Browse Topic: Metallurgy
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
The initial powder used for the manufacturing of NdFeB permanent magnets is usually prepared through rapid cooling, either by melt spinning or strip casting. The powders produced by these two methods are suitable for different applications: while melt-spun powder is a good initial material for bonded and hot-deformed magnets, strip-cast powder is normally used for sintered magnets. To investigate the suitability of using strip-cast powder to manufacture hot-deformed magnets, NdFeB powder prepared by strip casting was hot pressed (without particle alignment) and compared with melt-spun powder prepared under the same conditions (700 °C, 45 MPa, 90 min). Although the processing parameters are the same (pressed in the same mold), the magnetic properties of the magnets made from the two powders are significantly different. Surprisingly, the magnet made from the strip-cast powder (after ball milling) shows comparable magnetic properties to those of isotropic magnets, with coercivity (HcJ) of
This specification covers the requirements of uncoated aluminum alloy foil for core materials required for structural sandwich construction.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
This specification covers an aluminum alloy in the form of hand forgings 11.000 inches (280 mm) and under in nominal thickness and of forging stock of any size (see 8.6).
This specification covers an aluminum alloy in the form of bars and rods 0.750 to 3.500 inches (19.05 to 88.90 mm), inclusive, in nominal diameter or least distance between parallel sides (see 8.5).
This specification covers a low-carbon steel in the form of seamless tubing up to 5.50 inches (139.7 mm), nominal OD, inclusive.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
This specification covers a titanium alloy in the form of bars, wire, forgings, flash-welded rings 4.000 inches (101.60 mm) and under in nominal diameter or least distance between parallel sides, and stock for forging and flash-welded rings of any size (see 8.6).
This specification covers an aluminum alloy in the form of plate 4.001 to 7.000 inches (101.62 to 177.80 mm), inclusive, in nominal thickness (see 8.5).
This specification covers two types of free-machining, corrosion- and heat-resistant steel in the form of bars, wire, forgings, and forging stock.
This specification covers an aluminum alloy in the form of plate 1.000 to 6.000 inches (25.40 to 152.40 mm), inclusive, in nominal thickness (see 8.5).
This specification covers an aluminum alloy in the form of die and hand forgings 4 inches (102 mm) and under in thickness, rolled or forged rings 2.50 inches (63.5 mm) and under in radial thickness, and stock of any size for forging or rings (see 8.5).
This specification covers an aluminum alloy procured in the form of extruded profiles (shapes) with nominal thickness of over 0.040 to 0.375 inch (over 1.00 to 9.5 mm), inclusive, and cross sections up to 7.75 square inches (5000 mm2) and circle sizes as indicated (see 8.5).
This specification covers an aluminum alloy in the form of seamless, drawn tubing having a nominal wall thickness of 0.120 to 0.400 inch (3.00 to 10.00 mm), inclusive (see 8.5).
This specification covers an aluminum alloy in the form of sheet 0.011 to 0.126 inch (0.28 to 3.20 mm), inclusive, in nominal thickness, with a grain size of ASTM No. 6 or finer (see 8.5).
This specification covers an aluminum alloy in the form of plate 3.000 to 7.000 inches (76.20 to 177.80 mm) in nominal thickness (see 8.5).
This specification covers an aluminum alloy procured in the form of extruded profiles (shapes) with cross sections up to 0.750 inch (19.05 mm) (see 8.6).
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4.000 inches (101.60 mm), inclusive (see 8.6).
This specification covers a cast tin bronze in the form of sealing rings (see 8.5).
This specification covers an aluminum alloy in the form of die forgings and hand forgings up to 6.000 inches (152.40 mm) in nominal thickness at the time of heat treatment (see 8.6).
This specification covers the requirements for electrodeposited zinc-nickel on metal parts, including fasteners and other standard parts.
This specification covers an aluminum alloy in the form of hand forgings 12 inches (305 mm), inclusive, and under in nominal thickness and forging stock of any size (see 8.5).
This specification covers one grade of commercially pure titanium in the form of sheet, strip, and plate up through 1.000 inch (25.40 mm), inclusive (see 8.6).
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
This specification covers an aluminum alloy procured in the form of extruded bars, rods, and profiles (shapes) with nominal thickness up to 3.000 inches (76.20 mm), inclusive, and having a cross-sectional area of 26.3 square inches (170 cm2) maximum and circle size of 15.3 inches (389 mm) maximum (see 8.6).
This specification covers a high-strength, corrosion-resistant alloy in the form of bars.
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) produced with nominal thickness up to 3.000 inches (76.20 mm), inclusive, and having a cross-sectional area of 42 square inches (271 cm2) maximum and a circumscribing circle diameter (circle size) of 15 inches (38 cm) maximum (see 2.4.1 and 8.8).
This specification covers an aluminum alloy in the form of plate 0.250 to 3.000 inches (6.35 to 76.20 mm), inclusive, in nominal thickness (see 8.5).
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and forging stock.
This specification covers an aluminum alloy in the form of hand forgings 17 inches (432 mm) and under in nominal thickness and rolled rings up to 6 inches (152 mm), inclusive, in nominal thickness at the time of heat treatment (see 8.6).
This specification covers an aluminum alloy in the form of seamless drawn tubing having nominal wall thickness of 0.018 to 0.500 inch (0.46 to 12.70 mm), inclusive (see 8.4).
Items per page:
50
1 – 50 of 16036