high-voltage DC circuits. Unlike traditional approaches that rely on high-frequency signal analysis, the proposed method uses a physical circuit model and a high-gain observer to estimate deviations from nominal operation. The detection criterion is based on the variance of a disturbance estimate, allowing fast and reliable fault identification. Experimental validation is conducted using a PV system with an arc generator to simulate faults. The results demonstrate the effectiveness of the method in distinguishing fault events from normal operating variations. The
Winkler, AlexanderMayr, StefanGrabmair, Gernot
Widespread adoption of electric vehicles (EVs) is hindered by "range anxiety," a major concern for consumers. A primary contributor to this issue is the significant energy consumption of the Heating, Ventilation, and Air Conditioning (HVAC) system, which can account for 15-40% of a vehicle's total energy demand, directly reducing its practical driving range. Using the 1D simulation tool GT-SUITE, this research provides a comparative analysis of two distinct HVAC architectures: a conventional air-cooled condenser (ACC) and a proposed liquid-cooled condenser (LCC). The performance of both hardware systems was evaluated under two control strategies a Proportional-Integral (PI) controller and a basic On/Off controller—to identify the optimal configuration. The results advocate that optimizing the system's architecture and control logic yields a substantial improvement in the Coefficient of Performance (COP) ranging from 47% to 128% compared to the baseline ACC/On-Off configuration, with a
T R, RakshithYadav, Ankit
Cabin air quality plays a crucial role in ensuring passenger comfort, health and driving experience. There have been growing concerns over poor cabin air quality resulting from multiple factors, including infiltration of external pollutants such as particulate matter, volatile organic compounds, emissions from vehicle interior materials, microbial contamination and inadequate ventilation. Therefore, maintaining optimal air quality inside vehicle cabin has become a critical aspect of vehicle climate control systems. Additionally, high humidity levels inside the cabin contribute to mold growth and fogging of windows, further compromising both air quality and visibility. This review explores such factors contributing to poor cabin air quality, where the severity of these issues ranges from mild discomfort and allergic reactions to long-term respiratory ailments. To mitigate these challenges, automotive manufacturers and researchers have implemented various air purification and filtration
Sharma, Shrutika
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Trivedi, ArpitaKumar, RaviMadaan, AshishShrivastava, Pawan
Efficient clearing of frost formed on automotive side window glass during cold conditions is crucial for maintaining visibility and ensuring passenger safety. Conventional systems often employ dedicated side demisters, which increase system complexity, production costs and vehicle weight. This study explores an alternative approach to defrosting side window glass by optimizing airflow from the defroster, thus eliminating the need for separate side demisters. The Study leverages optimized airflow dynamics and strategic design of defroster to direct a portion of the air towards the side glass. Computational Fluid Dynamics (CFD) simulations and actual Tests to analyze the airflow patterns, temperature gradients, and defrosting efficiency of this configuration. Results indicate that the front defroster airflow can effectively clear frost from the side windows, achieving comparable performance to conventional side demisters. Key design parameters, including defroster geometry and airflow
Kushwaha, MayankBhangale, ShekharMittal, SachinKumar, MukeshUmbarkar, Shriganesh
In recent years, the vibration comfort of automobiles has become a key consideration for consumers when purchasing vehicles. This study introduces human electrocardiogram (ECG) signals and blood pressure, and proposes a comfort prediction model based on physiological indicators. The research steps include: obtaining riding indicators and subjective feelings on flat and bumpy roads, and analyzing the differences in heart rate variability indicators and blood pressure under different road conditions through paired sample tests; playing different sound signals on bumpy roads, and using repeated measures analysis of variance to explore their impacts on physiological indicators and subjective evaluations; conducting data validity tests on the subjective evaluation results, and constructing a comfort prediction model based on correlation analysis and support vector regression algorithm. The results show that there are significant differences in indicators such as the average RR interval and
Hu, LiChen, HaoWan, YeqingTian, RuiliXu, Jiahao
2024–2025 Reviewers
Barkey, Mark
The growing emphasis on environmental protection and sustainability has resulted in increasingly stringent emission regulations for automotive manufacturers, as demonstrated by the upcoming EURO 7 and 2027 EPA standards. Significant advancements in cleaner combustion and effective aftertreatment strategies have been made in recent decades to increase the engine efficiency while abiding by the emission limits. Among the exhaust aftertreatment strategies, three-way catalyst has remained the primary solution for stoichiometric burn engines due to its high conversion efficiency and ability to simultaneously allow both oxidative and reductive reactions in a single stage with spatial separation due to the oxygen storage capabilities of ceria. However, fuel and lubricant-borne sulfur and phosphorus compounds have been shown to have a significant long-term effect on the activity of three-way catalysts, particularly during the lean-rich transitions and oxygen storage processes. In the present
Sandhu, Navjot SinghYu, XiaoJiang, ChuankaiTing, DavidZheng, Ming
Hydrogen Internal Combustion Engines (H2 ICEs) are seen as a viable zero-emission technology that can be implemented relatively quickly and cost-effectively by automotive manufacturers. The changed boundary conditions of a hydrogen-fueled engine in terms of mechanical and thermal aspects require a review and potential refinement of the design especially for the 'piston bore interface' (liner honing, ring and piston design) but also for other engine sub-systems, e.g. the crankcase ventilation system. The influence of oil entry into the combustion chamber is even more important in hydrogen engines due to the risk of oil-induced pre-ignition. Therefore, investigations of the interaction between friction, blowby and oil transfer into the combustion chamber were performed and are presented in this paper. During the investigations, experimental tests were carried out on a single-cylinder engine ('floating liner') and on a multi-cylinder engine. The 'floating liner' concept allows the crank
Plettenberg, MirkoGell, JohannesGrabner, PeterGschiel, KevinHick, Hannes
Why smart electrical distribution is the new frontier in sustainable manufacturing. From transitioning to renewable energy, embracing the circular economy and pursuing carbon offsets, today's automakers are actively working to become more sustainable. Many OEMs have big goals to become fully carbon-neutral by 2050. Some believe they can get there even earlier. But look past the cars and sources of energy right into the factories in which the vehicles of today and tomorrow are born and focus on a key question: how can carmakers make significant strides inside their plants to cut waste and improve sustainability?
Hamadani, Mariam
Like those in many other industries, truck and off-highway vehicle manufacturers face the challenge of producing quality components and maintaining productive processes while also generating a better bottom line. Improving employee training, simplifying complex operations and implementing better workflows can all help generate efficiencies. While not a new concept, lightweighting - in this case, reducing the weight of parts through the substitution of traditional steel with high-strength, thinner steels - can also be a viable answer to a better vehicle. As a rule of thumb, when manufacturers double the strength of the material through lightweighting, it is possible to reduce the weight of the part by one-third. That weight reduction can then lower the cost per part for greater profitability per piece of equipment and greater annual savings.
Gugel, Mick
Celebrating its 35th year, the National Aerospace Defense Contractors Accreditation Program (Nadcap) continues to advance quality assurance and regulatory compliance for aviation, defense, and space OEMs and suppliers. This article summarizes how Nadcap accreditation works, its benefits for manufacturers, and its role in expanding additive manufacturing through industry-wide consensus. The Nadcap program was first established in 1990 by a small group of aerospace and defense OEMs. Their goal was to create an accreditation initiative that provides a common approach to auditing the manufacturing and production processes used by companies supplying parts, components, structures, and services to major aerospace and defense OEMs. This foundation set the stage for Nadcap's continued focus on quality assurance and regulatory compliance in the industry.
As automotive manufacturers have tried to set themselves apart by reducing emissions, and increasing vehicle range/fuel economy by eliminating any energy loss from inefficiencies on the vehicle, the brake corners have been an area of interest to reduce off-brake torque to zero in all conditions. Caliper designers can revise some attributes like piston seal grooves, and pad retraction features to reduce drag, but even if a caliper is designed perfectly in all aspects, trying to measure it in a reliable and repeatable manner proves to be difficult. There are many ways to measure brake drag all with ranging complexity. Some of the simplest measurements are the most repeatable, but it excludes the majority of the vehicle inputs. The most vehicle representative testing requires the most complex equipment and comes with the most challenges. This paper will focus mainly on the different ways residual brake drag can be measured, the benefits and challenges to each of them, the problems trying
Retting, Joshua
This specification establishes process controls for the repeatable production of aerospace parts by Electron Beam Powder Bed Fusion (EB-PBF). It is intended to be used for aerospace parts manufactured using additive manufacturing (AM) metal alloys, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
Aerospace research and development (R&D) is at a turning point. Emerging technologies promise faster and more efficient systems, but also expose deep limitations in aging infrastructure, siloed processes, and manual workflows. The growing disconnect between technological advances and the physical and organizational infrastructures that support them creates a bottleneck to industry progress. Electric actuation, advanced automation, and software-driven testing are becoming the norm, challenging manufacturers to adapt without disrupting operational stability. Navigating this tension requires strategic investments, flexible design thinking, and a willingness to break from legacy approaches that can no longer support the innovations driving the industry forward.
This document applies to the development of Plans for integrating and managing electronic components in equipment for the military and commercial aerospace markets, as well as other ADHP markets that wish to use this document. Examples of electronic components described in this document include resistors, capacitors, diodes, integrated circuits, hybrids, application specific integrated circuits, wound components, and relays. It is critical for the Plan owner to review and understand the design, materials, configuration control, and qualification methods of all “as-received” electronic components and their capabilities with respect to the application; and to identify risks and, where necessary, take additional action to mitigate the risks. The technical requirements are in Section 3 of this standard and the administrative requirements are in Section 4.
APMC Avionics Process Management
A consequence of the automotive industry's shift to electrification is that a significantly higher percentage of a vehicle's lifecycle CO2 emissions occur during the production phase. As a result, vehicle manufacturers and suppliers must shift the focus of product development from the 'in-use phase only' to optimizing the complete product lifecycle. The proper design of a battery has the highest impact to all other phases following in the life cycle. It influences the selection of materials, the manufacturing, in-use and end of life, respectively the recycling and recycling yield for a circular economy. Using real-life examples, the paper will explain what the main parameters are necessary for designing a sustainable battery. What are the low hanging fruits to be considered? In addition, it will elaborate on the relation as well as the impacts to other KPIs like safety, costs and lifetime of the battery. Finally, it will round up in an outlook on how batteries will evolve in the future
Braun, AndreasRothbart, Martin
Over the past 30 years concerns about noise & vibration have become more critical in the design and manufacture of the automobile. Tools, both in physical testing and computer aided engineering have and continue to develop permitting more refined designs. Today’s customer can be very discerning when it comes to vehicle noises and vibrations. However, this is not a new concern for automotive customers or manufactures. This paper highlights the drive from automotive manufacturers to promote quiet, smooth and vibrationless operation of their products as well as some of the advances in vehicle component design over the past 100+ years. This is not an exhaustive study, but rather the intent is to bring to light the long history of noise and vibration in the automotive industry and its importance to the customers even in the infancy of the auto industry.
Kach, RaymondThompson, James
As India’s economy expands and road infrastructure improves, the number of car owners is expected to grow substantially in the coming years. This market potential has intensified competition among original equipment manufacturers (OEMs) to position their products with a focus on cost efficiency while delivering a premium user experience. Noise and Vibration (NV) performance is a critical differentiator in conveying a vehicle's premiumness, and as such, NV engineers must strategically balance the achievement of optimal acoustic performance with constraints on cost, mass, and development timelines. Traditionally, NV package optimization occurs at the prototype or advanced prototype stage, relying heavily on physical testing, which increases both cost and time to market. Furthermore, late-stage design changes amplify these challenges. To address these issues, this paper proposes the integration of Hybrid Statistical Energy Analysis (HSEA) into the early stages of vehicle development
Rai, NiteshMehta, MakrandRavindran, Mugundaram
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
Freeman, ToddEngels, BretThuesen, Ben
Large eddy simulations (LES) of two HVAC duct configurations at different vent blade angles are performed with the GPU-accelerated low-Mach (Helmholtz) solver for comparison with aeroacoustics measurements conducted at Toyota Motor Europe facilities. The sound pressure level (SPL) at four near-field experimental microphones are predicted both directly in the simulation by recording the LES pressure time history at the microphone locations, and through the use of a frequency-domain Ffowcs Williams-Hawking (FW-H) formulation. The A-weighted 1/3 octave band delta SPL between the two vent blades angle configurations is also computed and compared to experimental data. Overall, the simulations capture the experimental trend of increased radiated noise with the rotated vent blades, and both LES and FW-H spectra show good agreement with the measurements over most of the frequency range of interest, up to 5,000Hz. For the present O(30) million cell mesh and relatively long noise data collection
Besem-Cordova, Fanny M.Dieu, DonavanWang, KanBrès, Guillaume A.Delacroix, Antoine
The frequency and amplitude content of powertrain noise is motor torque and speed dependent and tends to influence the driver’s subjective perception of the vehicle. This provides manufacturers with an opportunity to drive product differentiation through consideration of powertrain noise in early stages of the development cycles for electric vehicles (EVs). This paper focuses on the evaluation of customer preference and perception of acoustic feedback from different powertrain design options based on targeted powertrain orders and expected wind and road masking during high acceleration maneuvers. A jury study is used to explore customer feedback to a two-stage gearbox design with AC permanent magnet motor order combinations. The subjective influence of order spacing, dominant frequency content and the number of audible orders is studied to understand aural perspective product differentiation opportunities.
Joodi, BenjaminJayakumar, VigneshConklin, ChrisPilz, FernandoIyengar, ShashankWeilnau, KelbyHodgkins, Jeffrey
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. While the use of electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets, hybridized propulsion solutions will continue to play a vital role in the electrification strategy of vehicle manufacturers. Plug-in hybrid electric vehicles (PHEV) and range extender vehicles (REx) come with unique NVH challenges due to their different possible operation modes. First, the paper outlines different driveline and vehicle architectures for PHEV and REx. Given the multiple general architectures, as well as operation modes which typically accompany these vehicles, NVH characterizations and noise source-path analysis can be more complicated than conventional vehicles. In the following steps, typical NVH related challenges are highlighted and potential solutions for NVH optimization are
Wellmann, ThomasFord, AlexPruetz, Jeffrey
Additive manufacturing has been a game-changer in helping to create parts and equipment for the Department of Defense's (DoD's) industrial base. A naval facility in Washington state has become a leader in implementing additive manufacturing and repair technologies using various processes and materials to quickly create much-needed parts for submarines and ships. One of the many industrial buildings at the Naval Undersea Warfare Center Division, Keyport, in Washington, is the Manufacturing, Automation, Repair and Integration Networking Area Center, a large development center housing various additive manufacturing systems.
At a time when medical technology is advancing rapidly, the demand for precision in manufacturing has never been greater. The medical device industry is pushing the boundaries of design, requiring components that are not only smaller and more intricate but also biocompatible, reliable, and capable of meeting stringent regulatory standards. To address these challenges, manufacturers are increasingly turning to photochemical etching (PCE) — a process that is proving indispensable in high-precision medical applications.
Reducing CO2 emissions is now a major focus in India heading towards net zero emissions by 2070. India is the 3rd largest automobile market in the world and the transportation sector is the 3rd largest CO2 emitter. In this direction, it is necessary to reduce the carbon footprint from the automobile sector to combat climate change. The adoption of sustainable biofuels such as ethanol will enable us to reduce emissions, as ethanol is carbon neutral fuel. However, vehicle manufacturers are facing challenges in manufacturing flex fuel compatible parts in the vehicle mainly fuel systems. Ethanol has both nonpolar and polar bonds, making it miscible to both gasoline and water, thereby water contamination is inevitable in ethanol blend fuels. In addition, control of ethanol contamination by sulfates and chlorides during ethanol production is challenging. Thus, ethanol blend fuels are considered more corrosive and tendency towards deposit formation than normal gasoline fuels. Design and
Pandi, Dinesh BabuShanmugam, Gomathy PriyaNagarkatti, ArunGopal, ManishAnbalagan, Prathap
Passenger safety is of utmost importance in the automotive industry. Hence, the health of the components, especially the brake system, should be effectively monitored. On account of the significance of artificial intelligence in recent times, any brake fault resulting during operation can be accurately detected using a combination of advanced measurement techniques and machine learning algorithms. The current study focuses on developing and evaluating a robust framework to quantify and classify the faults of a general automotive drum brake. For this purpose, a new experiment for a drum brake, which can be operated under a controlled environment with known levels of faults, is developed. The experiment is instrumented to measure the fundamental dynamic signals (such as brake torque, the angular velocity of the brake drum, and brake shoe accelerations) during a braking event. The response signals from several experiments with various faults and operating conditions serve as the input
Yella, AkashBharinikala, Yuva Venkat AjaySundar, Sriram
The deployment of PEM fuel cell systems is becoming an increasingly pivotal aspect of the electrification of the transport sector, particularly in the context of heavy-duty vehicles. One of the principal constraints to market penetration is durability of the fuel cell which hardly meets the expected targets set by the vehicle manufacturers and regulatory bodies. Over the years, researchers and companies have faced the challenge of developing reliable diagnostic and condition monitoring tools to prevent early degradation and efficiency losses of fuel cell stack. The diagnostic tools for fuel cell rely usually on model-based, data driven and hybrid approaches. Most of these are mainly developed for stationary and offline applications, with a lack of suitable methods for real-time and vehicle applications. The work presented is divided into two parts: the first part explores the main degradation conditions for a PEMFC and characteristics, advantages, and application limits of the main
Di Napoli, LucaMazzeo, Francesco
The trend for the future mobility concepts in the automotive industry is clearly moving towards autonomous driving and IoT applications in general. Today, the first vehicle manufacturers offer semi-autonomous driving up to SAE level 4. The technical capabilities and the legal requirements are under development. The introduction of data- and computation-intensive functions is changing vehicle architectures towards zonal architectures based on high-performance computers (HPC). Availability of data-connection to the backend and the above explained topics have a major impact on how to test and update such ‘software-defined’ vehicles and entire fleets. Vehicle diagnostics will become a key element for onboard test and update operations running on HPCs, as well as for providing vehicle data to the offboard backend infrastructure via Wi-Fi and 5G at the right time. The standard for Service Oriented Vehicle Diagnostics (SOVD) supports this development. It describes a programming interface for
Mayer, JulianBschor, StefanFieth, Oliver
Items per page:
1 – 50 of 2292