Browse Topic: Personnel
The article is devoted to a comprehensive analysis of the digital transformation of education using the example of a project to train engineering personnel for the innovative transport industry in Russia. Special attention is paid to the introduction of hybrid formats, digital platforms, inclusivity, issues of digital inequality, as well as the experience of the National Research Center of the Russian Federation FSUE NAMI and interaction with leading universities in the country. A comparative analysis with foreign initiatives, including modern AI solutions for inclusive education, is presented, as well as the impact of the project to create educational and methodological centers on the professional motivation of teachers.
This paper presents Nexifi11D, a simulation-driven, real-time Digital Twin framework that models and demonstrates eleven critical dimensions of a futuristic manufacturing ecosystem. Developed using Unity for 3D simulation, Python for orchestration and AI inference, Prometheus for real-time metric capture, and Grafana for dynamic visualization, the system functions both as a live testbed and a scalable industrial prototype. To handle the complexity of real-world manufacturing data, the current model uses simulation to emulate dynamic shopfloor scenarios; however, it is architected for direct integration with physical assets via industry-standard edge protocols such as MQTT, OPC UA, and RESTful APIs. This enables seamless bi-directional data flow between the factory floor and the digital environment. Nexifi11D implements 3D spatial modeling of multi-type motor flow across machines and conveyors; 4D machine state transitions (idle, processing, waiting, downtime); 5D operational cost
The U.S. Food and Drug Administration (FDA) has taken a substantial step in its digital modernization strategy with the deployment of agentic artificial intelligence capabilities across all agency employee groups. The move represents an expansion of the agency’s internal AI tools, intended to streamline complex, multi-step processes that support regulatory science, product review, and compliance activities. The deployment strengthens the FDA’s ongoing effort to embed structured, secure, and transparent AI systems into daily workflows, building on the rapid adoption of the LLM-based tool Elsa earlier this year.
Without reliability and signal integrity, aerospace communications risk severe signal degradation and reduced security, posing risks to both personnel and mission-critical data. These challenges are particularly critical for applications that depend on military aircraft, satellite communications, and unmanned aerial vehicles (UAVs). As global demand for real-time data continues to surge, communication infrastructure requires regular maintenance and upgrades to maintain secure and reliable performance.
The Operator’s Field of Vision (FOV) test, conducted in accordance with IS/ISO 5006:2017, is a vital assessment to ensure the safety and operational comfort of personnel operating Construction Equipment Vehicles (CEVs) / Earth-Moving Machinery. IS/ ISO 5006:2017 defines rigorous guidelines for evaluating the operator’s visibility from the driver's seat, with particular emphasis on the Filament Position Centre Point (FPCP), determined from the Seat Index Point (SIP) coordinates. The test includes assessment of masking areas, focusing on the Visibility Test Circle (a 24-meter diameter ground-level circle around the machine), and on the Rectangular Boundary on which a vertical test object is placed at a height specific to the machine type and its operating mass. These parameters are designed to simulate real-world operating conditions. This paper introduces a portable testing setup developed specifically for conducting the Operator’s FOV test as per IS/ISO 5006:2017. The setup facilitates
The assessment of collision risks is crucial for effective risk control and scientific management of maritime safety. To prevent maritime transportation accidents, an accident causation model has been proposed to analyze risks in maritime transportation systems. The 24-model further analyzes the impact pathways of accident factors in the accident chain and calculates the fit of HOF-related factors. Using Bayesian Networks as a foundation and the 24-model as a tool, a Bayesian Network model for collision risk is constructed by identifying risk factors and determining their correlations, utilizing accident data from Chinese maritime authorities. Utilizing a Bayesian Network to construct a ship collision risk model that couples HOF and calculates conditional probabilities of relevant node occurrences. To explore the coupled relationships between nodes in a network, this study employs the N-K model to construct a safety risk coupling model for ship collision accidents, calculating risk
Like those in many other industries, truck and off-highway vehicle manufacturers face the challenge of producing quality components and maintaining productive processes while also generating a better bottom line. Improving employee training, simplifying complex operations and implementing better workflows can all help generate efficiencies. While not a new concept, lightweighting - in this case, reducing the weight of parts through the substitution of traditional steel with high-strength, thinner steels - can also be a viable answer to a better vehicle. As a rule of thumb, when manufacturers double the strength of the material through lightweighting, it is possible to reduce the weight of the part by one-third. That weight reduction can then lower the cost per part for greater profitability per piece of equipment and greater annual savings.
Employment of Robotic and Autonomous Systems requires a different paradigm of mission planning, one which considers not only the tasks to be performed by the RAS themselves but regards the flow of information to support the observability of the RAS by the operator. GTRI has developed an initial capability for mission planning of mixed motive, heterogeneous, autonomous systems for management of macro level metrics that support the decision making of the operator or user during employment. The work is ongoing, extensible to additional capability sets, and modular to support integration of other autonomous capabilities.
This SAE Aerospace Recommended Practice (ARP) describes training and approval of personnel performing certain thermal processing and associated operations that could have a material impact on the properties of materials being processed. It also recommends that only approved personnel perform or monitor the functions listed in Table 1.
A paper-based diagnostic device can detect COVID-19 and other infectious diseases in under 10 minutes, without the need for sophisticated lab equipment or trained personnel.
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
A continuous effort to improve reliability and efficiency of processes is at the forefront of any successful business. One methodology that can have a crucial impact in this effort is Lean Six Sigma (LSS), which aims to reduce variability and wasteful activities within a company’s processes, in turn leading to improvements in areas such as customer satisfaction, employee morale, regulatory compliance, and profitability. In the medical device industry, where a seemingly minor error could be life-threatening, LSS can play a pivotal role in patient safety. This article presents a case study illustrating the benefits of LSS for a medical device manufacturing company, as well as one of its key customers.
Los Angeles-based plastics contract manufacturer Kal Plastics deployed UR10e trimming cobot for a fraction of the cost and lead time of a CNC machine, cut trimming time nearly in half, and reduced late shipments to under one percent — all while improving employee safety and growth opportunities.
Lead-filled aprons are currently used for atomic number (Z)-grade radiation shielding in the medical industry to protect personnel from hazardous gamma radiation. These apron garments are made with lead-filled elastomeric sheets encased in polymeric fabrics and are both heavy and bulky to meet necessary shielding requirements. In addition, there are environmental safety concerns surrounding disposal of these garments due to their lead content. An innovator at NASA Langley Research Center has developed a novel method for making thin, lightweight radiation shielding that can be sprayed or melted onto common textiles used in clothing such as cotton, nylon, polyester, Nomex, and Kevlar.
Clear and consistent communication directly affects product quality, employee satisfaction and retention, regulatory compliance, and patient safety. This article explores key communication challenges in medtech manufacturing, details methods for measuring communication effectiveness, and provides strategies for improving communication in this highly regulated industry.
At $829 billion in revenues, 2023 was a banner year for the aerospace industry led by civil aviation companies. Despite its strength, operations were hampered by production constraints, the lingering effects of supply chain and workforce disruptions, and higher materials costs. Even as those issues abate, the commercial sector is chasing accelerated demand. A flood of new aircraft orders pushing backlogs at an accelerated pace is causing the industry to struggle as it seeks to ramp up production. If the dynamic persists, many airlines will be forced to revise or postpone existing plans for enlarging, refreshing, or greening their fleets.
Recent advancements in electric vertical take-off and landing (eVTOL) aircraft and the broader advanced air mobility (AAM) movement have generated significant interest within and beyond the traditional aviation industry. Many new applications have been identified and are under development, with considerable potential for market growth and exciting potential. However, talent resources are the most critical parameters to make or break the AAM vision, and significantly more talent is needed than the traditional aviation industry is able to currently generate. One possible solution—leverage rapid advancements of artificial intelligence (AI) technology and the gaming industry to help attract, identify, educate, and encourage current and future generations to engage in various aspects of the AAM industry. Beyond Aviation: Embedded Gaming, Artificial Intelligence, Training, and Recruitment for the Advanced Air Mobility Industry discusses how the modern gaming population of 3.3 million
A new aviation supply chain integrity coalition has offered 13 recommended actions to prevent the circulation of non-serialized aircraft parts throughout the global aviation industry. Embry-Riddle Aeronautical University, Daytona Beach, FL In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brand-new showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious. Using his safety training, the employee immediately reported the anomaly to TAP Air Portugal management, which raised the issue with the jet engine's manufacturer. Little did the procurement clerk know at the time, but this escalation led to one of the biggest investigations in the history of the aviation supply chain, as reported by Reuters and the British Broadcasting Corporation in
Manually checking the quality of components or products in industry is labor-intensive for employees and error-prone on top of that. The Fraunhofer Institute for Mechatronic Systems Design IEM is unveiling a solution that provides total versatility in this area. In an it’s OWL supported collaboration with Diebold Nixdorf and software specialist verlinked, Fraunhofer IEM has created a combination of collaborative robot (cobot), AI-based image analysis and IoT platform. The system frees employees from having to perform visual inspections and can be incorporated into all kinds of testing scenarios. The Fraunhofer researchers presented a demonstrator of the cobot/IoT platform at the 2024 Hannover Messe Trade Show in February.
Have you ever gazed at the vastness of the stars and wondered what else your CNC machine can create? Greg Green had the opportunity to find out when he joined the staff at the Canada-France-Hawaii Telescope (CFHT) in Waimea, Hawaii.
An SAE white paper on the different engineering approaches taken by traditional automakers and recent arrivals indicates that each category is remarkably aware of the others' strengths and weaknesses. Sven Beiker, a management lecturer at Stanford University, authored the report “Two Approaches to Mobility Engineering.” He gathered commentary from every corner of the vehicle ecosystem, from suppliers to software companies to manufacturers, and summarized the findings in a presentation at WCX 2024 in Detroit. Rather than “old companies,” Beiker likes to refer to traditional automakers as “incumbents.” Here are a few common observations from the report, which will be published this summer: Newer players are better at simplifying complexity, such as Tesla's ability to build vehicles with fewer parts. Older automakers are better at managing complexity, such as integrating disparate systems. Newer companies are constrained by financial resources and a shortage of available talent
Emergency personnel and first responders have the opportunity to document crash scenes while evidence is still recent. The growth of the drone market and the efficiency of documentation with drones has led to an increasing prevalence of aerial photography for incident sites. These photographs are generally of high resolution and contain valuable information including roadway evidence such as tire marks, gouge marks, debris fields, and vehicle rest positions. Being able to accurately map the captured evidence visible in the photographs is a key process in creating a scaled crash-scene diagram. Image rectification serves as a quick and straightforward method for producing a scaled diagram. This study evaluates the precision of the photo rectification process under diverse roadway geometry conditions and varying camera incidence angles.
Diversity in the workforce contributes to creativity, productivity, and innovation. More women today are studying and excelling in science, technology, engineering, and mathematics (STEM). In the U.S., women make up 14 percent of the engineering workforce. The number of female engineers across the globe is on the rise but compared to male engineers it is still much lower.
From flying planes to leading space missions and conducting groundbreaking research, women have been contributing to the aerospace industry for decades. However, the number of women employed in the international space industry represents just 20-22 percent of the workforce, according to figures released by the United Nations in 2021. Only 11 percent of astronauts so far have been women.
In a world increasingly concerned with environmental sustainability and traffic congestion, the need for innovative solutions to address daily commuting challenges has become paramount. This paper presents an innovative concept for an application/system that seeks to revolutionize the way corporate employees commute to work. By harnessing the power of data and technology, this application aims to reduce pollution, traffic, and fuel consumption while promoting shared transportation solutions among employees. The paper discusses the key features and benefits of this proposed application and its potential to create a greener and more efficient corporate commuting ecosystem.
This SAE Standard identifies contractor activities for planning and conducting HSI as part of procurement activities on Department of Defense (DoD) system acquisition programs. This standard covers HSI processes throughout system design, development, test, production, use, and disposal. Depending on contract phase, type of the program and/or complexity of the program, tailoring of this standard should be applied. Appendix A lists the requrememts (“shall” statements) in this standard along with unique numbers to facilitate tailoring. In addition, Appendix D provides tailoring guidance to better match requirememts in this standard to the DoD’s Adaptive Acquisition Framework pathways. The scope of this standard includes prime and subcontractor HSI activities; it does not include Government HSI activities, which are covered by DoD and service-level regulations and guidelines. HSI programs should use the latest version of standards and handbooks listed below, unless a particular revision is
This standard covers Manpower and Personnel (M&P) processes throughout planning, design, development, test, production, use, and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring can be applied. The scope of this standard includes Prime and Subcontractor M&P activities; it does not include Government M&P activities. The primary goals of a contractor M&P program typically include: Ensuring that the system design complies with the latest customer Manpower estimates (numbers and mix of personnel, plus availability) and that discrepancies are reported to management and the customer. Ensuring that the system design is regularly compared to the latest customer personnel estimates (capabilities and limitations) and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, and resolving M&P risks and issues and ensuring that they are: ○ Reflected in the contractor proposal, budgets, and plans. ○ Raised at
Potential fleet customers had their first hands-on time with “fully production-intent” Bollinger B4 all-electric Class 4 chassis cab trucks during a recent ride-and-drive event. “All of the components, all of the wiring, all of the software and the manner in which the truck is being manufactured is production-intent,” Robert Bollinger, CEO and founder of Bollinger Motors, said in an interview with Truck & Off-Highway Engineering. The Oak Park, Michigan-based electric truck manufacturer chose the Mcity Test Facility, a 32-acre site on the University of Michigan's North Campus in Ann Arbor, for the B4 test drive. Potential customers, Bollinger Motors employees and media attended the event that unfolded in waves over 10 days in September 2023. “Our manufacturing partner, Roush Industries, has produced 20 design-verification B4 vehicles. Five of the vehicles are for marketing purposes and 15 will be used for testing,” Bollinger said, adding that the B4 is slated to enter full production in
Items per page:
50
1 – 50 of 1163