Browse Topic: Education and training

Items (6,261)
This research, path planning optimization of the deep Q-network (DQN) algorithm is enhanced through integration with the enhanced deep Q-network (EDQN) for mobile robot (MR) navigation in specific scenarios. This approach involves multiple objectives, such as minimizing path distance, energy consumption, and obstacle avoidance. The proposed algorithm has been adapted to operate MRs in both 10 × 10 and 15 × 15 grid-mapped environments, accommodating both static and dynamic settings. The main objective of the algorithm is to determine the most efficient, optimized path to the target destination. A learning-based MR was utilized to experimentally validate the EDQN methodology, confirming its effectiveness. For robot trajectory tasks, this research demonstrates that the EDQN approach enables collision avoidance, optimizes path efficiency, and achieves practical applicability. Training episodes were implemented over 3000 iterations. In comparison to traditional algorithms such as A*, GA
Arumugam, VengatesanAlagumalai, VasudevanRajendran, Sundarakannan
The SAE Formula prototypes are developed by students, where in the competition, various aspects of project definitions are evaluated. Among the factors evaluated for scoring is the braking system, in which the present work aims to present the development and design of the braking system of a vehicle, prototype of Formula SAE student competition. As it is a project manufactured mostly by students, where the chassis, suspension system, electrical, transmission and powertrain are developed, it is important to first pass the static and safety tests, where the brakes of the four wheels are tested during deceleration at a certain distance from the track. To enable such approval and also to demonstrate, for the competition judges, the veracity of the system’s sizing, all the parameters and assumptions of the choice of the vehicle’s braking system are presented, thus ensuring their reliability, efficiency and safety. Using drawing and simulation software such as SolidWorks and Excel for
Gomes, Lucas OlenskiGrandinetti, Francisco JoséMartins, Marcelo SampaioSouza Soares, Alvaro ManoelReis de Faria Neto, AntônioCastro, Thais SantosAlmeida, Luís Fernando
This paper proposes a theoretical drive cycle for the competition, considering the battery pack project under design. The vehicle has a non-reversible, double-stage gear train, created without a dynamic investigation. To evaluate the effect on performance, several ratios were analyzed. Dynamic model uses Eksergian’s Equation of Motion to evaluate car equivalent mass (generalized inertia), and external forces acting on the vehicle. The circuit is divided into key locations where the driver is likely to accelerate or brake, based on a predicted behavior. MATLAB ODE Solver executed the numerical integration, evaluating time forward coordinates, creating the drive cycle. Linear gear train results provided data as boundary conditions for a second round of simulations performed with epicyclic gear trains. Model is updated to include their nonlinearity by differential algebraic equation employment with Lagrange multipliers. All data undergoes evaluation to ascertain the mechanical and
Rodrigues, Patrícia Mainardi TortorelliSilveira, Henrique Leandro
The SAE Formula, a national stage of the international competition, consists of a student project at universities in Brazil that seeks to encourage engineering students to apply the theoretical knowledge obtained in the classroom to practice, dealing with real problems and difficulties in order to prepare them for the job market. The SAE Formula prototype is developed with the intention of competing in the SAE national competition, where teams from various universities in Brazil meet to compete and demonstrate the projects developed during the year. Focusing on the vehicle dynamics subsystem, which can be divided into the braking, suspension, and steering systems of a prototype, the steering system includes main mechanical components such as the front axle sleeves, wheel hub, steering arm, steering column, rack, wheel, and tire. All these components work together with the suspension systems, including suspension arms, “bell crank,” and spring/shock absorber assembly. These components
Rigo, Cristiano Shuji ShimadaNeto, Antonio Dos Reis De FariaGrandinetti, Francisco JoseCastro, Thais SantosDias, Erica XimenesMartins, Marcelo Sampaio
Autonomous driving technology plays a crucial role in enhancing driving safety and efficiency, with the decision-making module being at its core. To achieve more human-like decision-making and accommodate drivers with diverse styles, we propose a method based on deep reinforcement learning. A driving simulator is utilized to collect driver data, which is then classified into three driving styles—aggressive, moderate, and conservative—using the K-means algorithm. A driving style recognition model is developed using the labeled data. We then design distinct reward functions for the Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC) algorithms based on the driving data of the three styles. Through comparative analysis, the SAC algorithm is selected for its superior performance in balancing comfort and driving efficiency. The decision-making models for different styles are trained and evaluated in the SUMO simulation environment. The results indicate that
Shen, ChuanliangZhang, LongxuShi, BowenMa, XiaoyuanLi, YiHu, Hongyu
The planning of mountain campus bus routes needs to take into account user demand, convenience, and other factors. This study adopts a comprehensive research method that combines quantitative and qualitative viewpoints. From the perspective of university students, this article studies the demand of campus public transportation and proposes the layout of campus bus routes in mountainous universities to meet the needs of users. The psychological needs questionnaire was used to investigate college students’ expectation of bus station service function. Taking three mountain universities as examples, the integration and selectivity of campus road networks are evaluated by using space syntax analysis, which provides valuable insights into the quality of bus stop areas. This article discusses the correlation between psychological needs assessment of college students and objective conditions of campus road network. The study concludes with the following findings: (1) The pedestrian environment
Duan, RanTang, RuiWang, ZhigangZhao, YixueWang, QidaYang, JiyiSu, Jiafu
Recent advancements in electric vertical take-off and landing (eVTOL) aircraft and the broader advanced air mobility (AAM) movement have generated significant interest within and beyond the traditional aviation industry. Many new applications have been identified and are under development, with considerable potential for market growth and exciting potential. However, talent resources are the most critical parameters to make or break the AAM vision, and significantly more talent is needed than the traditional aviation industry is able to currently generate. One possible solution—leverage rapid advancements of artificial intelligence (AI) technology and the gaming industry to help attract, identify, educate, and encourage current and future generations to engage in various aspects of the AAM industry. Beyond Aviation: Embedded Gaming, Artificial Intelligence, Training, and Recruitment for the Advanced Air Mobility Industry discusses how the modern gaming population of 3.3 million
Doo, Johnny
To establish and validate new systems incorporated into next generation vehicles, it is important to understand actual scenarios which the autonomous vehicles will likely encounter. Consequently, to do this, it is important to run Field Operational Tests (FOT). FOT is undertaken with many vehicles and large acquisition areas ensuing the capability and suitability of a continuous function, thus guaranteeing the randomization of test conditions. FOT and Use case(a software testing technique designed to ensure that the system under test meets and exceeds the stakeholders' expectations) scenario recordings capture is very expensive, due to the amount of necessary material (vehicles, measurement equipment/objectives, headcount, data storage capacity/complexity, trained drivers/professionals) and all-time robust working vehicle setup is not always available, moreover mileage is directly proportional to time, along with that it cannot be scaled up due to physical limitations. During the early
Sehgal, VishalSekaran, Nikhil
In India, Driver Drowsiness and Attention Warning (DDAW) system-based technologies are rising due to anticipation on mandatory regulation for DDAW. However, readiness of the system to introduce to Indian market requires validations to meet standard (Automotive Industry Standard 184) for the system are complex and sometimes subjective in nature. Furthermore, the evaluation procedure to map the system accuracy with the Karolinska sleepiness scale (KSS) requirement involves manual interpretation which can lead to false reading. In certain scenarios, KSS validation may entail to fatal risks also. Currently, there is no effective mechanism so far available to compare the performance of different DDAW systems which are coming up in Indian market. This lack of comparative investigation channel can be a concerning factor for the automotive manufactures as well as for the end-customers. In this paper, a robust validation setup using motion drive simulator with 3 degree of freedom (DOF) is
Raj, Prem raj AnandSelvam, Dinesh KumarThanikachalam, GaneshSivakumar, Vishnu
A new aviation supply chain integrity coalition has offered 13 recommended actions to prevent the circulation of non-serialized aircraft parts throughout the global aviation industry. Embry-Riddle Aeronautical University, Daytona Beach, FL In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brand-new showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious. Using his safety training, the employee immediately reported the anomaly to TAP Air Portugal management, which raised the issue with the jet engine's manufacturer. Little did the procurement clerk know at the time, but this escalation led to one of the biggest investigations in the history of the aviation supply chain, as reported by Reuters and the British Broadcasting Corporation in
Sometimes, I cringe; sometimes, I just listen and wonder. These past few months have given us all a lot to think about in the automotive space, and it's clear now that the coming years will keep the foot down on the accelerator when it comes to the dramatic changes we've experienced this past decade. One thing that stood out to me in various recent conversations is that there's a widening gulf opening between Chinese automakers and the rest of the world. This isn't exactly news, and this column isn't meant to monger any fears. It's just a bit of off-the-cuff reporting that sheds a bit of light on the level of the challenges we face. As you can read in Chris Clonts' excellent report further in this issue about the warning that Voltaiq's CEO gave at The Battery Show this October, the U.S. is in serious danger of falling well behind Chinese competitors in the EV battery race (Michael Robinette tackles similar ground through a tariff lens in this month's Supplier Eye). But that message was
Blanco, Sebastian
Increased use of advanced composite structural materials on aircraft has resulted in the need to address the more demanding quality and nondestructive testing procedures. Accordingly, increased utilization of solid laminate composites is driving changes to airline NDI/NDT training requirements and greater emphasis on the application of accurate NDI/NDT methods for composite structures. Teaching modules, including an introduction to composite materials, composite NDI/NDT theory and practice, special cases and lessons learned, are included in this document as well as various hands-on NDI/NDT exercises. A set of proficiency specimens containing realistic composite structures and representative damage are available to reinforce teaching points and evaluate inspector’s proficiency. Extensive details of the guidance modules, hands-on exercises, and proficiency specimens are all presented in this document. This document does not replace OEM guidance as may be specific to material, process
AMS CACRC Commercial Aircraft Composite Repair Committee
ABSTRACT A retrofittable intelligent vehicle performance and fuel economy maximization system would have widespread application to military tactical and non-tactical ground vehicles as well as commercial vehicles. Barron Associates, Inc. and Southwest Research Institute (SwRI) recently conducted a research effort in collaboration with the U.S. Army RDECOM to demonstrate the feasibility of a Fuel Usage Monitor and Economizer (FUME) – an open architecture vehicle monitoring and fuel efficiency optimization system. FUME features two primary components: (1) vehicle and engine health monitoring and (2) real-time operational guidance to maximize fuel efficiency and extend equipment life given the current operating conditions. Key underlying FUME technologies include mathematical modeling of dynamic systems, real-time adaptive parameter estimation, model-based diagnostics, and intelligent usage monitoring. The research included demonstration of the underlying FUME technologies applied to a
Burkholder, Jason O.Ostrowski, Gregory J.Beck, Christopher S.
ABSTRACT Although autonomy has the potential to help military drivers travel safely while performing other tasks, many drivers refuse to rely on the technology. Military drivers sometimes fail to leverage a vehicle’s autonomy because of a lack of trust. To address this issue, the current study examines whether augmenting the driver’s situational awareness will promote their trust in the autonomy. Results of this study are expected to provide new insights into promoting trust and acceptance of autonomy in military settings
Petersen, LukeTilbury, DawnRobert, LionelYang, Xi Jessie
ABSTRACT This paper presents the comparative analysis of virtual and experimental proving ground for the performance capabilities of front suspensions in the Family of Medium Tactical Vehicles (FMTV) cargo truck. The front suspension of the current baseline FMTV is a solid axle with leaf springs and shock absorbers. Two other types of suspensions including passive and semi-active suspensions are evaluated in solid and fully independent axle configurations. Virtual proving ground for on- and off-road tests are simulated in the Trucksim environment to include constant radius circular steer, double lane change, sinusoidal steer, washboard road surfaces, and half-round curb strike. Physical proving ground tests are conducted to provide some experimental correlation and validation of the baseline vehicle simulation results. The comprehensive experiments also evaluate the capabilities of various suspensions which have been considered in future FMTV design for mobility performance improvement
Liao, Y. GeneCard, BrandonWasylyk, John
ABSTRACT Northrop Grumman has developed Tactical Ground Vehicle High-Availability (HA) middleware conforming to open standards specified by the Service Availability Forum (SAF), a consortium of industry-leading communications and computing companies. The software hot-spare and standby capabilities realized by this technology operate across tightly and loosely coupled farms of processors, ensuring critical processes remain operational with zero or minimal interruption, as chosen by system architects. High availability software delivers key benefits to the warfighter. Systems experience less downtime, helping to maintain continuity of tactical operations. Both hardware and software failures are managed, reducing the impact on system aborts and essential function failures and therefore reducing the number of computing elements required to meet system level availability SWAP-CC (Size, Weight, Power, and Cost, Cooling). The wrappers Northrop Grumman has created for open source and
Nguyen, Tri
ABSTRACT A thermodynamics-based Vehicle Thermal Management System (VTMS) model for a heavy-duty, off-road vehicle with a series hybrid electric powertrain is developed to analyze the thermal behavior of the powertrain system and investigate the power consumption under different vehicle driving conditions. The simulation approach consists of two steps: first, a Series Hybrid Electric Vehicle (SHEV) powertrain is modeled; the output data of the powertrain system simulation are then fed into a cooling system model to provide the operating conditions of the powertrain components. Guidelines for VTMS configuration was developed based on the vehicle simulation results and the operating conditions of powertrain components. Based on the guidelines, a VTMS configuration for the hybrid vehicle was created and used for designs of experiments to identify the factors that affect the performance and power consumption of each cooling system. Design space exploration techniques are then applied to
Park, S.Kokkolaras, M.Malikopoulos, A.AbdulNour, B.Sedarous, J.Jung, D.
ABSTRACT Simulation is a critical step in the development of autonomous systems. This paper outlines the development and use of a dynamically linked library for the Mississippi State University Autonomous Vehicle Simulator (MAVS). The MAVS is a library of simulation tools designed to allow for real-time, high performance, ray traced simulation capabilities for off-road autonomous vehicles. It includes features such as automated off-road terrain generation, automatic data labeling for camera and LIDAR, and swappable vehicle dynamics models. Many machine learning tools today leverage Python for development. To use these tools and provide an easy to use interface, Python bindings were developed for the MAVS. The need for these bindings and their implementation is described. Citation: C. Hudson, C. Goodin, Z. Miller, W. Wheeler, D. Carruth, “Mississippi State University Autonomous Vehicle Simulation Library”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
Hudson, Christopher R.Goodin, ChristopherMiller, ZachWheeler, WarrenCarruth, Daniel W.
ABSTRACT This study utilized computer simulations to analyze the influence of vehicle weight on automotive performance, terrain traversability, combat effectiveness, and operational energy for the M1A2 Abrams, M2A3 Bradley, and M1126 Stryker. The results indicate that a 15% reduction in combat vehicle weight correlates to 0-20% or greater improvements in: automotive mobility (top speed, speed on grade, dash time, fuel economy), terrain traversability (minimum required soil strength, % Go-NoGo, off road speed), combat effectiveness (% of combat effective outcomes, hits sustained, time, average and top speed in kill zone), and operational energy (gallons of fuel and fuel truck deliveries). While it has always been “understood” that vehicle weight impacts performance, this study has actually successfully quantified the impact. Through the use of multiple simulation tools, this study shows that reduced vehicle weight improves automotive performance, which directly improves the combat
Hart, Robert J.Gerth, Richard J.
ABSTRACT Occupant safety is a top priority of military vehicle designers. Recent trends have shifted safety emphasis from the threats of ballistics and missiles toward those of underbody explosives. For example, the MRAP vehicle is increasingly replacing the HMMWV, but it is much heavier and consumes twice as much fuel as its predecessor. Recent reports have shown that fuel consumption directly impacts personnel safety; a significant percentage of fuel convoys that supply current field operations experience casualties en route. While heavier vehicles tend to fare better for safety in blast situations, they contribute to casualties elsewhere by requiring more fuel convoys. This study develops an optimization framework that uses physics-based simulations of vehicle blast events and empirical fuel consumption data to calculate and minimize combined total expected injuries from blast events and fuel convoys. Results are presented by means of two parametric studies, and the utility of the
Hoffenson, StevenKokkolaras, MichaelPapalambros, PanosArepally, Sudhakar
ABSTRACT The objective of this research was to survey and evaluate simulators for use with unmanned ground vehicles and extend the functionality of the ANVEL simulator to include the robot operating system (ROS). The goals of the research were first to determine how the ANVEL simulator would compare to four other currently available simulators on four criteria: physical fidelity, functional fidelity, ease of development, and cost. The second goal was the development of an ANVEL-ROS bridge to expand the robot control functionality in ANVEL. The ANVEL-ROS bridge developed was verified using two robots, Turtlebot2 and Jaguar V4. RViz, a ROS visualization tool, was used to confirm sensor output correctness. Robot control in ANVEL was confirmed using tele-operation through ROS commands
Hudson, Christopher R.Lalejini, AlexanderOdom, BrandonBethel, Cindy L.Carruth, Daniel W.Durst, Phillip J.Goodin, Christopher
ABSTRACT Improvised Explosive Devices (IEDs) and mines pose significant threat to military ground vehicles and soldiers in the field. Due to the severity of the forces exerted by a blast, ground vehicles may undergo multiple sub-events subsequent to an explosion, including local structural deformation of the floor, gravity flight and slam-down. The current method of choice to simulate the effect of a shallow-buried IED or mine on a Lagrangian vehicle model, is a fluid-structure interaction with the environment modelled with an Eulerian formulation (explosive, ground, air) [1]. This method, also called Arbitrary Lagrangian-Eulerian (ALE), is more expensive and involved than pure structural methods (usually pressure loads applied to the vehicle surface). However, it allows for taking into account the effect of the shape, type and size of the charge and the soil characteristics on the impulse transmitted to the vehicle. Three approaches are proposed to reduce the analytical simulation
Parthasarathy, MohanKosarek, Philip G.Santini, JulienThyagarajan, Ravi
ABSTRACT Operation of a virtual vehicle in order to perform dynamic evaluation of the design can be achieved through the use of augmented reality combined with a simulator. Many uses of virtual reality involve the evaluation of component packaging in a static although interactive manner. That is, the virtual reality (VR) participant can interactively view the virtual environment and perform some minor interactions such as toggling through alternative CAD models for comparison or changing the viewing position to another seat. The immersive 3D simulator system described in this paper enables the VR participant to perform operational tasks such as driving, gunnery and surveillance. Furthermore, this system incorporates augmented reality in order to allow the mixture of the virtual environment with physical controls for operating the virtual vehicle
Navarre, Russell J.Bauer, Robert J.
ABSTRACT Simulation is critical to the development of effective unmanned ground vehicles (UGVs). Simulation provides the ability to test virtual hardware and software systems in conditions that may be difficult to recreate physically. An important benefit of simulation is that it grants researchers access to simulated hardware, such as sensors and vehicles, that might not be available otherwise. To successfully simulate both hardware and software systems, it is essential to acknowledge the needs and requirements of the simulation platform. In this paper, we investigate two simulation environments being used at Mississippi State University to model and simulate UGVs: the Mississippi State University Autonomous Vehicle Simulator (MAVS) and Gazebo. Within this paper we investigate the specific modeling needs for the Clearpath Robotics Warthog UGV in both simulation environments. We found that Gazebo has more options for vehicle and robot customization. However, Gazebo requires more up
Moore, Marc N.Ray, Payton A.Goodin, ChristopherHudson, Christopher R.Doude, MatthewCarruth, Daniel W.Ewing, Mark R.Towne, Brent W.
ABSTRACT A promising approach to autonomous driving is machine learning. In machine learning systems, training datasets are created that capture the sensory input to a vehicle as well as the desired response. One disadvantage of using a learned navigation system is that the learning process itself may require both a huge number of training examples and a large amount of computing. To avoid the need to collect a large training set of driving examples, we describe a system that takes advantage of the immense number of training examples provided by ImageNet, but at the same time is able to adapt quickly using a small training set for the driving environment
Provodin, ArtemTorabi, LiilaMuller, UrsFlepp, BeatSergio, MichaelŽbontar, JureLeCun, YannJackel, L. D.
ABSTRACT Military personnel involved in convoy operations are often required to complete multiple tasks within tightly constrained timeframes, based on limited or time-sensitive information. Current simulations are often lacking in fidelity with regard to team interaction and automated agent behavior; particularly problematic areas include responses to obstacles, threats, and other changes in conditions. More flexible simulations are needed to support decision making and train military personnel to adapt to the dynamic environments in which convoys regularly operate. A hierarchical task analysis approach is currently being used to identify and describe the many tasks required for effective convoy operations. The task decomposition resulting from the task analysis provides greater opportunity for determining decision points and potential errors. The results of the task analysis will provide guidance for the development of more targeted simulations for training and model evaluation from
Garrison, Teena M.Thomas, Mark D.Carruth, Daniel W.
ABSTRACT This paper deals with model validation of dynamic systems (with vehicle systems being of particular interest) that have multiple time-dependent output. First, we review several validation methodologies that have been reported in the literature: graphical comparison, feature-based techniques, PDF/CDF based techniques, Bayesian posterior estimation, classical hypothesis testing and Bayesian hypothesis testing. We discuss their advantages and disadvantages in terms of several attributes: applicability to different types of models, need for assumptions, computational cost, subjectivity, propensity to type-I or II errors, and others. We then proceed with the most important attribute: can the validation method provide a quantitative measure of the goodness of the model? We conclude that Bayesian-based model validation frameworks answer this question positively. A bootstrap method is presented that obviates the need to assume a statistical distribution model. The features of the
Pan, HaoKokkolaras, MichaelHulbert, GregoryCastanier, MatthewLamb, David
ABSTRACT The Army Acquisition community has a significant deficiency in the amount of operational expertise to influence a particular S&T technology or acquisition program. As a result, emerging materiel solutions often fall short of their desired utility in the eyes of the warfighter. In a fiscally constrained environment, the product development team must use all available resources in the most efficient manner to produce the highest quality product in the shortest time possible for the end user. By repurposing the information contained in the Combined Arms Training Strategies (CATS) task database, an engineering team can gain the operational knowledge and environment from the training tools the Army uses, requiring less burden on the few operational experts that exist within the Acquisition Corps. A process to accomplish this is being developed at TARDEC and has had early success in characterizing vehicle operator behaviors beyond what occurs within structure of a vehicle
Horning, Matthew A.
ABSTRACT Systems Architecture (SA) is a key discipline in Systems Engineering; robust architectures enable success and flawed architectures limit performance. However, SA is challenging to teach students because it is less of a “hard” science. At the University of Detroit Mercy, students in the MS Product Development (MPD) and Advanced Electric Vehicle (AEV) Certificate programs are exposed to a full term of SA. This class stresses the development of heuristics through exposure to mini case studies, class discussions, and several projects (including a field trip to the Henry Ford Museum to study multiple examples of competing historical architectures). The capstone project in this class requires teams of students to create a new architecture for a given set of criteria. One recent final project involved the creation of a space probe architecture that could meet mission objectives given a challenging set of constraints and the creation of DODAF Viewpoints to communicate the architecture
Vinarcik, Michael J.
WHY DO WE NEED SIMULATIONS? This paper is intended to provide a broad presentation of the simulation techniques focusing on transmission testing touching a bit on power train testing. Often, we do not have the engine or vehicle to run live proving ground tests on the transmission. By simulating the vehicle and engine, we reduce the overall development time of a new transmission design. For HEV transmissions, the battery may not be available. However, the customer may want to run durability tests on the HEV motor and/or the electronic control module for the HEV motor. What-if scenarios that were created using software simulators can be verified on the test stand using the real transmission. NVH applications may prefer to use an electric motor for engine simulation to reduce the engine noise level in the test cell so transmission noise is more easily discernable
Johnson, Bryce
ABSTRACT Defense acquisition presents unique challenges to the Science and Technology (S&T) process. Due to the nature of the S&T environment, often the requirement for a particular capability is not explicitly driven by an identified operational need, but by a technology developed in the commercial market. Often these projects present a challenge in the operational domain for S&T programs. Their use would represent a significant change to the Doctrine, Organization, Training, Materiel, Leadership and Education, Personnel, Facilities and Policy (DOTMLPF-P). Work must be done to define the future operational environment and DOTMLPF-P considerations that would be in place at some point in the future when the technology could probably be fielded. This paper presents a methodology for developing a Concept of Operations (CONOPS) for emerging technologies at the System and Sub-system level
Horning, MatthewSchumm, TimothyBryant, Jeremiah
ABSTRACT In order to expedite the development of robotic target carriers which can be used to enhance military training, the modification of technology developed for passenger vehicle Automated Driver Assist Systems (ADAS) can be performed. This field uses robotic platforms to carry targets into the path of a moving vehicle for testing ADAS systems. Platforms which are built on the basis of customization can be modified to be resistant to small arms fire while carrying a mixture of hostile and friendly pseudo-soldiers during area-clearing and coordinated attack simulations. By starting with the technology already developed to perform path following and target carrying operations, the military can further develop training programs and equipment with a small amount of time and investment. Citation: M. Bartholomew, D. Andreatta, P. Muthaiah, N. Helber, G. Heydinger, S. Zagorski, “Bringing Robotic Platforms from Vehicle Testing to Warrior Training,” In Proceedings of the Ground Vehicle
Bartholomew, MeredithAndreatta, DaleMuthaiah, PonaravindHelber, NickHeydinger, GaryZagorski, Scott
ABSTRACT The IGVC offers a design experience that is at the very cutting edge of engineering education, with a particular focus in developing engineering control/sensor integration experience for the college student participants. A main challenge area for teams is the proper processing of all the vehicle sensor feeds, optimal integration of the sensor feeds into a world map and the vehicle leveraging that world map to plot a safe course using robust control algorithms. This has been an ongoing challenge throughout the 27 year history of the competition and is a challenge shared with the growing autonomous vehicle industry. High consistency, reliability and redundancy of sensor feeds, accurate sensor fusion and fault-tolerant vehicle controls are critical, as even small misinterpretations can cause catastrophic results, as evidenced by the recent serious vehicle crashes experienced by self-driving companies including Tesla and Uber Optimal control techniques & sensor selection
Kosinski, AndrewIyengar, KiranTarakhovsky, JaneLane, JerryCheok, KaCTheisen, BernieOweis, Sami
ABSTRACT The U.S. Army Tank Automotive Research, Development, and Engineering Center’s (TARDEC) Ground Vehicle Simulation Laboratory (GVSL) has provided warfighter- and hardware-in-the-loop simulation of current and future vehicle systems for several years. Gaps remain in GVSL capability regarding the visualization and behavior modeling of human entities. Filling these gaps is necessary to create an immersive and realistic urban environment for warfighter-in-the-loop patrol or convoy simulation. The current gaps in behavior modeling and visualization capabilities are being addressed through an academic partnership. The five-year project, part of the Simulation-based Reliability and Safety (SimBRS) program, is leveraging capabilities to generate a wide range of animations in the GVSL environment from human motion capture data and to develop extended and new vehicle and pedestrian behavior models. This long-term effort will significantly impact the breadth and realism of simulations
Carruth, Daniel W.McGinley, JohnMikulski, ChrisShvartsman, Andrey
ABSTRACT A time-accurate multibody dynamics model of the suspension system of a tracked vehicle is experimentally validated using a full-scale tracked-vehicle on an N-post motion simulator. The experiments consist of harmonic excitations at various amplitudes and frequencies and ramp excitations of the vehicle road-wheels (without the track), with each road wheel under one linear actuator of the N-post motion simulator. A high-fidelity multibody dynamics model of the vehicle along with the N-post motion simulator is constructed. The multibody dynamics model consists of rigid bodies, joints, rotational springs (that include non-linear rotational stiffness, damping and friction), actuators and contact surfaces. The rigid bodies rotational equations of motion are written in a body-fixed frame with the total rigid-body rotation matrix updated each time step using incremental rotations. Connection points on the rigid bodies are used to define joints between the bodies including revolute
Wasfy, Tamer M.O’Kins, JamesRyan, David
ABSTRACT Modeling and Simulation (M&S) of underbody blast to vehicles can take a significant amount of time, often days to months, to run. This significant run time is due to the need for coupled Eulerian-Lagrangian computational algorithms to be used in order to accurately represent the effect of an underbody blast to a vehicle and its occupants. Several techniques exist which can significantly reduce the time it takes to complete such a simulation without affecting its accuracy, two of which will be emphasized here. These techniques are 2-D to 3-D mapping of the Eulerian domains and Early-Deletion of the Eulerian elements. For detailed vehicle simulations, simulation rates have been demonstrated to be 4-6 times faster along with a theoretical increase in accuracy and a decrease in troubleshooting time
O’Bruba, Joseph
ABSTRACT The IGVC offers a design experience that is at the very cutting edge of engineering education. It is multidisciplinary, theory-based, hands-on, team implemented, outcome assessed, and based on product realization. It encompasses the very latest technologies impacting industrial development and taps subjects of high interest to students. Design and construction of an Intelligent Vehicle fits well in a two semester senior year design capstone course, or an extracurricular activity earning design credit. The deadline of an end-of-term competition is a real-world constraint that includes the excitement of potential winning recognition and financial gain. Students at all levels of undergraduate and graduate education can contribute to the team effort, and those at the lower levels benefit greatly from the experience and mentoring of those at higher levels. Team organization and leadership are practiced, and there are even roles for team members from business and engineering
Kosinski, AndrewTarakhovsky, JaneIyengar, KiranLane, JerryCheok, KaCTheisen, Bernie
ABSTRACT This paper presents a Gaussian process model of terrain slope for use in a GPS-free localization algorithm for ground robots operating in unstructured terrain. A wheeled skid-steer robot is used to map the terrain slope within an operational area of interest. The slope data is sampled sparsely and used as training data for a Gaussian process model with a two-dimensional input. Three different covariance functions for the Gaussian process model are evaluated with hyperparameters selected through maximizing the log marginal likelihood. The resulting Gaussian process model is used in the measurement update function of a localization particle filter to generate expected slope values at particle positions. Preliminary localization testing shows sub-ten meter accuracy with no initial knowledge of position. However, the overall performance of the filter is highly dependent on the variability of the terrain that the robot traverses. Citation: J. Pentzer, K. Reichard, “Gaussian Process
Pentzer, JesseReichard, Karl
ABSTRACT The IGVC offers a design experience that is at the very cutting edge of engineering education, with a particular focus in developing engineering control/sensor integration experience for the college student participants. A main challenge area for teams is the proper processing of all the vehicle sensor feeds, optimal integration of the sensor feeds into a world map and the vehicle leveraging that world map to plot a safe course using robust control algorithms. This has been an ongoing challenge throughout the 26 year history of the competition and is a challenge shared with the growing autonomous vehicle industry. High consistency, reliability and redundancy of sensor feeds, accurate sensor fusion and fault-tolerant vehicle controls are critical, as even small misinterpretations can cause catastrophic results, as evidenced by the recent serious vehicle crashes experienced by self-driving companies including Tesla and Uber Optimal control techniques & sensor selection
Kosinski, AndrewIyengar, KiranTarakhovsky, JaneLane, JerryCheok, KaCTheisen, BernieOweis, Sami
ABSTRACT This paper provides a comparison of the Gazebo and ANVEL simulators and analyzes the aspects of vehicle modeling fidelity that are critical to the design of unmanned ground vehicle (UGV) control and estimation algorithms. The robotic simulators Gazebo [1], from the Open Source Robotics Foundation (OSRF), and Autonomous Navigation Virtual Environment Laboratory (ANVEL) [2], from Quantum Signal, are two popular new tools that are being used extensively in academic, commercial, and military development of perception, navigation, and control algorithms for UGVs. Despite the similarities between Gazebo and ANVEL there has been no direct comparison between the two simulators with respect to their validity as vehicle dynamics simulators. Citation: R. Brothers, D. Bevly, “A Comparison of Vehicle Handling Fidelity Between the Gazebo and ANVEL Simulators”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Brothers, RobertBevly, David
The automotive industry faces significant obstacles in its efforts to improve fuel economy and reduce carbon dioxide emissions. Current conventional automotive powertrain systems are approaching their technical limits and will not be able to meet future carbon dioxide emission targets as defined by the tank-to-wheel benchmark test. As automakers transition to low-carbon transportation solutions through electrification, there are significant challenges in managing energy and improving overall vehicle efficiency, particularly in real-world driving scenarios. While electrification offers a promising path to low-carbon transportation, it also presents significant challenges in terms of energy management and vehicle efficiency, particularly in real-world scenarios. Battery electric vehicles have a favorable tank-to-wheel balance but are constrained by limited range due to the low battery energy density inherent in their technology. This limitation has led to the development of hybrid
Kraljevic, IvicaSpicher, Ulrich
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. This research focuses on optimizing vehicle ride and handling performance by utilizing a tuning specifications range. Traditional approaches to refining these aspects involve extensive physical testing, which consumes both time and resources. In contrast, our study introduces a novel methodology leveraging virtual Subjective Rating through driving simulators. This approach aims to significantly reduce tuning time and costs, consequently streamlining overall development expenditures. The core objective is to enhance vehicle ride and handling dynamics, ensuring a superior driving experience for end-users. By meticulously defining and implementing tuning specifications, we
Ganesh, Lingadalu
If you're just getting comfortable with Industry 4.0, which saw the beginnings of smart manufacturing, digitization and real-time decision-making in factories, a senior leader at Intel says the world is already moving on to Industry 5.0. What's Industry 5.0? A joint study by many researchers (link: Industry 5.0: A Survey on Enabling Technologies and Potential Applications (oulu.fi)) describes 5.0 as merging human creativity with intelligent and efficient machines to deliver customized products quickly. But it will take a lot of change and learning to get there
Clonts, Chris
More than 80 percent of stroke survivors experience walking difficulty, significantly impacting their daily lives, independence, and overall quality of life. Now, new research from the University of Massachusetts Amherst pushes forward the bounds of stroke recovery with a unique robotic hip exoskeleton, designed as a training tool to improve walking function. This invites the possibility of new therapies that are more accessible and easier to translate from practice to daily life compared to current rehabilitation methods
Electric Vehicles and Battery-Fuel_Cell hybrid vehicles are increasingly becoming popular in the market, especially in the commercial vehicle segment. Range estimation and control is of paramount importance as it is the main cause of anxiety among the vehicle owners. This paper discusses application of Reinforcement Learning (RL) to achieve range control. In RL, the learning agent choses actions dependent on the state of the environment and gets a reward in return. Ultimately the agent will learn the policy of choosing the actions for each state such that his long-term reward is maximized. The technique of RL has been applied for various scenarios where in a look up table (between the states of a system and actions to be taken) needs to be developed for optimal performance. In this paper, we use RL to manipulate other energy sources and sinks like Fuel Cell and HVAC (in addition to the battery which is the main energy source) for range control, and thereby achieve the optimal
Changavar, Ganesh
The Ground Vehicle Simulation Modeling Ontology, GVSMO, is an ontology developed to support ground vehicle design decision-making, model selection, and simulation composition. GVSMO supports the US Army’s needs for advanced modeling and simulation capabilities that facilitate the development of the next generation of US Army ground vehicles. GVSMO is composed of five ontologies: a vehicle operations ontology (VehOps), a vehicle architecture ontology (VehArch), an environment ontology (Env), a simulation modeling ontology (SimMod), and an integration ontology (Int). This paper provides an overview of GVSMO, including the background and motivation for development, the role it plays in the simulation modeling and decision-making processes, a description of the five ontologies, and examples of ground vehicle simulations and scenarios documented in GVSMO
Louis, Edward DTaylor, Evan AMocko, Gregory MHybl, Evan C
This paper presents a software framework developed for the simulation of vehicle-level control systems for modern (existing or conceptual) ground vehicles, targeted for high-performance platforms (Linux clusters). The framework augmented existing ground vehicle simulation environments (such as CREATE-GV MERCURY or other object-oriented software packages) making it possible to perform a comprehensive evaluation of a ground vehicle’s performance when equipped with vehicle level controllers to determine the effectiveness of the control systems on the vehicle. The framework, implemented as part of the PACE (Powertrain Analysis Computational Environment), was comprised of software components (a C++ objects library) simulating various vehicle-level controllers, an Application Programming Interface for the development of new components to be used within the framework, and C++ code for integrating these components into simulations of control systems within a ground vehicle simulation
Jelinek, BohumirHenley, GregCard, AngelaHannis, TylerGibson, MichaelPriddy, JodyBoyle, SaraFigueroa-Santos, MiriamMange, Jeremy
Items per page:
1 – 50 of 6261