Browse Topic: Fuels and Energy Sources

Items (37,264)
The automotive regulatory landscape in India is evolving rapidly, driven by a dynamic policy intervention by GOI, striking push for sustainable mobility, safety, technological advancements, dEnvironmentally soundeeper localization, energy self-reliance, product quality control and simplified registration process. Key regulations cover areas like vehicle safety norms, emission norms, fuel economy norms, BIS QCO, the promotion of EVs and alternative fuel vehicles, R & D roadmaps, ELVs, incentive policies and vehicle registration reforms. India has been keeping a close eye on the automotive regulatory progress in the Europe as well as other developed countries as a cornerstone for technical harmonization, cross learning, gauge benefits and economic implications. India is progressively aligning its automotive regulations with global standards, particularly with UN Regulations and GTRs, while also considering unique Indian driving and environmental conditions. This alignment is crucial for
Patil, Dharmarayagouda
Reducing drag forces and minimizing the rear wake region are the main goals of evaluating exterior aerodynamic performance in automobiles. Various literature and experiments shows that the overall fuel computations of the road vehicle improves significantly with the reduction in aerodynamic drag force. In the road vehicle major components of the drag is due the imbalance in pressure between front and rear of the vehicle. At high vehicle speed, aerodynamic drag is responsible for approximately 30 to 40% of the energy consumption of the vehicle. In the recent year, cost of high-performance computing (HPC) has reduced significantly, which helped computational fluid dynamics (CFD) is an affordable tool to the automotive industry for evaluating aerodynamic performance of the vehicle during developing phase. The vehicles aerodynamic performance is greatly impacted by the dynamic environmental conditions it encounters in the real world. Such environmental conditions are difficult to replicate
Chalipat, SujitBiswas, KundanTare, Kedar
In high-performance charging systems, managing higher currents is crucial for efficient battery charging. Elevated battery temperature is the main challenge for limiting the duration and effectiveness of high-current charging. Our proposal of control system addresses these barriers by optimizing charging time by maintaining optimal temperature ranges for the battery. This is achieved through innovative preconditioning solutions that are incorporated with active Battery cooling configurations. Our system features a unique preconditioning approach with dedicated active cooling circuit for the battery which will provide cooling to battery even though cabin HVAC (Heat Ventilation & Air-conditioning unit) is switched off. The active liquid cooling system ensures effective temperature management without additional energy consumption, while the dedicated Battery active liquid cooling system provides enhanced cooling capabilities for more demanding scenarios and preconditioning. By integrating
Badgujar, Pankaj RavindraBhosale, SubhashDave, Rajeev
This study focuses on enhancing energy efficiency in electric vehicle (EV) thermal management systems through the development and optimization of control logic. A full vehicle thermal management system (VTMS) was modeled using GT-Suite software, incorporating subsystems such as the high voltage battery (HVB), Electric powertrain (EPT), and an 8-zone cabin. Thermal models were validated with experimental data to ensure accurate representation of key dynamics, including coolant to cell heat transfer, cell-to-ambient heat dissipation, and internal heat generation. Control strategies were devised for Active Grille Shutter (AGS) and radiator fan operations, targeting both cabin cooling and EPT thermal regulation. Energy consumption was optimized by balancing aerodynamic drag, fan power, and compressor power across various driving conditions. A novel series cooling logic was also developed to improve HVB thermal management during mild ambient conditions. Simulation results demonstrate
Chothave, AbhijeetKumar, DipeshGummadi, GopakishoreKhan, ParvejThiyagarajan, RajeshPandey, RishabhS, AnanthAnugu, AnilMulamalla, SarveshwarGangwar, Adarsh
Transportation sector in India accounts for 12% of total energy consumption. Demand of energy consumption is being met by the imported crude oil, which makes transportation sector more vulnerable to fluctuating international crude oil prices. India is mindful of its commitment in 2016 Paris climate agreement to reduce GHG emissions intensity of its GDP by 40% by 2030 as compared to 2005 levels. To fast track the decarbonization of transportation sector, commercial vehicle manufacturers have been exploring other viable options such as battery electric vehicles (BEVs) as a part of their fleet. As on today, BEV has its own challenges such as range anxiety & high total cost of ownership. Range anxiety can be certainly addressed by optimum sizing of electric powertrain, reduction in specific energy consumption (SEC) & use of effective regeneration strategies. Higher SEC can be more effectively addressed by doing vehicle energy audit thereby estimating the energy losses occurring at each
Gijare, SumantKarthick, K.Juttu, SimhachalamThipse, Sukrut S.A, JothikumarJ, Frederick RoystonSR, SubasreeG, HariniM, Senthil Kumar
With the rising adoption of electric vehicles, the need for robust and efficient power distribution systems has become increasingly important. As the battery pack is the primary energy source for an electric vehicle (EV), the strategy of selection of switchgears and busbars is paramount. Currently, the design and selection of battery protection and conducting components, such as switchgears and busbars are carried out primarily focusing on the continuous current and the peak current capabilities of the battery pack. Despite this approach ensuring that the components can withstand extreme conditions, it often results in over-engineering. The sizing should be such that it does not overdesign, which would result in unnecessary cost and material weight addition to the pack, ultimately leading to performance deterioration. As the current discharge from a battery pack is dynamic in nature and fluctuates based on driving conditions and usage a real-time heat generation studies have to be
Soman, Anusatheesh, GouthamK, Mathankumar
Identification of renewable and sustainable energy solutions remains a key focus area for the engine designers of the modern world. An avenue of research and development is being vastly dedicated to propelling engines using alternate fuels. The chemistry of these alternate fuels is in general much simpler than fossil fuels, like diesel and gasoline. One such promising and easily available alternate fuel is compressed natural gas (CNG). In this work, a 3-cylinder, 3-liter naturally aspirated air-cooled diesel engine from the off-highway tractor application is converted into a CNG Diesel Dual fuel (CNG-DDF) engine. Part throttle performance test shows the higher NMHC and CO emissions in CNG-DDF mode which have been controlled by an oxidation catalyst in C1 8-mode emission test. A comparative performance shows that the thermal efficiency is up to 2% lower with CNG-DDF with respect to diesel. However, it has shown the benefit of 44% in Particulate Matter, while retaining the same NOx
Choudhary, VasuMukherjee, NaliniKumar, SanjeevTripathi, AyushNene, Devendra
Bilateral Cruise Control (BCC) is a new concept that has been shown to reduce traffic congestion and enhance fuel/energy efficiency compared to Adaptive Cruise Control (ACC). BCC considers both lead and trailing vehicles to determine the ego vehicle’s acceleration, effectively damping any disturbance down the vehicle string and reducing possibilities for congestion. Despite the advantages demonstrated with BCC, one major limitation is its non-intuitive behavior, which stems from the fact that the BCC reacts not just to the lead vehicle but also to the trailing vehicle’s movement. This paper identifies key issues with BCC control and proposes solutions that retain the benefits of BCC while maintaining intuitive behavior. Specifically, a novel switching strategy is proposed to switch between ACC and BCC control modes by critically analyzing the driving conditions. The proposed system ensures acceptable driving behavior with predictable braking and acceleration, resulting in an intuitive
A, AryaA, AishwaryaD, Vishal MitaranM, Senthil VelKumar, Vimal
Edge Artificial Intelligence (AI) is poised to usher in a new era of innovations in automotive and mobility. In concert with the transition towards software-defined vehicle (SDV) architectures, the application of in-vehicle edge AI has the potential to extend well beyond ADAS and AV. Applications such as adaptive energy management, real-time powertrain calibration, predictive diagnostics, and tailored user experiences. By moving AI model execution right into edge, i.e. the vehicle, automakers can significantly reduce data transmission and processing costs, ensure privacy of user data, and ensure timely decision-making, even when connectivity is limited. However, achieving such use of edge AI will require essential cloud and in-vehicle infrastructure, such as automotive-specific MLOps toolchains, along with the proper SDV infrastructure. Elements such as flexible compute environments, deterministic and high-speed networks, seamless access to vehicle-wide data and control functions. This
Khatri, SanjaySah, Mohamadali
The CPCB-IV+ emission compliance for genset application is applicable with effect from 1st July 2023 as per as per GSR 804(E). The CPCB-II to CPCB-IV+ changeover in very stringent in emission front by almost 90 % emission reduction. It’s a significant advancement in environmentally sustainable powertrain technology. To meet the CPCB-IV+ Emission, combustion development & ATS technology plays an important role. First is the base engine need to optimize enough with combustion & associated parts. Second is the after treatment system which will carry the battle further to the engine emission with minimum margin of 10 % engineering target. This paper present the systematic approach followed to meet CPCB-IV+ emission norms for upgradation of 21 litre TCIC engine for the power range (56 < P ≤ 560). Here the challenge to avoid major changes in the existing CPCB-II FIE recipe & meet the CPCB-IV+ emission with ECU calibration & ATS system calibration with its potential. Here interesting parts
Rane, VikasJagtap, ShaileshGothekar, SanjeevPawar, Narendra VKhedkar, PrasadKagade, SamadhanKendre, MahadevG Bhat, PrasannaThipse, S
The automotive industry is rapidly transitioning towards Industry 4.0, transforming vehicle manufacturing. To achieve a lower carbon footprint, it is crucial to minimize raw material wastage and energy consumption. Reducing component wastage, lead time, and automating gear manufacturing are key areas. Gear micro-geometry inspection is vital, as variations affect service life and NVH (Noise, Vibration, Harshness). Despite standards for permissible errors, manual evaluation of gear microgeometry inspection is often needed. This subjective evaluation approach will have a possibility that a gear with undesired variations gets assembled into the product. These issues can be detected during NVH testing, leading to replacement of part and re-assembly thus increasing lead time. This generates a need for an automated system which could reduce the human intervention and perform gear inspection. The research aims to develop a deep learning-based model to eliminate the ambiguity of manual
Ramakrishnan, Gowtham RajBaheti, PalashPR, VaidyanathanDurgude, RanjitBathla, ArchanaR, GreeshmitaV, Rangarajan
The maximum power is recorded with Gasoline than CNG and Hydrogen fuel. The maximum exergy and energy efficiency is with Hydrogen, followed by CNG and then Gasoline. Hydrogen fuel has a maximum potential to convert into energy. The maximum energy destruction of 48.7kW for gasoline fuel at 3000 rpm and followed by CNG and hydrogen. The maximum entropy generation of 85.5 W/K with Gasoline and 60.72 W/K and 29.39W/K for CNG and hydrogen engine respectively at 10000 rpm. The entropy generation rate increase with engine speed. The highest rate of heat release is from hydrogen fuel, followed by Gasoline and CNG.
Shinde, Apurwa BalasahebKadam, Tusharkarunamurthy, KSHINDE, DR BALU
Hydrogen combustion in internal combustion engines offers numerous advantages, such as zero CO2 emissions and high flame speed, which make it a promising alternative fuel for green vehicle solutions. In order to maximize the engine performance with hydrogen, however, meticulous calibration of the air-fuel mixture must be performed, particularly when lean and stoichiometric combustion conditions are considered. Lean burning, i.e., excess air, offers better thermal efficiency and lower NOx emissions but can cause lower engine power and combustion instability. Stoichiometric combustion, however, ensures complete combustion of the fuel-air mixture, but at the cost of higher combustion temperatures and consequently, high NOx emissions. Calibration strategies for hydrogen engines are presented in this paper by comparing the lean and stoichiometric strategies and their implications on engine power output, efficiency, and emissions. Test data from several hydrogen engine configurations
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
Affordable and clean energy has been one of the major objectives adopted by United Nations under the 2030 Agenda for Sustainable Development. In this direction, fuel cell electric vehicles have gained popularity in recent times due their efficiency and environmental friendliness. Fundamentally, it uses compressed hydrogen from the vehicle-mounted tank and combines with ambient air to generate DC electricity. Water is created as a by-product and expelled through the tailpipe. The technology being integrated on powertrain architecture, along with battery pack can prove to be an efficacious approach for zero emission automotive system. However, hydrogen being the primary fuel, and being stored at high pressure, the system involves handling and potential hazards of hydrogen, and possibility of explosions due to hydrogen leaks. Hence, safety is the key issue in handling fuel cell vehicles. This paper discusses about role of Unified Diagnostic Services (UDS) in providing safety and
PRASAD, Dr. P SHAMBHUJacob, JoeHadke, TanmayWagh, PriyankaAchanur, Mallappa
In order to control the engine performance which is driven by the strict emission regulations and customer request for the improved fuel economy, precise air intake measurement and fuel control system are essential. In the modern engines, the mass air flow sensor (MAF) acts an important role which provides a precise estimation of air flow from the clean side ducting of air intake system to engine control unit module (ECU). The hot wire mass air flow sensor are mounted on the clean side of the air intake system in order to protect the sensing element from the contamination and to extend their lifespan as well as maintain its accuracy. It is essential to maintain a steady and a uniform airflow at the sensing element of the MAF sensor for reliable sensor reading at different engine speeds and varying engine load. However, the physical limitations of engine packaging inside the engine bay, limits the sensor placement. Incorrect sensor mounting can lead to errors in the airflow estimation
Sonone, Sagar DineshZope, MaheshKale, VishalPadmawar, HarshadSridhar, SKolhe, Vivek MPanwar, Anupam
Turbochargers play a crucial role in modern engines by increasing power output and fuel efficiency through intake air compression, thereby improving volumetric efficiency by allowing more air mass into the combustion chamber. However, this process also raises the intake air temperature, which can reduce charge density, lead to detonation, and create emissions challenges—such as smoke limits in diesel engines and knock in gasoline spark-ignited (GSL) engines. To mitigate this, intercoolers are used to cool the compressed air. Due to packaging constraints, intercoolers are typically long and boxy, limiting their effectiveness, especially at low vehicle speeds where ram air flow is minimal. This study investigates the use of auxiliary fans to enhance intercooler performance. Two methodologies were adopted: 1D simulation using GT-Suite and experimental testing on a vehicle under different fan configurations—no fan, single fan, and dual fans (positioned near the intercooler inlet and outlet
Patra, SomnathHibare, NikhilGanesan, ThanigaivelGharte, Jignesh Rajendra
In a developing country like India, the growing energy demand across all sectors underscores the urgent need for clean, sustainable, and efficient energy alternatives. Hydrogen stands out as a promising fuel, offering virtually zero emissions and helping to reduce greenhouse gas (GHG) emissions, which directly contributes to mitigating global warming, ensuring a cleaner environment, and lowering dependency on fossil fuels. In line with Sustainable Development Goal 7 (SDG 7), which seeks to guarantee that everyone has access to modern, cheap, and sustainable energy, hydrogen is well-positioned to be a major player in India's energy transformation. However, hydrogen has unique properties such as its wide flammability range, high reactivity, and high energy content present significant challenges in terms of safety, particularly in its storage, transportation, and usage. Improper handling or inadequate safety measures can lead to hazardous incidents, making robust testing, certification
Pawar, YuvrajDekate, Ajay DinkarThipse, SBelavadi Venkataramaiah, Shamsundara
Aluminum alloy wheels have become the preferred choice over steel wheels due to their lightweight nature, enhanced aesthetics, and contribution to improved fuel efficiency. Traditionally, these wheels are manufactured using methods such as Gravity Die Casting (GDC) [1] or Low Pressure Die Casting (LPDC) [2]. As vehicle dynamics engineers continue to increase tire sizes to optimize handling performance, the corresponding increase in wheel rim size and weight poses a challenge for maintaining low unsprung mass, which is critical for ride quality. To address this, weight reduction has become a priority. Flow forming [3,4], an advanced wheel rim production technique, which offers a solution for reducing rim weight. This process employs high-pressure rollers to shape a metal disc into a wheel, specifically deforming the rim section while leaving the spoke and hub regions unaffected. By decreasing rim thickness, flow forming not only enhances strength and durability but also reduces overall
Singh, Ram KrishnanMedaboyina, HarshaVardhanG K, BalajiGopalan, VijaysankarSundaram, RaghupathiPaua, Ketan
Engine braking is a deceleration technique that leverages the internal friction and pumping losses within the engine. By closing the throttle and potentially selecting a lower gear, the engine creates a retarding force that slows the vehicle. This practice contributes to better fuel economy, decreased brake system load, and improved vehicle handling in specific driving scenarios, such as steep declines or slippery road surfaces. To alleviate stress on their primary braking systems and prevent overheating, heavy vehicles frequently incorporate engine-based braking. While older trucks relied on simple exhaust brakes with a butterfly valve to restrict exhaust flow, these had limited impact. Hence contemporary heavy vehicles almost exclusively use more advanced engine braking technologies. Traditionally, our heavy-duty vehicles use Exhaust brake system to elevate the braking performance on hilly terrains. Hence an improved sample of Engine brake was developed for enhanced braking
M, Vipin PrakashRajappan, Dinesh KumarR, SureshN, Gopi Kannan
In the pursuit of environmental sustainability and cleaner transportation, the global automotive industry is expediting transformation. This paper utilized multi-decade data spanning from 1975 to 2024, for the development of predictive models for fuel economy and CO₂ emissions across a wide range of vehicle technologies from 2026 - 2050. This is done with the help of advanced machine learning algorithms like Linear and Random Forest Regression in Python and integrating insights through Power BI visualizations, the project identifies key correlations between vehicle attributes such as weight, powertrain, and footprint and their environmental performance. Results highlight the increasing impact of electric vehicle adoption, hybridization, and light weighting on overall emissions reduction. These insights help forecast the direction of fuel economy standards, emission patterns, and technology shifts across manufacturers and vehicle types. Beyond technical predictions, the study offers a
Hazra, SandipTangadpalliwar, SonaliHazra, Sanjana
Computer vision has evolved from a supportive driver-assistance tool into a core technology for intelligent, non-intrusive occupant health monitoring in modern vehicles. Leveraging deep learning, edge optimization, and adaptive image processing, this work presents a dual-module Driver Health and Wellness Monitoring System that simultaneously performs fatigue detection and emotional wellbeing assessment using existing in-cabin RGB cameras without requiring additional sensors or intrusive wearables. The fatigue module employs MediaPipe-based facial and skeletal landmark analysis to track Eye Aspect Ratio (EAR), Mouth Aspect Ratio (MAR), head posture, and gaze dynamics, detecting early drowsiness and postural deviations. Adaptive, driver-specific thresholds combined with CAN-bus data fusion minimize false positives, achieving over 92% detection accuracy even under variable lighting and demographics. The emotional wellbeing module analyzes micro-expressions and facial action units to
Iqbal, ShoaibImteyaz, Shahma
Customers in off-highway industry are increasingly seeking high-performance capabilities for their tractors due to increasing penetration of mechanisation and labour scarcity. One effective solution to achieve enhanced performance is turbocharging of engines, while meeting emission and highly dynamic transient response of tractor field applications. The process of selecting and validating a suitable turbocharger for tractor field application suitability is significantly time and resources consuming activity due to extensive testbed and field trials. This study focuses on the selection of turbocharger for tractor engines through analytical calculations to freeze key parameters like lambda, boost pressure ratio & temperature within boundaries of exhaust temperature and turbo efficiency maps to deliver best field transient performance and fuel consumption. The selected parameters are further validated under real-world transient operating conditions, involving tractors and their implements
Kumar, Harish KumarRawat, SaurabhDogra, DaljitSinghSingh, SachleenSingh, Amarinder
This study examines the evolving landscape of India's automotive sector in the context of the global push for net-zero emissions. As the world's third-largest automotive market, India is poised to play a momentous role in this transition. The country's automotive sector is anticipated to experience rapid growth, with its market size projected to inflate from USD 437 billion in 2022 to USD 1.8 trillion by 2030. The study also highlights the importance of diverse mobility solutions, such as electric vehicles, green hydrogen, and alternative fuels like bio-CNG and ethanol, in addressing transportation challenges and reducing greenhouse gas emissions. The Indian government's comprehensive approach to promoting green mobility, while balancing the needs of a large and diverse population of 1.4 billion people, is a key focus of this research. Through a detailed analysis of economic, social, energy, regulatory, and technological factors, this study provides insights into the current dynamics
Seshan, VivekBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut SDe Castro Gomez, Daniel J.
In its conventional form, dynamometers typically provide a fixed architecture for measuring torque, speed, and power, with their scope primarily centered on these parameters and only limited emphasis on capturing aggregated real-time performance factors such as battery load and energy flow across the diverse range of emerging electric vehicle (EV) powertrain architectures. The objective of this work is to develop a valid, appropriate, scalable modular test framework that combines a real-time virtual twin of a compact physical dynamometer with world leading real-time mechanical and energy parameters/attributes useful for its virtual validation, as well as the evaluation of other unknown parameters that respectively span iterations of hybrid and electric vehicle configurations, ultimately allowing the assessment of multiple chassis without having to modify the physical testing facility's test bench. This integration enables a blended approach, using a live data source for now, providing
Kumar, AkhileshV, Yashvati
In line with global peers (EU, Japan, etc.), the Automotive Industry Standard (AIS) Committee in India has decided to adopt “World harmonized Light vehicle Test Procedure (WLTP)” for M2 and N1 category vehicles not exceeding 3500 kg and for all M1 category vehicles. As a result, “World harmonized Light-duty vehicles Test Cycle (WLTC)” is set to replace currently applicable “Modified Indian Drive Cycle (MIDC)” in the next couple of years. The draft Corporate Average Fuel Economy (CAFE) III & CAFE IV norms for CO2 emission limits, which are set to be implemented in year 2027 and 2032 respectively refer to a shift to WLTP from MIDC. The latest draft of Central Motor Vehicle Rules (CMVR) for BS-VI emissions is also being revised to use WLTC as test cycle. This migration to WLTC is in sync with the demand for test procedures to replicate real driving conditions more appropriately. Further, the move to WLTC along with stricter emission norms is a major step towards realizing India’s COP26
Pawar, BhushanEhrly, MarkusSandhu, RoubleEmran, AshrafBerry, Sushil
This paper presents the design, simulation, and evaluation of a low-profile Multiple-Input Multiple-Output (MIMO) antenna configuration, optimized to meet the evolving demands of modernized wireless communication systems, incorporating LTE-Advanced (LTE-A) and emerging 5G Internet of Things (5G-IoT) applications. The antenna’s geometry relies on a novel design comprising staircase-shaped rectangular radiating patches with an integrated stub. This configuration is employed to improve impedance bandwidth and strengthen the isolation between antenna components, which are critical parameters in MIMO system performance. The antenna is fabricated on a Rogers RT/Duroid 5880 substrate, distinguished by its low dielectric loss and high-frequency stability. With a compact physical footprint of 96 × 96 mm2, the proposed design effectively serves the feature of integration into portable and space-constrained wireless devices. The antenna operates effectively across frequency range of 2.13 GHz to
Gupta, ParulPrasad, Anjay
Today, passenger car makers around the world are striving to meet the increasing demand for fuel economy, high performance, and silent engines. Corporate Average Fuel Economy (CAFE) regulations implemented in India to improve the fuel efficiency of a manufacturer's fleet of vehicles. CAFE goal is to reduce fuel consumption and, by extension, the emissions that contribute to climate change. CNG (Compressed Natural Gas) engines offer several advantages that help manufacturers meet and exceed these standards. The demand for CNG vehicles has surged exponentially in recent years, CNG engine better Fuel efficiency and advantage in CAFÉ norms make good case for OEM & Customer to use more CNG vehicle. CNG is dry fuel compared to gasoline. These dry fuels lack lubricating properties, unlike conventional fuels like petrol, diesel and biofuels, which are wet and liquid. Consequently, the operations and failures associated with these fuels differ. The materials and designs of engine parts, such as
Poonia, SanjayKumar, ChandanSharma, ShailenderKhan, PrasenjitBhat, AnoopP, PrasathNeb, Ashish
The pressing global need for de-fossilization of the transport sector, especially within the heavy-duty segment, has intensified the exploration of alternative clean fuels. In this context, methanol gained traction due to their renewable production pathways, carbon-neutrality, and are being highly promoted by the Indian government to reduce CO2 emissions. Dual direct injection compression ignition (DDICI) is an effective combustion strategy to use methanol in heavy-duty engines, which combines the advantage of high-efficiency compression ignition with the clean-burning potential of methanol. In contrast to spark-ignited premixed methanol engines, this strategy involves a diffusion combustion of the methanol flame, thereby eliminating knocking and enabling running with high compression ratios. This experimental and numerical study presents a comprehensive investigation into the DDICI strategy using methanol as primary fuel and diesel as a pilot for ignition assistance. The work
Singh, InderpalDhongde, AvnishRaut PhD, AnkitGüdden, ArneEmran, AshrafBerry, Sushil
The Government of India has mandated biofuel blending in automotive fuels to reduce crude oil imports and support the national economy. As part of this initiative, Oil Marketing Companies (OMCs) have begun nationwide blending of E20 fuel (20% ethanol in petrol). Ethanol supply is expected to exceed demand by the end of 2025 due to initiatives like the Pradhan Mantri JI-VAN Yojana. Alternative applications for ethanol are being explored; one promising approach is its use as a co-blend with diesel fuel (ED blends). However, ethanol’s low cetane number and poor lubricity pose challenges for direct use in diesel engines without modifications. ED blends demonstrated reduced emissions while maintaining performance comparable to conventional diesel. To further address concerns related to materials compatibility of ED blends with fuel system components, particularly plastomers that may impact engine durability, a detailed study was conducted using elastomers such as FVMQ, FKM, HNBR, and NBR in
Johnpeter, Justin PChakrahari, KiranChakradhar, MayaArora, AjayPrakash, ShantiPokhriyal, Naveen Kumar
As conventional fossil fuels are on the verge of depletion, the demand of alternative fuel has intensified. Among these, Hydrogen offers higher energy output per unit weight compared to conventional fuels, high octane number, and compatibility with Internal combustion engines (ICE). However, the volatility of hydrogen (H2) presents challenges, particularly during the refueling process, where uncontrolled temperature rise occurs because of negative Joule-Thomson (JT) effect. This brings an alarming bell for the safety of fueling stations, vehicles, and mankind. This paper investigates the physics involved in hydrogen tank filling, focusing on maintaining the hydrogen gas temperature below 85 °C during the process. A 3D Computational Fluid Dynamics (CFD) analysis was performed to model the temperature and pressure behavior of hydrogen during filling. The study provides insights into the optimal fill rates, temperature distribution, and the evolution of peak temperature locations inside
Khanna, GouravVeerbhadra, SwatiSahu, Abhay Kumar
Noise quality at idle condition is an important factor which influences customer comfort. Modern diesel engines with stringent emission norms together with fuel economy requirements pose challenges to noise control. Common rail engine technology has advantage of precise fuel delivery and combustion control which needs optimization to achieve the conflicting requirements of noise, emission and fuel efficiency. Engine noise at low idle condition is dominated by combustion noise which depends on rate of pressure rise inside the cylinder during combustion. The important parameters which influence cylinder pressure rise are fuel injection timing, pilot injection quantity and its separation, rail pressure and EGR valve position. The study on effect of these parameters at varying levels demand large no of experiments. Taguchi design of experiments is a statistical technique which can be used to optimize these parameters by significantly reducing no of experiments needed to achieve the desired
P, PriyadarshanChavan, AmitA, KannanswamyPatil, SandeepChaudhari, Vishal V
The transportation and mobility sector are undergoing a profound transformation, with a growing emphasis on sustainability and minimizing the environmental impact of transportation. Among the most significant trends is the transition to electric vehicles (EVs) in the form of Battery and Fuel cell, which produce zero emissions without any harmful gases release in nature. This review highlights several infrastructure-related issues and critical factors that could drive India's transportation sector toward adopting electric vehicles. It also delves into the fundamental understanding of e-mobility, shedding light on the daily challenges and barriers it faces. Furthermore, the study explores research aspects, including the strategies, methods, and tools used for electric vehicles to complete the research on Battery electric vehicles (BEV) and also comparative analysis with Fuel cell vehicles (FCVs). The shift BEVs has been driven by decreasing battery costs and advancements in charging
Kumar, Dr. Vijay Bhooshan
The stringent emission norms over the past few years have driven the need to use low-carbon fuels and after treatment technology. Natural gas is a suitable alternative to diesel heavy-duty engines for power generation and transportation sectors. Stoichiometric combustion offers the advantages of complete combustion and low carbon dioxide emissions. Turbocharging and cooled exhaust gas recirculation (EGR) technology enhances the power density along with reduced exhaust emissions. However, there are several constraints in the operation of natural gas spark ignition engine such as exhaust gas temperature limit of 780 °C, sufficient before turbine pressure for EGR drivability, boost pressure, peak cylinder pressure limit and knocking. These limits coulld restrict the engine BMEP (brake mean effective pressure). In the present study, tests were conducted on a V12, 24 liters, heavy duty natural gas fuelled spark ignition engine (600 HP) with different EGR and turbocharger configurations to
Khaladkar, OmkarMarwaha, Akshey
This paper presents Nexifi11D, a simulation-driven, real-time Digital Twin framework that models and demonstrates eleven critical dimensions of a futuristic manufacturing ecosystem. Developed using Unity for 3D simulation, Python for orchestration and AI inference, Prometheus for real-time metric capture, and Grafana for dynamic visualization, the system functions both as a live testbed and a scalable industrial prototype. To handle the complexity of real-world manufacturing data, the current model uses simulation to emulate dynamic shopfloor scenarios; however, it is architected for direct integration with physical assets via industry-standard edge protocols such as MQTT, OPC UA, and RESTful APIs. This enables seamless bi-directional data flow between the factory floor and the digital environment. Nexifi11D implements 3D spatial modeling of multi-type motor flow across machines and conveyors; 4D machine state transitions (idle, processing, waiting, downtime); 5D operational cost
Kumar, RahulSingh, Randhir
The purpose of this research is to examine the fundamental principles of a circular economy (CE) in relation to the automotive industry in India, which plays a vital role in the country's economy. As a result, energy consumption and environmental impacts also pose significant challenges. CE provide a transformative approach through the life cycle of a vehicle, guiding the automotive industry toward a more sustainable transportation system. In order to decarbonize this industry, the global automotive commission recommends that recycled plastic content in vehicles be increased to 20-25% by 2030. This target necessitates the recovery of plastics from end-of-life vehicles, though these materials are rarely integrated into compounds today. The automotive industry's reliance on plastics has grown substantially due to their lightweight properties, which enhance fuel efficiency, reduce CO₂ emissions, and improve versatility and mechanical performance. polypropylene polymer and several other
Kumar, Vijay Bhooshan
This paper presents the methodology and outcomes of modifying a 1.2L naturally aspirated (NA) engine to enable flex-fuel compatibility, targeting optimal performance with ethanol blends ranging from E20 to E100. Ethanol is being increasingly promoted due to its potential to reduce greenhouse gas emissions and to provide an additional source of income for farmers. As per the road map for Ethanol blending released by Govt. of India, there has been continuous increase in blending of ethanol in gasoline. An initial target of 20% ethanol blending in gasoline by April 2025 has already been achieved. This work is in alignment with the broader push for development of flex-fuel vehicles, which necessitates engine adaptations capable of operating on varying ethanol blends. The primary objective was to upgrade the engine, which can give optimum performance with both lower range of ethanol blends starting from E20 as per IS 17021:2018 standard till higher blends of up to E100 as per IS 17821:2022
Tyagarajan, SethuramalingamPise, ChetanKavekar, PratapAgarwal, Nishant Kumar
Compressed Natural Gas (CNG) offers a compelling alternative fuel solution due to its lower carbon emissions and cost-effectiveness compared to conventional gasoline. However, the dry combustion characteristics of CNG, coupled with higher combustion temperatures, often accelerate Exhaust valve face and Exhaust seat insert wear in internal combustion engines. Intake valve face and Intake seat insert are exposed to fresh air charge and temperature during engine operation remain with in limit and no issue reported in Intake valve side. This study addresses the critical challenge of premature exhaust valve wear in CNG applications by investigating the root cause and implementing improvements in the exhaust valve facing material, aiming to enhance durability and reliability for widespread CNG vehicle adoption. Exhaust valve face in CNG engine subjected to extreme condition leads to excessive valve face wear and cracking. To address these challenges, various technologies like hard material
Poonia, SanjayKumar, ChandanKundu, SoumenKumar, PrabhakarVats, RajeshKhan, PrasenjitSharma, Shailender
Hydrogen Fuel Cell Electric Vehicles (FCEVs) are emerging as a sustainable solution to reduce greenhouse gas emissions in the transportation sector, in line with the Paris Agreement and global net-zero emission goals. This paper presents a comprehensive performance analysis of the FCEV powertrain under intercity and intra-city driving conditions. The study focuses on key parameters such as fuel cell system efficiency, energy consumption, hydrogen usage, and overall drivetrain response. Using simulation models validated with real-world driving data, the performance of the powertrain is evaluated across varying speed profiles, vehicle loads, and driving cycles. The analysis also considers the impact of auxiliary load including HVAC systems and consumption of other electric components on the powertrain efficiency and energy balance. Results highlight that the FCEV powertrain performs efficiently during intercity driving due to stable speed conditions and low stop-start frequency, while
Patil, Nikhil N.Bhardwaj, RohitSaurabh, SaurabhAhmed, YasirGawhade, RavikantAmancharla, Naga ChaithanyaGadve, Dhananjay
This project introduced a brand-new tire size 245/90R16 for the first time globally in the 16-inch tube-type category, designed specifically for commercial vehicles with Vehicles 8.5T -12T gross vehicle weight (GVW). The main goal was to create a compact vehicle that can carry more payload, reduce overall weight, and improve fuel efficiency with use of rear single tyre instead of twin tyre in 8.5T. This helps customers lower their operating costs and improve vehicle performance, especially on narrow roads. The new tire supports high load capacities: up to 2300 kg for single tire use and 2180 kg for dual tire fitment. It enables a new type of vehicle to be developed an 8.5-ton GVW vehicle with rear single tires offering better payload capacity without increasing the size of the vehicle. By using this new tire, the kerb weight of the vehicle is reduced, which increases the payload and helps improve fuel economy. This helps lower the cost of the vehicle by optimizing surrounding
Pawar, Dhondiram DnyandeoShaikh, MatinAmbekar, Prasad
The increasing adoption of electric vehicles (EVs) has raised the importance of secure communication between EVs and Electric Vehicle Supply Equipment (EVSE). As EV infrastructure rapidly evolves, cybersecurity threats targeting the vehicle-charger interface pose major risks to user safety, data integrity, and operational continuity. This paper presents an overview of existing EV-EVSE communication standards and explores their associated vulnerabilities. We identify potential cyber threats, including man-in-the-middle attacks, replay attacks, and protocol spoofing, that could compromise the security of EV charging systems. The study proposes an enhanced cybersecurity framework incorporating session authentication, and anomaly detection techniques to fortify EV-EVSE communication. The proposed mitigation strategies aim to ensure secure, reliable, and resilient charging infrastructure essential for the widespread adoption of electric mobility.
Uthaman, SreekumarPatil, Urmila
Items per page:
1 – 50 of 37264