Browse Topic: Materials handling
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
The fusion of virtualized base software with simulation technologies has transformed the methods used for development and system testing. This paper examines the architecture, implementation, and advantages of employing virtualization to improve simulation environments. Virtualized base software enables the creation of isolated, scalable, and replicable settings, essential for executing complex simulations that replicate real-world situations. Utilizing virtualization enhances simulations by making them more efficient, flexible, and cost-effective. The study covers the essential elements of virtualized simulation platforms, such as containerization, network abstraction and virtual drivers. It also analyzes how these components collaborate to create a strong framework for simulating diverse applications, ranging from software testing to hardware emulation. This approach offers several benefits, including better resource utilization, quicker deployment times, and the flexibility to
Shipbuilders didn’t have the option of fiberglass when the nonprofit American Bureau of Shipping (ABS) was established 160 years ago to help safeguard life and property on the seas. Fortunately, technology to help better ensure the safety of ocean vessels has also come a long way in that time, in part because people have become a spacefaring species.
Robotic automation technology is reshaping food manufacturing, packaging, and handling by driving significant improvements in efficiency, quality, and flexibility. By integrating advanced artificial intelligence, computer vision, and proprietary force-sensing technology, Flexiv has introduced cutting-edge automation to the food processing sector.
Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems, and tools. It has a long service life, is comparatively inexpensive and does not tend to spontaneously combust. Energy density is also making progress. However, experts are still puzzled as to why lithium iron phosphate batteries undercut their theoretical electricity storage capacity by up to 25 percent in practice. To utilize this dormant capacity reserve, it would be crucial to know exactly where and how lithium ions are stored in and released from the battery material during the charging and discharging cycles. Researchers at Graz University of Technology (TU Graz) have now taken a significant step in this direction. Using transmission electron microscopes, they were able to systematically track the lithium ions as they traveled through the battery material, map their arrangement in the crystal lattice of an iron phosphate cathode with unprecedented
Researchers have developed better rechargeable batteries by applying silicon to the batteries’ cathodes. A previously unknown mechanism by which lithium gets trapped in batteries limits the number of times it can be charged and discharged at full power. By not maxing out their storage capacity, a new approach could provide steady and stable cycling for applications that need it.
Mi Rancho has been delighting customers with authentic and fresh tortillas, chips, and salsas since its establishment in 1939. Originally founded as a grocery store in Oakland, CA, the business has evolved and grown into a food provider for large nation-wide retail partners. To enable their continued growth, Mi Rancho recently partnered with Formic to introduce robotic automation to their food processing and packaging production operations.
This specification covers a low-alloy steel in the form of welding wire.
This specification covers a low-alloy steel in the form of welding wire.
Moisture adsorption and compression deformation behaviors of Semimet and Non-Asbestos Organic brake pads were studied and compared for the pads cured at 120, 180 and 240 0C. The 2 types of pads were very similar in moisture adsorption behavior despite significant differences in composition. After being subjected to humidity and repeated compression to 160 bars, they all deform via the poroviscoelastoplastic mechanism, become harder to compress, and do not fully recover the original thickness after the pressure is released for 24 hours. In the case of the Semimet pads, the highest deformation occurs with the 240 °C-cure pads. In the case of the NAO pads, the highest deformation occurs with the 120 0C-cure pads. In addition, the effect of pad cure temperatures and moisture adsorption on low-speed friction was investigated. As pad properties change all the time in storage and in service because of continuously changing humidity, brake temperature and pressure, one must question any
Getting 800 robots in a warehouse to and from their destinations efficiently while keeping them from crashing into each other is no easy task. In a sense, these robots are like cars trying to navigate a crowded city center.
In the medical device production environment, device packaging and sterilization is vital. The same level of rigorous quality controls and regulations that affect the devices themselves are also extended to their packaging. The mechanical and container closure integrity [CCI] evaluations of medical device packaging requires significant testing performed at multiple points throughout the commercialization and production processes.
Contract design and manufacturing organizations (CDMOs) play an increasingly crucial role in the pharmaceutical supply chain, providing the necessary capabilities and capacity to meet growing patient demand. The recent emergence of GLP-1 class drugs only emphasizes the importance of CDMOs, which con- tribute significant expertise related to fill-finish operations, secondary packaging, and distribution.
Sustainability remains a dominant trend in packaging and processing, continuing to attract the attention of the life sciences industry and inspire its new initiatives. Although pharmaceutical and medical device manufacturers must prioritize patient safety and product protection, concerns about climate change, greenhouse gas (GHG) emissions, plastic waste, and pressure to move toward a circular economy are prompting a greater focus on improving the sustainability of their products and packaging.
Manufacturing and servicing facilities in space are (finally) moving from the pages of science fiction to reality. For decades, we've seen movies with scenes of spacecraft being created and serviced in beautifully rendered factories with Earth in the background. And many more ideas have come from authors imagining bold futures where humanity does everything from creating giant nets of satellites to massive, spinning space stations. Some might lament that, back in reality, we’ve come so far with our achievements in space yet fallen short of the brightest visions. How can we have landed on the Moon 50 years ago and still be scrapping billion-dollar satellites when they run out of fuel? However, there’s good reason to believe that the space industry is almost done laying the foundations that will let us move from science fiction to engineering reality.
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, hybridization and lower carbon-intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions. The development included the conversion of a 5.2 L diesel engine to
Aitiip is a leading Spanish research and development institute and serves companies in the aeronautics, automation, industrial, and packaging sectors. The institute possesses strong platforms for the characterization of materials and processes and is known as a powerful integrator of technologies, which is constantly on the lookout for the next transformative technology. A year ago, Aitiip implemented an NXE 400 industrial resin 3D printer platform from Nexa3D to explore integrations of additive manufacturing and injection molding. Nexa3D is the Ventura, California-based provider of high-speed industrial printing technologies whose portfolio continues to grow, reflected in its acquisition of Essentium, one of the world's most well-known providers of extrusion 3D printing, earlier this year. Liebherr is one of the world's largest providers of a variety of industrial goods, services and products. Aerospace and transportation systems is one of 13 different product segments supplied by the
Rooftop solar panels will soon power about 90% of PFG's Gilroy, California, operations, the starting point for cold food deliveries. The vehicles getting the various edibles and food-related products from the warehouse to restaurants, schools, hotels and other customers include new battery-electric Class 8 trucks that mate to trailers fitted with zero-emission transport refrigeration units (TRUs). “Our Gilroy, California, location is the pilot for how we intend to develop sustainable distribution centers,” said Jeff Williamson, senior vice president of operations for Richmond, Virginia-headquartered Performance Food Group (PFG). Williamson and others were recently interviewed by Truck & Off-Highway Engineering following an Earth Day open house at the Gilroy site.
Most heavy trucks should be fully electric, using a combination of batteries and catenary electrification, but heavy trucks requiring very long unsupported range will need chemical fuels. Hydrogen is the key to storing renewably generated electricity chemically. At the scale of heavy trucks, compressed hydrogen can match the specific energy of diesel, but its energy density is five times lower, limiting the range to around 2,000 km. Scaling green hydrogen production and addressing leakage must be priorities. Hydrogen-derived electrofuels—or “e-fuels”—have the potential to scale, and while the economic comparison currently has unknowns, clean air considerations have gained new importance. The limited supply of bioenergy should be reserved for critical applications, such as bioenergy with carbon capture and storage (BECCS), aviation, shipping, and road freight in the most remote locations. Additionally, there are some reasons to prefer ethanol or methanol to diesel-type fuels as they are
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work. This finding suggests that a DFI retrofit for this
Plastic design is one of the upcoming fields of interest when it comes to weight optimization, sustainability, strength, and overall aesthetics of an automobile. What is often ignored is the amount of flexibility a plastic designer has, of integrating and packaging various components of an automobile into a single part and still make it an integral part of its complex aesthetics. This paper highlights upon one such part that is being developed: An integrated bracket which packages ADAS camera, Rain Light Sensor, and an Auto-dimming IRVM. Apart from packaging the mentioned components, this bracket also has mounting provisions for an aesthetic cover (also referred to as beauty cover). The objective of this paper is to highlight the importance of integration of several parts into a single part for packaging multiple components that need to be placed in a close proximity with each other. This paper includes the demonstration of old design which consisted of multiple parts along with how we
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed. The net churning losses obtained from the simulations are compared
Getting warehouse robots to and from their destinations efficiently while keeping them from crashing into each other is no easy task. It is such a complex problem that even the best path-finding algorithms struggle to keep up with the breakneck pace of e-commerce or manufacturing. In a sense, these robots are like cars trying to navigate a crowded city center. So, a group of MIT researchers who use AI to mitigate traffic congestion applied ideas from that domain to tackle this problem.
As manufacturers push for increased productivity, low-value tasks such as material transport have become clear targets for improvement. In efforts to reduce material transport in large facilities, companies have explored the use of intermediate warehouse areas throughout the production floor. However, this takes up valuable space, requires additional material processing and handling, and creates opportunities for errors and lost or misplaced materials.
Much has been written about the extraordinary vehicle production and market environment of the past four years in North America and beyond. The plethora of negative impacts from COVID, chip availability, scarcity of labor, inflation, shipping disruptions and union/OEM disputes can all be boiled down to what's best described as an “operational hell.” Everyone is happy to put this all behind us. The dawn of 2024, at least for North America, has enabled some stability from a volume perspective as the industry slowly rebuilds inventory and adjustments are made to the pace of BEV volume buildout over the next couple of years. This should offer some familiarity and a welcome breather from the highly unpredictable environments we've seen since late 2019. That being noted, there's a question in the air about the new, inexperienced challenges that might lurk around the corner.
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
Items per page:
50
1 – 50 of 3764