Browse Topic: Personnel
Recent advancements in electric vertical take-off and landing (eVTOL) aircraft and the broader advanced air mobility (AAM) movement have generated significant interest within and beyond the traditional aviation industry. Many new applications have been identified and are under development, with considerable potential for market growth and exciting potential. However, talent resources are the most critical parameters to make or break the AAM vision, and significantly more talent is needed than the traditional aviation industry is able to currently generate. One possible solution—leverage rapid advancements of artificial intelligence (AI) technology and the gaming industry to help attract, identify, educate, and encourage current and future generations to engage in various aspects of the AAM industry. Beyond Aviation: Embedded Gaming, Artificial Intelligence, Training, and Recruitment for the Advanced Air Mobility Industry discusses how the modern gaming population of 3.3 million
A new aviation supply chain integrity coalition has offered 13 recommended actions to prevent the circulation of non-serialized aircraft parts throughout the global aviation industry. Embry-Riddle Aeronautical University, Daytona Beach, FL In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brand-new showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious. Using his safety training, the employee immediately reported the anomaly to TAP Air Portugal management, which raised the issue with the jet engine's manufacturer. Little did the procurement clerk know at the time, but this escalation led to one of the biggest investigations in the history of the aviation supply chain, as reported by Reuters and the British Broadcasting Corporation in
ABSTRACT: Ground vehicle survivability and protection systems and subsystems are increasingly employing sensors to augment and enhance overall platform survivability. These systems sense and measure select attributes of the operational environment and pass this measured “data” to a computational controller which then produces a survivability or protective system response based on that computed data. The data collected is usually narrowly defined for that select system’s purpose and is seldom shared or used by adjacent survivability and protection subsystems. The Army approach toward centralized protection system processing (MAPS Modular APS Controller) provides promise that sensor data will be more judiciously shared between platform protection subsystems in the future. However, this system in its current form, falls short of the full protective potential that could be realized from the cumulative sum of sensor data. Platform protection and survivability can be dramatically enhanced if
ABSTRACT Systems Engineering (SE) would always benefit from the inclusion of the Six-Sigma perspective in both the planning and execution of project systems. This applies to not only System Engineers but also to Systems Extended Team Members, all who must provide cumulated knowledge along with competency to the project. It is difficult to obtain a high level of competency among single members of the team to be highly successful. Strength in one area is very often an underlying factor of weakness in another area. Determining and integrating sigma characteristics from the development cycle into all remaining phases of the product project, especially at critical component interfaces, with a resultant sigma value given to those connections that develop a sigma-risk factor for each function and process pathway within the operational configuration. This sigma-risk factor concept is the key in uniting knowledge with experience
Abstract Converting vehicles from conventional manned operations to unmanned supervised operations has been slow to adoption in many industries due to cost, complexity (requiring more highly skilled personnel) and perceived lower productivity. Indeed, hazardous operations (military, nuclear cleanup, etc.) have seen the most significant implementations of robotics based solely on personnel safety. Starting in 2005, the U.S. Army Corps of Engineers (USACE) has assumed a leading role in promoting the use of robotics in unexploded ordnance (UXO) range remediation. Although personnel safety is the primary component of the USACE mission, increasing productivity while reducing overall cost is an extremely important driver behind their program. To achieve this goal demands that robotic range clearance equipment be affordable, easy to install on rental equipment, durable and reliable (to minimize down-time), low or no maintenance, and easy to learn / operate by the same individuals who would
ABSTRACT Of the tests of any good theory or suppositional work, the most critical is whether it can forecast the need or accurately describe the number, timing, event and impact of the endeavor. In order to reduce the risk and to exponentially increase the rate of success a continual reevaluation of the data and reconfiguration of the plan will be required, must be properly front-loaded with the appropriate human capital. This is precisely where the application of Six Sigma, Project Management and, Six Sigma for Human Capital works’ intimately with Risk Management to mitigate error and insure the ultimate success of the effort. This is critical in business, critical in the field for greater energy efficiency for soldiers. Unified in concert as core disciplines, the identification of human capital for specialists required at any particular point in the project especially in the definition and design phases, is determined with greater accuracy. Critically predictable and integrated into
ABSTRACT Military personnel involved in convoy operations are often required to complete multiple tasks within tightly constrained timeframes, based on limited or time-sensitive information. Current simulations are often lacking in fidelity with regard to team interaction and automated agent behavior; particularly problematic areas include responses to obstacles, threats, and other changes in conditions. More flexible simulations are needed to support decision making and train military personnel to adapt to the dynamic environments in which convoys regularly operate. A hierarchical task analysis approach is currently being used to identify and describe the many tasks required for effective convoy operations. The task decomposition resulting from the task analysis provides greater opportunity for determining decision points and potential errors. The results of the task analysis will provide guidance for the development of more targeted simulations for training and model evaluation from
ABSTRACT Defense acquisition presents unique challenges to the Science and Technology (S&T) process. Due to the nature of the S&T environment, often the requirement for a particular capability is not explicitly driven by an identified operational need, but by a technology developed in the commercial market. Often these projects present a challenge in the operational domain for S&T programs. Their use would represent a significant change to the Doctrine, Organization, Training, Materiel, Leadership and Education, Personnel, Facilities and Policy (DOTMLPF-P). Work must be done to define the future operational environment and DOTMLPF-P considerations that would be in place at some point in the future when the technology could probably be fielded. This paper presents a methodology for developing a Concept of Operations (CONOPS) for emerging technologies at the System and Sub-system level
ABSTRACT The value of modularity in ground vehicles to the Army and other services has been a topic of much debate for decades. There are instances of successful implementations of modularity in current ground vehicle programs of record. However, these implementations have generally been accomplished through swappable mission equipment rather than large-scale transformation of the vehicle and its core components. Concurrently, the Army Science and Technology (S&T) community has continued to demonstrate the technical feasibility of large-scale, transformative ground vehicle modularity, but the business case of modularity remains elusive. Decision support tools are needed to enable Army leadership to confidently and holistically assess the right balance between modular and mission-specific (conventional) vehicle platforms. This complex problem needs to address numerous considerations, including total lifecycle cost, mission utility, personnel requirements, and fleet adaptability. In this
ABSTRACT Main Battle Tanks (MBTs) remain a key component of most modern militaries. While the best way to ‘kill a tank’ is via the employment of another tank, matching enemy armor formations one-for one is not always possible. Light infantry lack organic armor and their shoulder launched anti-tank capabilities do not defeat the latest generation of MBTs. To compensate for this capability gap, the U.S. Army has employed precision guided anti-tank munitions, such as the “Javelin.” However, these are expensive to produce in quantity and require risking the forward presence of dismounted Soldiers to employ. Mine fields offer another option but are immobile once employed. The ‘Guillotine’ Attack System proposes to change the equation by pairing an AI enabled, adaptive unmanned delivery system with a shaped charge payload. Guillotine can loiter for hours, reposition itself to hunt for targets, and- when ready- deliver a precision shaped charge strike from the air. Citation: “The ‘Guillotine
Arsenic and ammonia in ground and surface waters pose significant health risks globally, especially for remote areas where access to safe drinking water is a concern for U.S. military personnel. Current removal materials and methods lack contaminant specificity. This study developed adsorptive resins and membranes specifically targeting arsenate and ammonia removal using molecularly imprinted acrylate polymers supported on graphitic carbon nitride. These materials showed comparable arsenate removal capacity to commercial resins. Higher ammonia removal capacity but lower selectivity was demonstrated by these materials in comparison to commercial resins. This research aims to enhance water treatment materials for ensuring clean drinking water access in remote military locations
Have you ever gazed at the vastness of the stars and wondered what else your CNC machine can create? Greg Green had the opportunity to find out when he joined the staff at the Canada-France-Hawaii Telescope (CFHT) in Waimea, Hawaii
Manually checking the quality of components or products in industry is labor-intensive for employees and error-prone on top of that. The Fraunhofer Institute for Mechatronic Systems Design IEM is unveiling a solution that provides total versatility in this area. In an it’s OWL supported collaboration with Diebold Nixdorf and software specialist verlinked, Fraunhofer IEM has created a combination of collaborative robot (cobot), AI-based image analysis and IoT platform. The system frees employees from having to perform visual inspections and can be incorporated into all kinds of testing scenarios. The Fraunhofer researchers presented a demonstrator of the cobot/IoT platform at the 2024 Hannover Messe Trade Show in February
An SAE white paper on the different engineering approaches taken by traditional automakers and recent arrivals indicates that each category is remarkably aware of the others' strengths and weaknesses. Sven Beiker, a management lecturer at Stanford University, authored the report “Two Approaches to Mobility Engineering.” He gathered commentary from every corner of the vehicle ecosystem, from suppliers to software companies to manufacturers, and summarized the findings in a presentation at WCX 2024 in Detroit. Rather than “old companies,” Beiker likes to refer to traditional automakers as “incumbents.” Here are a few common observations from the report, which will be published this summer: Newer players are better at simplifying complexity, such as Tesla's ability to build vehicles with fewer parts. Older automakers are better at managing complexity, such as integrating disparate systems. Newer companies are constrained by financial resources and a shortage of available talent
Emergency personnel and first responders have the opportunity to document crash scenes while evidence is still recent. The growth of the drone market and the efficiency of documentation with drones has led to an increasing prevalence of aerial photography for incident sites. These photographs are generally of high resolution and contain valuable information including roadway evidence such as tire marks, gouge marks, debris fields, and vehicle rest positions. Being able to accurately map the captured evidence visible in the photographs is a key process in creating a scaled crash-scene diagram. Image rectification serves as a quick and straightforward method for producing a scaled diagram. This study evaluates the precision of the photo rectification process under diverse roadway geometry conditions and varying camera incidence angles
Diversity in the workforce contributes to creativity, productivity, and innovation. More women today are studying and excelling in science, technology, engineering, and mathematics (STEM). In the U.S., women make up 14 percent of the engineering workforce. The number of female engineers across the globe is on the rise but compared to male engineers it is still much lower
From flying planes to leading space missions and conducting groundbreaking research, women have been contributing to the aerospace industry for decades. However, the number of women employed in the international space industry represents just 20-22 percent of the workforce, according to figures released by the United Nations in 2021. Only 11 percent of astronauts so far have been women
In a world increasingly concerned with environmental sustainability and traffic congestion, the need for innovative solutions to address daily commuting challenges has become paramount. This paper presents an innovative concept for an application/system that seeks to revolutionize the way corporate employees commute to work. By harnessing the power of data and technology, this application aims to reduce pollution, traffic, and fuel consumption while promoting shared transportation solutions among employees. The paper discusses the key features and benefits of this proposed application and its potential to create a greener and more efficient corporate commuting ecosystem
This standard covers Manpower and Personnel (M&P) processes throughout planning, design, development, test, production, use, and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring can be applied. The scope of this standard includes Prime and Subcontractor M&P activities; it does not include Government M&P activities. The primary goals of a contractor M&P program typically include: Ensuring that the system design complies with the latest customer Manpower estimates (numbers and mix of personnel, plus availability) and that discrepancies are reported to management and the customer. Ensuring that the system design is regularly compared to the latest customer personnel estimates (capabilities and limitations) and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, and resolving M&P risks and issues and ensuring that they are: ○ Reflected in the contractor proposal, budgets, and plans. ○ Raised at
This SAE Standard identifies contractor activities for planning and conducting HSI as part of procurement activities on Department of Defense (DoD) system acquisition programs. This standard covers HSI processes throughout system design, development, test, production, use, and disposal. Depending on contract phase, type of the program and/or complexity of the program, tailoring of this standard should be applied. Appendix A lists the requrememts (“shall” statements) in this standard along with unique numbers to facilitate tailoring. In addition, Appendix D provides tailoring guidance to better match requirememts in this standard to the DoD’s Adaptive Acquisition Framework pathways. The scope of this standard includes prime and subcontractor HSI activities; it does not include Government HSI activities, which are covered by DoD and service-level regulations and guidelines. HSI programs should use the latest version of standards and handbooks listed below, unless a particular revision is
Potential fleet customers had their first hands-on time with “fully production-intent” Bollinger B4 all-electric Class 4 chassis cab trucks during a recent ride-and-drive event. “All of the components, all of the wiring, all of the software and the manner in which the truck is being manufactured is production-intent,” Robert Bollinger, CEO and founder of Bollinger Motors, said in an interview with Truck & Off-Highway Engineering. The Oak Park, Michigan-based electric truck manufacturer chose the Mcity Test Facility, a 32-acre site on the University of Michigan's North Campus in Ann Arbor, for the B4 test drive. Potential customers, Bollinger Motors employees and media attended the event that unfolded in waves over 10 days in September 2023. “Our manufacturing partner, Roush Industries, has produced 20 design-verification B4 vehicles. Five of the vehicles are for marketing purposes and 15 will be used for testing,” Bollinger said, adding that the B4 is slated to enter full production in
So far this decade, our industry has been heavily impacted by an endless stream of calamities. When impacted in isolation, dealing with a pandemic, weather disasters, supply-chain disruptions, ICE-to-BEV transition risks, labor-availability issues, rising cost of capital and escalating price inflation can be difficult to navigate. In close combination, these hazards can be catastrophic to a supplier organization - a constant stream of firefighting unanticipated events, as well as known issues such as the upcoming labor contract negotiations with the United Auto Workers (UAW) and Canada's Unifor trade union. Since 2020, (Unifor's last contract negotiation), the industry had September 2023 circled on the calendar. The gravity of simultaneous expiry of both contracts (within four days of each other) is not lost on anyone. Since the last negotiations, both unions have new leadership driven by well-defined agendas supported by their memberships. Additionally, since the last contract, labor
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report. These ladle
SAE created its SMS team to help industry rethink itself as part of the new industrial revolution and the EV transition within it. SAE International has established a new, dedicated practice aimed at helping the transportation industry become truly sustainable, as OEMs and suppliers in automotive, aerospace and commercial vehicles work to meet net-zero climate goals. And the 118-year-old organization created its new group, SAE Sustainable Mobility Solutions (SMS), in a radical way. “I resigned from my previous job - gave up my duties - then hired on as first employee of the new group,” explained SMS president Frank Menchaca, formerly SAE's chief growth officer. An unconventional thinker with MIT training in sustainability and free-jazz guitarist and composer, Menchaca defines sustainability as “the convergence of many different systems - the vehicle, the entire manufacturing process, materials, the infrastructure, communications and regulations. We have to look at the constituent units
Start-up battery developer Factorial Energy's workforce of engineers, chemists and other technology specialists has topped 100 with recent hirings in the Asia-Pacific region. A pilot manufacturing plant for the firm's solid-state lithium-metal batteries is slated to launch later this year. And, Hyundai Motor Co., Stellantis and Mercedes-Benz have invested in the Woburn, Massachusetts-based company and its proprietary Factorial Electrolyte System Technology, trademarked FEST. CEO Siyu Huang recently spoke with SAE Media's Kami Buchholz. Condensed highlights of the interview
Sustainable and sustainability are words that are fast becoming industry vernacular. They're woven into executive speeches, press releases, marketing, and engineers' messaging. That's because a gospel of sustainable practices is spreading fast among the leading automotive OEMs and their supply base. And as such a paradigm-setting trend deserves, we're focusing on it in this month's Automotive Engineering. “Meeting the needs of the present without compromising the ability of future generations to meet their needs,” is one definition of the term. In my view, sustainability is analogous to efficiency - of the product, of manufacturing and of human resources - the equitable treatment of employees and the community. At its heart is a circular economy that's not just about EVs and climate change
Within a four-week stretch - from roughly mid-February to mid-March - a steady stream of autonomous-trucking news hit. A quick summary: As several startups in the autonomous-truck development space struggle financially, established OEMs keep trucking with acquisitions and partnerships to bolster their automated-driving capabilities. On March 3, the cofounder and CEO of Embark Trucks, which was founded in 2016, sent an email to all its employees announcing the company's likely imminent closure. “The last nine months have been tough for the autonomous trucking industry, and for Embark - the capital markets have turned their backs on pre-revenue companies, just as slipping manufacturer timelines have delayed the prospect of scaled commercial deployment,” Alex Rodrigues wrote
Setting a “prudently aggressive” mindset in advancing SAE's goals in the mobility ecosystem. Among the projects and plans heavily impacted by the COVID-19 pandemic lockdown was the 2020 SAE International presidency. I'm Todd Zarfos, and as some of you may remember, it was my SAE presidency that was held hostage that infamous and challenging year. This is an exaggeration, of course, as I was still free to perform many of the basic functions of the SAE presidency: participating in SAE International Board of Directors meetings, offering opinions and ideas to the board and SAE staff about how to expand SAE's importance in the mobility industry, “Zooming” with industry leaders and performing the sundry tasks required of the president
The authors are studying the application of distributed radar to through-the-wall sensing. The intended operational scenario for this technology is detection and identification of personnel and weaponry located inside of a building from a (safe) remote standoff distance outside of that building
Before smart components, industry lived in a break/fix mechanical world where maintenance personnel practically looked at a machine and knew how to correct the issue. In those days, long runs of the same product led to fewer changeovers, meaning fewer adjustments. Today, machines are far more complex and difficult to analyze. Tight margins mean that downtime can be catastrophic to a company and undetected quality issues are equally bad
Setting a “prudently aggressive” mindset in advancing SAE's goals in the mobility ecosystem. Among the projects and plans heavily impacted by the COVID-19 pandemic lockdown was the 2020 SAE International presidency. I'm Todd Zarfos, and as some of you may remember, it was my SAE presidency that was held hostage that infamous and challenging year. This is an exaggeration, of course, as I was still free to perform many of the basic functions of the SAE presidency: participating in SAE International Board of Directors meetings, offering opinions and ideas to the board and SAE staff about how to expand SAE's importance in the mobility industry, “Zooming” with industry leaders and performing the sundry tasks required of the president
During July 18-22, 2022, the U.S. Army Combat Capabilities Development Command Army Research Laboratory, three companies, and numerous attendees from other government organizations gathered at the Robotics Research Collaboration Campus (R2C2) at Aberdeen Proving Ground, Maryland, to demonstrate and evaluate ground robotics technologies with capabilities for protecting operating areas, personnel, and infrastructure in numerous types of environments and situations during its first ever Industry Autonomy Technology Assessment (IATA) event. This event reflects DEVCOM Army Research Laboratory’s commitment to collaborate in robotics research with academia, industry, and other government organizations
Forces that will conduct missions for extended periods in expeditionary situations require technologies that are mobile, robust, and have sufficient autonomy to increase team effectiveness. The U.S. Army Combat Capabilities Development Command Army Research Laboratory solicited solutions from industry that demonstrate autonomous mobility and autonomous security in operationally relevant scenarios. Army Research Laboratory, Aberdeen Proving Ground, MD During July 18-22, 2022, the U.S. Army Combat Capabilities Development Command Army Research Laboratory, three companies, and numerous attendees from other government organizations gathered at the Robotics Research Collaboration Campus (R2C2) at Aberdeen Proving Ground, Maryland, to demonstrate and evaluate ground robotics technologies with capabilities for protecting operating areas, personnel, and infrastructure in numerous types of environments and situations during its first ever Industry Autonomy Technology Assessment (IATA) event
The world is moving from a manual workforce to a collaborative workforce in industrial production systems where humans and robots work together making the manufacturing process harmonious. Humans consist of characteristics like flexibility, adaptability, decision-making skills, and creativity while strength, endurance, speed, and accuracy are from robots. A combined workforce of a human and a robot provides more efficiency, flexibility, and increment in production. This paper compares a manual assembly and a collaborative assembly of ten flange assemblies. The assembly defined here is the joining of a circular cover plate and a flange using four bolts and nuts. A voice-assisted system is incorporated into the collaborative robot which picks the necessary assembly parts when prompted thus boosting the performance. The study begins by completing ten flange assemblies by a single person and noting the outcomes after completion of assembly. The time taken and the elemental motions are the
As the world is moving from a manual workforce to a robot-based workforce, there is a huge scope for improved methods to make production lines more efficient. In this work, an effort is made to implement human-robot collaboration into an industrial process and is demonstrated with a flange assembly-line model. This paper explains how the Yolov4 algorithm was improved and fine-tuned to meet the requirements. A customized workspace was designed and manufactured to make the components more accessible. Different types of grippers were compared and the simplest and most efficient was then selected. Camera selection and calibration were done to get the RGB coordinates and the depth values which were finally converted into the robot's coordinate frame. The coordinates are then fed as the end goal position for the end effector to which the robot plans its motion and then executes. The paper also explains how the model responds to voice commands using the Google API to convert audio messages to
Plant and building managers are facing challenges on several levels — with labor issues, supply chain issues, and parts challenges all creating downtime risk and putting pressure on their performance goals
Items per page:
50
1 – 50 of 1164