Browse Topic: Materials handling

Items (3,764)
Accurate forecasting of port container throughput is essential for strategic port planning and infrastructure development. This paper systematically employed the GM (1,1) grey prediction model, quadratic exponential smoothing model and ARIMA model to forecast container throughput at Tianjin Port. Subsequently, a combined model was established through weighted integration of these individual predictors. The results demonstrated that the combined model achieved higher predictive accuracy and lower mean error compared to individual model, thereby providing valuable insights for Tianjin Port’s strategic development planning.
Shi, YujieZhou, Xin
In this article we will discuss the development and implementation of a computer vision system to be used in decision-making and control of an electro-hydraulic mechanism in order to guarantee correct functioning and efficiency during the logistics project. To achieve this, we have brought together a team of engineering students with knowledge in the area of Artificial Intelligence, Front End and mechanical, electrical and hydraulic devices. The project consists of installing a system on a forklift that moves packaged household appliances that can identify and differentiate the different types of products moved in factories and distribution centers. Therefore, the objective will be to process this identification and control an electro-hydraulic pressure control valve (normally controlled in PWM) so that it releases only the hydraulic pressure configured for each type of packaging/product, and thus correctly squeezing (compressing) the specific volume, without damaging it due to
Furquim, Bruno BuenoPivetta, Italo MeneguelloIbusuki, Ugo
In this study, using the American Society of Mechanical Engineers - ASME VIII Div.1 and the German AD - MERKBLÄTTER 2000 (that is a code of practice for pressure vessels and other pressure equipment, it was drawn up by the German Pressure Vessel Association which includes many German associations and institutions specialized in boilers and pressure vessels). This pressure vessel had its geometry generated from the Inventor software, which has equipment specification for industrial applications. The validation of two types of horizontal cylindrical vessels was performed: one without and one with four nozzles (A, B, C, D). For this, two common parameters between both standards were considered: the minimum required thickness in millimeters (of the cylindrical shell, elliptical head, and nozzles A, B, C, and D), as well as the maximum membrane stress (in the presence and absence of nozzles). The percentage differences between both standards, considering the membrane stress of the vessel
Pereira, Mateus PenidoCastro, Thais SantosGrandinetti, Francisco JoseBimestre, Thiago AveraldoReis de Faria Neto, dos AntonioDias, Erica XimenesMartins, Marcelo Sampaio
As a crucial part of national strategic resources, petroleum is an important basic material for economic development. However, during the storage, loading and unloading, and transportation of bulk liquid petroleum products, unavoidable natural losses occur due to factors such as process technology and equipment. Therefore, studying the natural loss of liquid petroleum during storage and transportation, and adopting effective countermeasures to minimize the natural loss of liquid petroleum, has become a topic of focus in various fields. This paper uses the “Loss of Bulk Liquid Petroleum Products” approved in 1989 as the analysis standard to explore the natural loss of highway oil transportation, conduct statistical test analysis on oil data such as oil collection registration forms, and propose conclusions and suggestions, thereby providing a reference for the revision of oil loss standards. The experimental results show that the overall oil data meets the national standard for natural
Li, BixinLi, JilaiJin, Shifeng
Intelligent ships represent a crucial trend in the development of the maritime industry and will become the predominant vessel form in the future. Intelligent ships must have efficient perception and situational analysis capabilities in complex navigation environments to achieve intelligent decision-making and safe navigation. Maritime traffic safety is a critical issue for the global shipping industry, and maritime situational awareness is essential for ensuring safe navigation in waterways. This paper addresses the problem of intelligent identification of potential navigational risks in ship navigation environments and proposes a Transformer-based approach for ship encounter situation recognition. This method utilizes Automatic Identification System (AIS) data to extract encounter features. Contextual Position Encoding and Coordinate Attention mechanisms are introduced into the model to capture spatial correlation and directional features, enhancing the accuracy of determining
Ma, TongyuePan, MingyangLi, ShaoxiHu, JingfengLi, Chao
The control of rainfall runoff drainage in large airports presents significant challenges, particularly in terms of real-time coupling with meteorological warnings. This paper proposes an optimization method for the layout of sponge-like drainage ditches in large airports under BIM-3DGIS coupling. A BIM water supply and drainage model is constructed, with detailed inspections conducted on the functions and connections of the pipeline system in Revit software. The flow velocity and equivalent water supply pressure within the pipelines are analyzed, and collision detection is performed on the components. Based on 3DGIS technology, an optimization model for the layout of sponge-like drainage ditches is established, taking into comprehensive consideration various factors such as airport topography, rainfall characteristics, and surrounding environment. By calculating the water level changes within the infiltration and drainage ditches under different design rainfall scenarios, the storage
Geng, LiangsuiZhao, ZhenyuHu, Jing
To promote the development of bulk grain and container transportation at Jinzhou Port while enhancing port efficiency, this study investigates how to further improve the bulk grain container transportation method to increase market competitiveness. The aim is to propose new strategic ideas for expanding market presence and strengthening competitive capabilities. The paper presents the strategic objectives for the development of bulk grain container transportation at Jinzhou Port and conducts a comprehensive analysis of the internal and external environments of this transportation mode. This analysis facilitates the formulation of a detailed development plan and layout for current operations. Furthermore, the study proposes the necessary strategic positioning for the advancement of bulk grain container transportation, employing a logistic regression forecasting method to predict the annual throughput of bulk grain container operations at Jinzhou Port. Based on the forecasting results
Qi, Yin
This specification establishes process controls for the repeatable production of sintered parts by binder jet additive manufacturing (BJAM). It is primarily intended to be used to manufacture metallic or ceramic aerospace parts, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
Large farms cultivating forage crops for the dairy and livestock sectors require high-quality, dense bales with substantial nutritional value. The storage of hay becomes essential during the colder winter months when grass growth and field conditions are unsuitable for animal grazing. Bale weight serves as a critical parameter for assessing field yields, managing inventory, and facilitating fair trade within the industry. The agricultural sector increasingly demands innovative solutions to enhance efficiency and productivity while minimizing the overhead costs associated with advanced systems. Recent weighing system solutions rely heavily on load cells mounted inside baling machines, adding extra costs, complexity and weight to the equipment. This paper addresses the need to mitigate these issues by implementing an advanced model-based weighing system that operates without the use of load cells, specifically designed for round baler machines. The weighing solution utilizes mathematical
Kadam, Pankaj
In the agricultural industry, the logistics of transporting and storing bales, used as cattle feed, pose significant challenges for large scale farms. Traditional storage of bales in barns is labor-intensive, high in capital expenditure and requires multiple trips of transport vehicle on and off the field. Improper handling during this transition can lead to substantial losses in time, resources and loss of hay. This development aims to eliminate the last-mile transportation step, by enabling year-round storage of bales directly in the field. A patented wrapping material, along with strategic orientation of wrapped bales, enhances their resistance to weather conditions. Field experiments demonstrated that this innovative material not only protects the bales from adverse environmental factors but also effectively retains their nutrient and moisture content. A critical aspect of this solution is ensuring the correct orientation of the wrap seams, as the bales are continuously rotated
Kadam, Pankaj
In the recent years, the urgency to decarbonize the mobility sector has highlighted the importance of the electrochemical hydrogen use in fuel cells to complement the battery-based electrification. Hydrogen is the greenest energy carrier, and low-temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are part of an ever-evolving scenario, with particularly promising use in high energy demand sectors. Hydrogen is the main player in decarbonisation scenarios, but there are many issues, including its production and storage. There are many categories of hydrogen; in these applications, the finest category of hydrogen, called green hydrogen, is required. To achieve completely green vehicle mobility, enormous technological advances are necessary. This paper presents a 3D-CFD study to analyse the behaviour of PEMFCs by examining the role of humidification, covering fully humidified (anode and cathode), anode-only, cathode-only, and fully dry operations. This is simulated for several
Scialpi, LeonardoD'Adamo, AlessandroMarra, Carmine
In contemporary global commerce, swift advancements are observed within the maritime transportation sector. The frequency of seafaring voyages increases apace, from which it is discerned that navigational safety emerges as an indispensable concern. Paramount to safeguarding vessel operations and diminishing the susceptibility to maritime mishaps has become the integration of ship domain models. Through incorporation of AIS datasets alongside mathematical statistical evaluations melded with insights derived from ship captains, this discourse introduces a novel risk domain paradigm tailor-made for ships. The curated data amalgamated with maritime captaincy was stratified and overlayered, utilizing techniques such as the maximum density method juxtaposed with least squares calculation to ascertain the periphery defining the ship’s risk precinct. This newly conceived model interweaves aspects of ship maneuverability in concert with evasion protocols predicated on extant ship domain models
Xiong, JuntingZhang, YongChen, XiaofengMeng, FanjunZhang, Junpeng
Cargo Routing Problem or Container Allocation Problem is key decision-making challenge in the maritime industry at operational level. Existing research focus on static environment or planning decisions, ignoring the dynamic arrival property of shipping request in practical world. In this paper, we introduced the Online Cargo Routing problem and formulation the path-based models under a space-time network. We proposed an online algorithm under the online primal-dual scheme: re-solving strategy. We further conducted simulation experiments under different demand distributions to demonstrate the performance of the proposed algorithm over the offline baselines.
Xu, XiaoweiGong, LinXiang, XiLiu, Xin
The China Container Freight Index (CCFI) is an important barometer of the global container shipping market. It is very important for participants in the shipping market to understand its composition. This study takes six representative routes as the research objects and conducts a detailed analysis of the composition of CCFI. The freight rate indices of these routes are decomposed and reconstructed by using the Empirical Mode Decomposition (EMD) algorithm, aiming to clarify the economic significance of each route and the fluctuation law of the reconstructed components. The research results show that the freight rate fluctuations of the west Coast, Southeast Asia and Mediterranean routes exhibit a complex nonlinear interdependence, and the simple linear model cannot fully reflect this relationship. On the contrary, the trend components of the European and Mediterranean routes effectively identify and represent the main trends within the original freight rate index. Global major events
Yin, Sitian
The growing emphasis on environmental protection and sustainability has resulted in increasingly stringent emission regulations for automotive manufacturers, as demonstrated by the upcoming EURO 7 and 2027 EPA standards. Significant advancements in cleaner combustion and effective aftertreatment strategies have been made in recent decades to increase the engine efficiency while abiding by the emission limits. Among the exhaust aftertreatment strategies, three-way catalyst has remained the primary solution for stoichiometric burn engines due to its high conversion efficiency and ability to simultaneously allow both oxidative and reductive reactions in a single stage with spatial separation due to the oxygen storage capabilities of ceria. However, fuel and lubricant-borne sulfur and phosphorus compounds have been shown to have a significant long-term effect on the activity of three-way catalysts, particularly during the lean-rich transitions and oxygen storage processes. In the present
Sandhu, Navjot SinghYu, XiaoJiang, ChuankaiTing, DavidZheng, Ming
Advances in conformable tank technology have resulted in opportunities to harness and deploy hydrogen energy in a variety of operational environments. Various use cases are described, and the benefits of these unique storage systems in vehicular, stationary, and bulk storage applications are illustrated. The impressive scalability of conformable hydrogen tank production is also explained, as it relates to the cost effective and broad application of these storage systems.
Johnston, StephenKondogiani, Chris
As unmanned vehicular networks become more prevalent in civilian and defense applications, the need for robust security solutions grows in parallel. While ROS 2 offers a flexible platform for robotic operations, its security model lacks the adaptability required for dynamic trust management and proactive threat mitigation. To address these shortcomings, we propose a novel framework that integrates containerized ROS 2 nodes with Kubernetes-based orchestration, a dynamic trust management subsystem, and integrability with simulators for real-time and protocol-flexible network simulation. By embedding trust management directly within each ROS 2 container and leveraging Kubernetes, we overcome ROS 2’s security limitations by enabling real-time monitoring and machine learning-driven anomaly detection (via an autoencoder trained on custom data), facilitating the isolation or removal of suspicious nodes. Additionally, Kubernetes policies allow seamless scaling and enforcement of trust-based
Tinker, NoahBoone, JuliaWang, Kuang-Ching
Warehouse logistics increasingly rely on automation in the form of autonomous mobile robots (AMRs), scanners, complex conveyors, and fleet management systems for seamless operation, but it’s the ubiquitous, century-old pallet that remains the critical support system. Make no mistake, if even one of those thousands of pallets is defective, it can create havoc in the warehouse.
This specification covers procedures for tab marking of bare welding wire to provide positive identification of cut lengths and spools.
AMS B Finishes Processes and Fluids Committee
This standard establishes the recommended requirements for application of AMS3144 anodic electrodeposition primer to aerospace components. Adherence to these requirements will help facilitate satisfactory performance of the applied primer.
AMS G8 Aerospace Organic Coatings Committee
This SAE Standard covers complete general and dimensional specifications for refrigeration tube fittings of the flare type specified in Figures 1 to 42 and Tables 1 to 15. These fittings are intended for general use with flared annealed copper tubing in refrigeration applications. Dimensions of single and double 45 degree flares on tubing to be used in conjunction with these fittings are given in Figure 2 and Table 1 of SAE J533. The following general specifications supplement the dimensional data contained in Tables 1 to 15 with respect to all unspecified details.
Air Brake Tubing and Tube Ftg Committee
The exhaust front pipe is a critical structural component in commercial vehicles, ensuring the leak-proof flow of exhaust gases into the exhaust after-treatment system while withstanding engine and frame vibrations. To isolate these vibrations, the front pipe is equipped with a flex connector capable of enduring various displacements at frequencies between 8-25 Hz. The position of the flex connector relative to the engine crank axis significantly impacts its structural reliability over its service life. This paper compares the existing design, which features a horizontally positioned flex connector, with a modified design that positions the flex connector vertically and changes the material from SS-304 to SS-321. Finite element analysis was conducted using Nastran software. The fatigue life of the existing flex connector design is approximately 1015 cycles. In contrast, the improved design demonstrates a fatigue life of 1727 cycles, representing a 70% increase in durability compared to
Chandel, KushalParoche, SonuNamdev, AkhileshJain, ShailendraPatil, Keyur
The results published in this paper emphasize on the study of three-way catalytic convertor for a 1.2 L turbocharged multi-point fuel injection gasoline engine. This paper takes us through the findings on methodology used for finalizing the brick configuration for catalytic convertor along with downstream oxygen sensor placement for emission control and methods applied for catalytic convertor selection with actual testing. The advantages of dual brick configuration over single brick with downstream sensor placed in between the bricks to enable faster dew point of sensor is explained using water splash test and design confirmation of better exhaust gas flow vortices concentration at the sensor tip for better sensing. Selection of catalytic convertor loading by testing its emission conversion capability and light-off behavior. NOx conversion capability across stoichiometric ratio (14.7:1 for petrol) on selected most operational zone was tested (±5% lambda) for the design-finalized
Arun Selvan, S. A.Paul, Arun AugustineSelvaraj, Manimaran
In single-aisle aircraft, the available storage space for carry-on baggage is inherently limited. When the aircraft is fully booked, it often results in insufficient overhead bin space, necessitating last-minute gate-checking of carry-on items. Such disruptions contribute to delays in the boarding process and reduce operational efficiency. A promising approach to mitigate this issue involves the integration of computer vision technologies with an appropriate data storage system and stochastic simulation to enable accurate and supportive predictions that enhance planning, reduce uncertainty, and improve the overall boarding process. In this work, the YOLOv8 image recognition algorithm is used to identify and classify each passenger’s carry-on baggage into predefined categories, such as handbags, backpacks, and suitcases. This classified data is then linked to passenger information stored in a NoSQL database MongoDB, which includes seat assignments and the number of carry-on items
Bergmann, JacquelineHub, Maximilian
In the future, autonomous drones could be used to shuttle inventory between large warehouses. A drone might fly into a semi-dark structure the size of several football fields, zipping along hundreds of identical aisles before docking at the precise spot where its shipment is needed.
MEMS is a more complex technology than traditional semiconductors. They are 3D structures with moving parts, making them much more difficult to fabricate. If you’re designing a semiconductor, you may be able to take advantage of an existing process development kit (PDK), which your foundry can provide to you. There is no equivalent approach in MEMS. It’s a “one process, one product” paradigm that requires a high level of customization. That takes time, money, and resources.
This SAE Standard establishes terminology and the content of commercial literature specifications for self-propelled crawler and wheeled material handlers, pedestal mounted material handlers and their equipment as defined in 3.1. Illustrations used here are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been provided to describe the principles to be used in applying this document. (Material handlers share many design characteristics with hydraulic excavators and log loaders; primarily 360 degree continuous rotation of the upperstructure relative to the undercarriage or mounting. They differ in their operating application. Material handlers are used for the handling of scrap material and normally utilize grapples or magnets. Hydraulic excavators are used for the excavation of earth, gravel and other loose material utilizing a bucket. Log loaders are used for the handling of logs and trees and normally utilize
MTC1, Earthmoving Machinery
This SAE Standard provides a uniform method to calculate the lift capacity of scrap and material handlers, establishes definitions and specifies machine conditions for the calculations. This document applies to scrap and material handlers as defined in SAE J2506 that have a 360 degrees continuous rotating upper structure. It does not apply to equipment that is incapable of lifting a load completely off the ground. This document applies to those machines that are crawler, wheel, rail and pedestal or stationary mounted.
MTC1, Earthmoving Machinery
In response to the evolving landscape of exhaust gas regulations for small powertrains, reducing NOx emission is increasingly important. This study deeply investigated the feasibility of a NOx storage catalyst (NSC) containing cerium oxide (CeO2) and barium oxide (BaO) for reducing NOx emission. The key functions, NOx storage and reduction performances were evaluated, and deterioration mechanisms were explored through performance evaluations and physical property analyses. The findings revealed a strong correlation between the size of CeO2 crystals and NOx storage performance at low temperature, such as those encountered during city driving conditions. Conversely, at high temperature, such as those during highway driving conditions, NOx storage performance correlated well with sulfur deposition, suggesting that the formation of barium sulfate (BaSO4) contributes to the deactivation. This experiment also showed a strong correlation between NOx reduction performance and BaSO4 formation
Nakano, FumiyaKoito, Yusuke
Modern military operations prove that increased terrain mobility is critical for heavy tracked vehicles’ (HTVs) survivability and lethality. HTV major system packaging as a component of preliminary design with many physical constraints and assumptions poses great challenges for mobility. This paper develops an approach and a method that accounts for such constraints/assumptions and optimizes the packaging of the HTV system assembly, including vehicle armor, armament and munition, powertrain, and fuel tanks. The optimization purpose is to accommodate the center of gravity for improving ground pressure distribution and then reducing the sinkage. This work is based on a literature review and combines numerous techniques rooted in Western literature and Eastern Soviet- and post-Soviet-era literature. The optimization process is developed using a genetic algorithm. The Mean Relative Design (MRD) parameter is proposed to study the average system rearrangement (i.e., re-packing) that is
Vardi, HaggayVantsevich, VladimirGorsich, David
On-board diagnosis (OBD) of gasoline vehicle emissions is detected by measuring the fluctuations of the rear oxygen sensor due to the time-dependent deterioration of the oxygen storage capacity (OSC) contained in the automotive catalyst materials. To detect OBD in various driving modes of automobiles with an order of magnitude higher accuracy than before, it is essential to understand the OSC mechanism based on fundamental science. In this study, time-resolved dispersive X-ray absorption fine structure (DXAFS) using synchrotron radiation was used to carry out a detailed analysis not only of the OSC of ceria-based complex oxides, which had previously been roughly understood, but also of how differences in design parameters such as the type of precious metals, reducing gases (CO and H2), detection temperatures, and mileages (degree of deteriorations) affect the OSC rate in a fluctuating redox atmosphere. A fundamental characteristic was clearly demonstrated in ceria-based complex oxides
Tanaka, HirohisaMatsumura, DaijuUegaki, ShinyaHamada, ShotaAotani, TakuroKamezawa, SaekaNakamoto, MasamiAsai, ShingoMizuno, TomohisaTakamura, RikuGoto, Takashi
In order to comply with the tightening of global regulations on automobile exhaust gas, further improvements to exhaust gas control catalysts and upgrades to on-board diagnostics (OBD) systems must be made. Currently, oxygen storage capacity (OSC) is monitored by front and rear sensors before and after the catalyst, and deterioration is judged by a decrease in OSC, but it is possible that catalyst deterioration may cause the rear sensor to detect gas that has not been sufficiently purified. It is important to observe the activity changes when the catalyst deteriorates in more detail and to gain a deeper understanding of the catalyst mechanism in order to create guidelines for future catalyst development. In this study, we used a μ-TG (micro thermogravimetric balance) to analyze in detail how differences in design parameters such as the type of precious metal, detection temperature, and mileage (degree of deterioration) affect the OSC rate in addition to the OSC of the ceria-based
Hamada, ShotaUegaki, ShinyaTanabe, HidetakaNakayama, TomohitoJinjo, ItsukiKurono, SeitaOishi, ShunsukeNarita, KeiichiOnishi, TetsuroYasuda, KazuyaMatsumura, DaijuTanaka, Hirohisa
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
S M, Rahuld, AnanthaKakani, Phani Kumar
The paper presents novel studies on the electrical-to-thermal energy deposition to gas at different phases of a spark. The experiments utilized a 10.9 milliliter custom-built spark calorimeter. The energy transfer efficiencies across spark phases—breakdown+arc, and glow are quantified, emphasizing their importances in ensuring robust ignition. An AC capacitive ignition system was considered in the experiments. The spark plugs used in the experiments were of dual-nickel standard J-gap design of a fixed electrode gap. Test results show the breakdown+arc phases are highly efficient in converting electrical to thermal energy, crucial for ignition. The glow phase, offering control flexibility, is found to be less effective in energy transfer from spark to gas. In addition, a maximum threshold for both glow current and duration is found. Exceeding the threshold reduces the net energy deposition to the gas, indicating an increase in thermal energy losses, primarily to the spark plug
Saha, AnupamTunestal, PerAengeby, JakobAndersson, Oivind
Since the rapid development of the shipping and port industries in the second half of the twentieth century, the introduction of container technology has transformed cargo management systems, while simultaneously increasing the vulnerability of global shipping networks to natural disasters and international conflicts. To address this challenge, the study leverages AIS data sourced from the Vessel Traffic Data website to extract ship stop trajectories and construct a shipping network. The constructed network exhibits small-world characteristics, with most port nodes having low degree values, while a few ports possess extremely high degree values. Furthermore, the study improved the PageRank algorithm to assess the importance of port nodes and introduced reliability theory and risk assessment theory to analyze the failure risks of port nodes, providing new methods and perspectives for analyzing the reliability of the shipping network.
Li, DingCheng, ChengZhao, XingxiLi, Zengshuang
Items per page:
1 – 50 of 3764