Browse Topic: Materials handling

Items (3,809)
It is emerging the need to take action to reduce the greenhouse effect, which is one of the major causes of climate change and environmental disasters that has been occurring frequently in recent decades throughout the planet. The burning of fossil fuels for electricity and energy generation are the main concerns and those that have greater incentives for its reduction, as its by-product of the reaction of burning CO2, which among the greenhouse gases is primarily responsible for its aggravation. The transport sector excels in CO2 emissions, emits about 20% of gas, according to the Intergovernmental Panel on Climate Change (IPCC), a scientific organization linked to the United Nations (UN). A promising solution to reduce the impact of this sector would be the use of hydrogen fuel cell, which if carried out through renewable energies, the electrolysis of hydrogen has zero CO2 emission throughout the cycle. However, one of the biggest challenges to make viable the use of hydrogen as fuel
Alves, JoyceSilva, AntônioPaterlini, BrunoSantos, FelipePedroso, HenriqueHenrique, PedroMilani, Pedro
This research investigates the impact of friction stir welding (FSW) used to join micro-alloyed steel, on the material and its mechanical characteristics. FSW increases the metallurgical and mechanical qualities of joints made from micro-alloyed steel. However, Friction Stir Welding has produced only modest improvements in connecting steels. Automobile chassis, offshore platforms, oil and gas pipelines, mining, shipbuilding and railroad carriages, pressure vessels, bridges, and storage tanks are just some of the many places and find micro-alloyed steels employed. Frictional heat and tool movement over the joint cause micro defects occurred. Tungsten carbide tools are used in this investigation. Welding shares the same process characteristics, such as the tool's rotating speed (900 rpm) and axial force (10 kN). The table's traverse speed options are available, including 50 mm/min, 60 mm/min, and 70 mm/min. Vickers microhardness testing machines and tensile testing machines are used to
Rajan, C. SakthiKumar, N. MathanKumar, K. VetrivelKannan, S.Soundararajan, S.
The fusion of virtualized base software with simulation technologies has transformed the methods used for development and system testing. This paper examines the architecture, implementation, and advantages of employing virtualization to improve simulation environments. Virtualized base software enables the creation of isolated, scalable, and replicable settings, essential for executing complex simulations that replicate real-world situations. Utilizing virtualization enhances simulations by making them more efficient, flexible, and cost-effective. The study covers the essential elements of virtualized simulation platforms, such as containerization, network abstraction and virtual drivers. It also analyzes how these components collaborate to create a strong framework for simulating diverse applications, ranging from software testing to hardware emulation. This approach offers several benefits, including better resource utilization, quicker deployment times, and the flexibility to
Shenoy, GaneshMalchow, Florian
This paper presents a work undertaken to simulate the logistics processes in the digital environment using a discrete event simulation software which involves the movements of the Material Handling Equipment [MHE]. MHE movements to the line side involves traffic, where the parts are transported from the supermarket area to the line side based on the part requirement list ordered from the line side. The intersections are the bottleneck in the system due to the traffic and if the vehicle scheduling is not streamlined, then during any failure/stoppage of the vehicle, would result in the blocking of the preceding vehicles causing line stoppage. This work outlines to develop a junction block in the digital environment using a discrete event driven approach where an optimal flow of the vehicles is maintained at the intersections. The Junction block is created based on the succeeding track occupancy level, thus the preceding MHE’s can overtake in case of any blockages based on the priority
Surendranath, SujithAmasa, SanjayKotegar, Shravan RajVenkataramana, SurendharSathiyamoorthi, Gokul
ABSTRACT The effective and safe use of Rough Terrain Cargo Handlers is severely hampered by the operator’s view being obstructed. This results in the inability to see a) in front of the vehicle while driving, b) where to set a carried container, and c) where to maneuver the vehicles top handler in order to engage with cargo containers. We present an analysis of these difficulties along with specific solutions to address these challenges that go beyond the non-technical solution currently used, including the placement of sensors and the use of image analysis. These solutions address the use of perception to support autonomy, drive assist, active safety, and logistics
Beach, GlennHaanpaa, DouglassMoody, GaryMahal, PritpaulRowe, SteveSiebert, GaryBurkowski, JimCohen, Charles J.
ABSTRACT Interest in application containerization has been on the rise in recent years within the embedded and secure computing communities. Containerization within embedded systems is still relatively new and thus the question of its practical use in secure environments is still unanswered. By using proven kernels and virtual machines, containerization can help play a key role in application development and ease of deployment within trusted computing environments. Containerization can bring many benefits to the development and deployment of secure applications. These benefits range between ease of development and deployment through use of unified environments to security benefits of namespaces and network isolation. When combined with the seL4 microkernel and DornerWorks use of the VM Composer toolset, mixed criticality systems incorporating containerization can be rapidly and easily developed and deployed to embedded hardware. This paper describes the various advantages, use-cases
Prins, TaylorVanVossen, RobertBarnett, TomElliott, Leonard
ABSTRACT Modern autonomy development relies on stored data to train and validate the performance of algorithms and models. However, the community developing autonomous ground vehicles for national defense lacks readily available datasets that adequately cover the landscape of anticipated operating environments. We propose the development of an open architecture and supporting infrastructure enabling scalable and effective collection, storage, processing, and reuse of the U.S. Army’s autonomous ground vehicle data across numerous stakeholders and programs. This paper presents the proposed architecture’s requirements, use cases, and a preliminary design. We also show results of an initial prototype implementation performing a query task on existing ground vehicle sensor data. Citation: M. Boulet, T. DeWeese, A. Bird, R. Kreiter, C. Cheung, “An Open Data Architecture for Ground Vehicle Data-driven Autonomy Development and Validation”, In Proceedings of the Ground Vehicle Systems
Boulet, MichaelDeWeese, TateBird, AndrewKreiter, RyanCheung, Calvin
ABSTRACT This paper discusses the packaging characteristics of a family of power-packs for military land vehicles in the 21st century. 3 classes of vehicles are considered: light vehicles (300 - 600 Hp), medium weight vehicles (600-1000 Hp) and heavy vehicles (1000-1500 Hp). The paper highlights that a common bore engine approach provides both very good performance and a very compact power-pack. 2 different engine styles are examined. The results are expected to be applicable for a spectrum of modernized engine platforms that would employ a common bore engine approach. The approach offers many product development and production advantages, including lower development and tooling costs, and reduced product inventory needs, lead times, development costs, in addition to reduced product development risk. Various trade study parameters are considered in addition to engine power. Power-pack configurations based on a common bore approach shows significant commonality advantages and
Kacynski, KenBauman, AndreasJohnson, S. Arnie
ABSTRACT At the onset of the Second World War, it was noticed that equipment being shipped overseas to the frontlines arrived corroded. The Department of Defense rapidly escalated the use of corrosion inhibitors in packaging materials to reduce the severity of the corrosion of those assets. This paper provides an overview of vapor corrosion inhibitors, describes how they are incorporated into anti-corrosion covers, and summarizes field test results showing typical protection provided to Department of Defense assets. The paper describes the environmental conditions that warrant the use of anti-corrosion covers and presents independent ground vehicle focused return-on-investment analysis. Citation: David J. Sharman, Robert R. Danko, Bill Scheible, “Light-weight drapable anti-corrosion covers,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
Sharman, David JDanko, Robert R.Schieble, Bill
ABSTRACT Automatic guided vehicles (AGV) have made big inroads in the automation of assembly plants and warehouse operations. There are thousands of AGV units in operation at OEM supplier and service facilities worldwide in virtually every major manufacturing and distribution sector. Although today’s AGV systems can be reconfigured and adapted to meet changes in operation and need, their adaptability is often limited because of inadequacies in current systems. This paper describes a wireless navigated (WN) omni-directional (OD) autonomous guided vehicle (AGV) that incorporates three technical innovations that address the shortfalls. The AGV features consist of: 1) A newly developed integrated wireless navigation technology to allow rapid rerouting of navigation pathways; 2) Omnidirectional wheels to move independently in different directions; 3) Modular space frame construction to conveniently resize and reshape the AGV platform. It includes an overview of the AGVs technical features
Cheok, Ka CRadovnikovich, MichoFleck, PaulHallenbeck, KevinGrzebyk, SteveVanneste, JerryLudwig, WolfgangGarner, Robert
ABSTRACT Microgrids have garnered attention as they facilitate the integration of distributed renewable and non-renewable energy resources and allow flexibility to connect to the grid whenever required. When power is required for temporary missions or an emergency search and rescue mission, a vehicle-borne microgrid can supply critical power needs. In this paper, a vehicle-borne mobile microgrid consisting of a diesel generator, a battery storage system and solar panels mounted on the vehicle exterior is considered, and an operational control that minimizes the total fuel consumption and the battery degradation is formulated based on model predictive control. A simulation study is carried out considering a forward operating base mission scenario where the microgrid supplies the charging power to unmanned ground and aerial vehicles deployed in the mission. The result shows that the proposed approach is robust against uncertainties associated with renewable generation and the charging
Paudel, SarojZhang, JiangfengAyalew, BeshahCastanier, MatthewSkowronska, Annette
ABSTRACT Situations exist that require the ability to preposition a basic level of energy infrastructure. Exploring and developing the arctic’s oil potential, providing power to areas damaged by natural or man-made disasters, and deploying forward operating bases are some examples. This project will develop and create a proof-of-concept electric power prepositioning system using small autonomous swarm robots each containing a power electronic building block. Given a high-level power delivery requirement, the robots will self-organize and physically link with each other to connect power sources to storage and end loads. Each robot mobile agent will need to determine both its positioning and energy conversion strategy that will deliver energy generated at one voltage and frequency to an end load requiring a different voltage and frequency. Although small-scale robots will be used to develop the negotiation strategies, scalability to existing, large-scale robotic vehicles will be
Weaver, Wayne W.Mahmoudian, NinaParker, Gordon G.
ABSTRACT The SAIC Battery Thermal Solver is a tool that allows for the evaluation of the thermal response under a variety of cell types, loading conditions and packaging alternatives for the battery designer, manufacturer, or system integrator. Developed with a user-friendly interface, the Battery Thermal Solver allows for a number of simulations to be performed. This paper discusses the capabilities of the Battery Thermal Solver Tool through a thorough discussion of the battery thermal problem—from cell heat generation, heat transfer mechanisms, to the effects of alternative packaging strategies
Jones, StanleyMendoza, JohnFrazier, GeorgeZanardelli, Sonya
This paper evaluates electric machine and reducer specifications along-side vehicle dynamics and drivability for an axial flux machine (AFM). The baseline is a conventional central drive unit with a single electric machine, reducer, and differential. It compares powertrain architectures with two in-wheel AFMs (IWD) and one AFM mounted perpendicular to the chassis against the E-Axle design. The study starts by determining wheel-level traction force and power requirements for a mid-sized vehicle, then derives necessary machine and reducer specifications. It also considers packaging and efficiency constraints. The E-Axle uses a single-stage planetary gearbox, while the perpendicular AFM connects to a bevel gear reducer, and the IWD requires no reducer. These architectures are analysed in a vehicle dynamics simulation with six degrees of freedom, suspension, tire, and road models. Efficiency is assessed using the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). Besides acceleration
Wipfler, FelixYildirim, MetinNegrila, Andrei-RaduGerling, DieterBruell, MartinSabzewari, Kiarash
Researchers have developed better rechargeable batteries by applying silicon to the batteries’ cathodes. A previously unknown mechanism by which lithium gets trapped in batteries limits the number of times it can be charged and discharged at full power. By not maxing out their storage capacity, a new approach could provide steady and stable cycling for applications that need it
Leak Before Break (LBB) is now widely applied in pressure vessels and other pressurized components to detect the failure by unstable crack initiation and propagation. This concept is also applied in pneumatic brake system components to validate the structural rigidity of the devices. Pneumatic brake system component plays a vital role in the commercial vehicle platform. It consists of four major systems such as charging systems, actuating systems, control systems and actuators. Charging System includes compressor, reservoir, air dryer, and system protection valves. Compressor acts as an energy source for pneumatic air brake systems, reservoir is used to store the compressed air generated by the compressor, and system protection valves are used to divide and distribute the air flow to the brake system. Air dryers are used to absorb moisture, oil particles and tiny foreign contaminants, regulate the system pressure, and blow off the excess pressure from the system. It contains a
Govindarasu, AnbarasuT, SukumarSubramanian, Vivek
Mi Rancho has been delighting customers with authentic and fresh tortillas, chips, and salsas since its establishment in 1939. Originally founded as a grocery store in Oakland, CA, the business has evolved and grown into a food provider for large nation-wide retail partners. To enable their continued growth, Mi Rancho recently partnered with Formic to introduce robotic automation to their food processing and packaging production operations
Active cooling integration into substrates can be utilized to significantly improve power density per unit volume, reduce weight, and improve overall heat dissipation for power semiconductors. The principal limitation for semiconductor device reliability has been identified as device operating temperature for decades. Electronic systems that are required to operate in extreme environmental conditions require direct and highly efficient thermal management materials and solutions. This investigation compares traditional power semiconductor packaging and thermal management incorporating multiple thermal resistances to a novel substrate with integrated active cooling, utilizing proven and established materials introducing active cooling directly under the die
Vethake, ThiloRazavi, RezaHodapp, GuidoDenham, CraigSaums, David
Moisture adsorption and compression deformation behaviors of Semimet and Non-Asbestos Organic brake pads were studied and compared for the pads cured at 120, 180 and 240 0C. The 2 types of pads were very similar in moisture adsorption behavior despite significant differences in composition. After being subjected to humidity and repeated compression to 160 bars, they all deform via the poroviscoelastoplastic mechanism, become harder to compress, and do not fully recover the original thickness after the pressure is released for 24 hours. In the case of the Semimet pads, the highest deformation occurs with the 240 °C-cure pads. In the case of the NAO pads, the highest deformation occurs with the 120 0C-cure pads. In addition, the effect of pad cure temperatures and moisture adsorption on low-speed friction was investigated. As pad properties change all the time in storage and in service because of continuously changing humidity, brake temperature and pressure, one must question any
Rhee, Seong KwanRathee, AmanSingh, ShivrajSharma, Devendra
In the medical device production environment, device packaging and sterilization is vital. The same level of rigorous quality controls and regulations that affect the devices themselves are also extended to their packaging. The mechanical and container closure integrity [CCI] evaluations of medical device packaging requires significant testing performed at multiple points throughout the commercialization and production processes
Getting 800 robots in a warehouse to and from their destinations efficiently while keeping them from crashing into each other is no easy task. In a sense, these robots are like cars trying to navigate a crowded city center
Sustainability remains a dominant trend in packaging and processing, continuing to attract the attention of the life sciences industry and inspire its new initiatives. Although pharmaceutical and medical device manufacturers must prioritize patient safety and product protection, concerns about climate change, greenhouse gas (GHG) emissions, plastic waste, and pressure to move toward a circular economy are prompting a greater focus on improving the sustainability of their products and packaging
Contract design and manufacturing organizations (CDMOs) play an increasingly crucial role in the pharmaceutical supply chain, providing the necessary capabilities and capacity to meet growing patient demand. The recent emergence of GLP-1 class drugs only emphasizes the importance of CDMOs, which con- tribute significant expertise related to fill-finish operations, secondary packaging, and distribution
Manufacturing and servicing facilities in space are (finally) moving from the pages of science fiction to reality. For decades, we've seen movies with scenes of spacecraft being created and serviced in beautifully rendered factories with Earth in the background. And many more ideas have come from authors imagining bold futures where humanity does everything from creating giant nets of satellites to massive, spinning space stations. Some might lament that, back in reality, we’ve come so far with our achievements in space yet fallen short of the brightest visions. How can we have landed on the Moon 50 years ago and still be scrapping billion-dollar satellites when they run out of fuel? However, there’s good reason to believe that the space industry is almost done laying the foundations that will let us move from science fiction to engineering reality
As vibration and noise regulations become more stringent, numerical models need to incorporate more detailed damping treatments. Commercial frameworks, such as Nastran and Actran, allow the representation of trim components as frequency-dependent reduced impedance matrices (RIM) in direct frequency response (DFR) analysis of fully trimmed models. The RIM is versatile enough to couple the trims to modal-based or physical components. If physical, the trim components are reduced on the physical coupling degrees of freedom (DOFs) for each connected interface. If modal, the RIMs are projected on the eigenmodes of the connected component. While a model size reduction is achieved compared to the original model, most numerical models possess an extensive number of interfaces DOFs, either modal or physical, resulting in large, dense RIMs that demand substantial memory and disk storage. Thus, the approach faces challenges related to storage capacities and efficiency, because of the demanding
Paiva, AndreVerhaegen, JulienLielens, GregoryVan den Nieuwenhof, Benoit
In recent years, the automotive industry has dedicated significant attention to the evolution of electric vehicles (EVs). The Electric-machine (as motor and generator, here and onward called E-machine as more general term) as the heart of the EDU (Electric Drive Unit) is very important component of powertrain and is the one of the main focuses of development. Traditionally, E-machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) specially at the early decision-making stages. This disconnect between E-machine design teams and NVH teams has consistently posed a challenge, which is the experience seen in many OEMs. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by integrating NVH considerations with other E-machine objectives, efficiency, weight, packaging and cost. This paper highlights AVL's
Mehrgou, MehdiGarcia de Madinabeitia, InigoAhmed, Mohamed Essam
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, hybridization and lower carbon-intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions. The development included the conversion of a 5.2 L diesel engine to
Wallace, JulianMitchell, RobertRao, SandeshJones, KevinKramer, DustinWang, YanyuChambon, PaulSjovall, ScottWilliams, D. Ryan
Rooftop solar panels will soon power about 90% of PFG's Gilroy, California, operations, the starting point for cold food deliveries. The vehicles getting the various edibles and food-related products from the warehouse to restaurants, schools, hotels and other customers include new battery-electric Class 8 trucks that mate to trailers fitted with zero-emission transport refrigeration units (TRUs). “Our Gilroy, California, location is the pilot for how we intend to develop sustainable distribution centers,” said Jeff Williamson, senior vice president of operations for Richmond, Virginia-headquartered Performance Food Group (PFG). Williamson and others were recently interviewed by Truck & Off-Highway Engineering following an Earth Day open house at the Gilroy site
Buchholz, Kami
Aitiip is a leading Spanish research and development institute and serves companies in the aeronautics, automation, industrial, and packaging sectors. The institute possesses strong platforms for the characterization of materials and processes and is known as a powerful integrator of technologies, which is constantly on the lookout for the next transformative technology. A year ago, Aitiip implemented an NXE 400 industrial resin 3D printer platform from Nexa3D to explore integrations of additive manufacturing and injection molding. Nexa3D is the Ventura, California-based provider of high-speed industrial printing technologies whose portfolio continues to grow, reflected in its acquisition of Essentium, one of the world's most well-known providers of extrusion 3D printing, earlier this year. Liebherr is one of the world's largest providers of a variety of industrial goods, services and products. Aerospace and transportation systems is one of 13 different product segments supplied by the
Most heavy trucks should be fully electric, using a combination of batteries and catenary electrification, but heavy trucks requiring very long unsupported range will need chemical fuels. Hydrogen is the key to storing renewably generated electricity chemically. At the scale of heavy trucks, compressed hydrogen can match the specific energy of diesel, but its energy density is five times lower, limiting the range to around 2,000 km. Scaling green hydrogen production and addressing leakage must be priorities. Hydrogen-derived electrofuels—or “e-fuels”—have the potential to scale, and while the economic comparison currently has unknowns, clean air considerations have gained new importance. The limited supply of bioenergy should be reserved for critical applications, such as bioenergy with carbon capture and storage (BECCS), aviation, shipping, and road freight in the most remote locations. Additionally, there are some reasons to prefer ethanol or methanol to diesel-type fuels as they are
Muelaner, Jody E.
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work. This finding suggests that a DFI retrofit for this
Svensson, KenthFitzgerald, RussellMartin, Glen
Plastic design is one of the upcoming fields of interest when it comes to weight optimization, sustainability, strength, and overall aesthetics of an automobile. What is often ignored is the amount of flexibility a plastic designer has, of integrating and packaging various components of an automobile into a single part and still make it an integral part of its complex aesthetics. This paper highlights upon one such part that is being developed: An integrated bracket which packages ADAS camera, Rain Light Sensor, and an Auto-dimming IRVM. Apart from packaging the mentioned components, this bracket also has mounting provisions for an aesthetic cover (also referred to as beauty cover). The objective of this paper is to highlight the importance of integration of several parts into a single part for packaging multiple components that need to be placed in a close proximity with each other. This paper includes the demonstration of old design which consisted of multiple parts along with how we
Chandravanshi, PriyanshParthiban, MohanBable, ShubhamDharmatti, Girish
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed. The net churning losses obtained from the simulations are compared
Ballani, AbhishekSchlautman, JeffSrinivasan, ChiranthAhmed, RayhanSchroeder, Debera
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development
Guo, ChengyunVan Maanen, KeithLiu, Xiaobing
Electrified vehicles represent mobility’s future, but they impose challenging and diverse requirements like range and performance. To meet these requirements, various components, such as battery cells, electric drives, fuel cells, and hydrogen vessels need to be integrated into a drive and storage system that optimizes the key performance indicators (KPI). However, finding the best combination of components is a multifaceted problem in the early phases of development. Therefore, advanced simulation tools and processes are essential for satisfying the customer´s expectation. EDAG Engineering GmbH has developed a flat storage platform, which is suitable for both, BEV and FCEV. The platform allows for the flexible and modular integration of batteries and hydrogen vessels. However, package space is limited and the impact of the design choices regarding the vehicle’s KPI need to be considered. Therefore, EDAG has developed a simulation model that combines automated 3D design and packaging
Viehmann, AndreasNauck, NiklasEsser, ArvedSchramm, Michael
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process. Non-planar
Strelkova, DoraUrbanic, Ruth Jill
The steam reforming of CH4 plays a crucial role in the high-temperature activity of natural gas three-way catalysts. Despite existing reports on sulfur inhibition in CH4 steam reforming, there is a limited understanding of sulfur storage and removal dynamics under various lambda conditions. In this study, we utilize a 4-Mode sulfur testing approach to elucidate the dynamics of sulfur storage and removal and their impact on three-way catalyst performance. We also investigate the influence of sulfur on CH4 steam reforming by analyzing CH4 conversions under dithering, rich, and lean reactor conditions. In the 4-Mode sulfur test, saturating the TWC with sulfur at low temperatures emerges as the primary cause of significant three-way catalyst performance degradation. After undergoing a deSOx treatment at 600 °C, NOx conversions were fully restored, while CH4 conversions did not fully recover. Experimental data under fixed lambda conditions reveal that sulfur stored on the catalyst leads to
Kim, Mi-YoungDadi, Karthik VenkataGong, JianKamasamudram, Krishna
The need for eco-friendly vehicle powertrains has increased drastically in recent years. The most critical component of an electric vehicle is the battery pack/cell. The choice of the appropriate cell directly determines the size, performance, range, life, and cost of the vehicle. Lithium-ion batteries with high energy density and higher cycle life play a crucial role in the progress of the electric vehicle. However, the packaging of lithium-ion cells is expected to meet lots of assembly demands to increase their life and improve their functional safety. Due to their low mechanical stability, the lithium-ion cell modules must have external pressure on the cell surface for improved performance. The cells must be stacked in a compressed condition to exert the desired pressure on the cell surface using compression foam/pads. The compression pads can be either packaged between each cell or once in every set of cells based on the cell assembly requirements. This paper describes the need for
Sithick Basha, AbubakkerChalumuru, MadhuSasikumar, K
Items per page:
1 – 50 of 3809