Browse Topic: Materials handling
In this article we will discuss the development and implementation of a computer vision system to be used in decision-making and control of an electro-hydraulic mechanism in order to guarantee correct functioning and efficiency during the logistics project. To achieve this, we have brought together a team of engineering students with knowledge in the area of Artificial Intelligence, Front End and mechanical, electrical and hydraulic devices. The project consists of installing a system on a forklift that moves packaged household appliances that can identify and differentiate the different types of products moved in factories and distribution centers. Therefore, the objective will be to process this identification and control an electro-hydraulic pressure control valve (normally controlled in PWM) so that it releases only the hydraulic pressure configured for each type of packaging/product, and thus correctly squeezing (compressing) the specific volume, without damaging it due to
Large farms cultivating forage crops for the dairy and livestock sectors require high-quality, dense bales with substantial nutritional value. The storage of hay becomes essential during the colder winter months when grass growth and field conditions are unsuitable for animal grazing. Bale weight serves as a critical parameter for assessing field yields, managing inventory, and facilitating fair trade within the industry. The agricultural sector increasingly demands innovative solutions to enhance efficiency and productivity while minimizing the overhead costs associated with advanced systems. Recent weighing system solutions rely heavily on load cells mounted inside baling machines, adding extra costs, complexity and weight to the equipment. This paper addresses the need to mitigate these issues by implementing an advanced model-based weighing system that operates without the use of load cells, specifically designed for round baler machines. The weighing solution utilizes mathematical
Cargo Routing Problem or Container Allocation Problem is key decision-making challenge in the maritime industry at operational level. Existing research focus on static environment or planning decisions, ignoring the dynamic arrival property of shipping request in practical world. In this paper, we introduced the Online Cargo Routing problem and formulation the path-based models under a space-time network. We proposed an online algorithm under the online primal-dual scheme: re-solving strategy. We further conducted simulation experiments under different demand distributions to demonstrate the performance of the proposed algorithm over the offline baselines.
Advances in conformable tank technology have resulted in opportunities to harness and deploy hydrogen energy in a variety of operational environments. Various use cases are described, and the benefits of these unique storage systems in vehicular, stationary, and bulk storage applications are illustrated. The impressive scalability of conformable hydrogen tank production is also explained, as it relates to the cost effective and broad application of these storage systems.
As unmanned vehicular networks become more prevalent in civilian and defense applications, the need for robust security solutions grows in parallel. While ROS 2 offers a flexible platform for robotic operations, its security model lacks the adaptability required for dynamic trust management and proactive threat mitigation. To address these shortcomings, we propose a novel framework that integrates containerized ROS 2 nodes with Kubernetes-based orchestration, a dynamic trust management subsystem, and integrability with simulators for real-time and protocol-flexible network simulation. By embedding trust management directly within each ROS 2 container and leveraging Kubernetes, we overcome ROS 2’s security limitations by enabling real-time monitoring and machine learning-driven anomaly detection (via an autoencoder trained on custom data), facilitating the isolation or removal of suspicious nodes. Additionally, Kubernetes policies allow seamless scaling and enforcement of trust-based
Warehouse logistics increasingly rely on automation in the form of autonomous mobile robots (AMRs), scanners, complex conveyors, and fleet management systems for seamless operation, but it’s the ubiquitous, century-old pallet that remains the critical support system. Make no mistake, if even one of those thousands of pallets is defective, it can create havoc in the warehouse.
This specification covers procedures for tab marking of bare welding wire to provide positive identification of cut lengths and spools.
This SAE Standard covers complete general and dimensional specifications for refrigeration tube fittings of the flare type specified in Figures 1 to 42 and Tables 1 to 15. These fittings are intended for general use with flared annealed copper tubing in refrigeration applications. Dimensions of single and double 45 degree flares on tubing to be used in conjunction with these fittings are given in Figure 2 and Table 1 of SAE J533. The following general specifications supplement the dimensional data contained in Tables 1 to 15 with respect to all unspecified details.
In the future, autonomous drones could be used to shuttle inventory between large warehouses. A drone might fly into a semi-dark structure the size of several football fields, zipping along hundreds of identical aisles before docking at the precise spot where its shipment is needed.
MEMS is a more complex technology than traditional semiconductors. They are 3D structures with moving parts, making them much more difficult to fabricate. If you’re designing a semiconductor, you may be able to take advantage of an existing process development kit (PDK), which your foundry can provide to you. There is no equivalent approach in MEMS. It’s a “one process, one product” paradigm that requires a high level of customization. That takes time, money, and resources.
This SAE Standard establishes terminology and the content of commercial literature specifications for self-propelled crawler and wheeled material handlers, pedestal mounted material handlers and their equipment as defined in 3.1. Illustrations used here are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been provided to describe the principles to be used in applying this document. (Material handlers share many design characteristics with hydraulic excavators and log loaders; primarily 360 degree continuous rotation of the upperstructure relative to the undercarriage or mounting. They differ in their operating application. Material handlers are used for the handling of scrap material and normally utilize grapples or magnets. Hydraulic excavators are used for the excavation of earth, gravel and other loose material utilizing a bucket. Log loaders are used for the handling of logs and trees and normally utilize
This SAE Standard provides a uniform method to calculate the lift capacity of scrap and material handlers, establishes definitions and specifies machine conditions for the calculations. This document applies to scrap and material handlers as defined in SAE J2506 that have a 360 degrees continuous rotating upper structure. It does not apply to equipment that is incapable of lifting a load completely off the ground. This document applies to those machines that are crawler, wheel, rail and pedestal or stationary mounted.
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
Items per page:
50
1 – 50 of 3764