Browse Topic: Hybrid power

Items (169)
ABSTRACT The United States Army Tank Automotive Research, Development and Engineering Center (TARDEC) is actively investigating and researching ways to advance the state of combat hybrid-electric power system technology for use in military vehicles including the Future Combat Systems’ family of manned and unmanned ground vehicles. Science Applications International Corporation (SAIC) is the lead contractor for operating the Power and Energy System Integration Laboratory (P&E SIL) in Santa Clara, CA. The P&E SIL houses a combat hybrid electric power system including a diesel engine, generator, high voltage bus, DC-DC converter, lithium ion battery pack, left and right induction motors, and left and right dynamometers. The power system is sized for a 20-22 ton tracked vehicle. The dynamometers are responsible for emulating loads that the vehicle would see while running over a course. This paper discusses the control system design for achieving mobility load emulation. Mobility load
Goodell, JarrettSmith, WilfordWong, Byron
Due to the complexity and timeliness of the dual power source control system for range extended electric vehicles, a real-time predictive fuzzy energy management strategy based on speed prediction, which comprehensively takes into account the demand power of auxiliary power unit, future average speed and driving distance is proposed in this work. Firstly, to improve the topicality and accuracy of the control system, the convolutional neural network with long short-term memory neural network (CNN-LSTM) algorithm is adopted to predict the future driving speed by the speed features and adjacent speeds. Secondly, taking account of the characteristics of the driving conditions for electric logistics vehicles, a three-inputs-one-output fuzzy controller is formulated based on the average predicted speeds, current traveling distance and demand power of the auxiliary power unit, so as to adjust the expected output power to harmonize the fuel consumption, electricity costs for the process of
Yang, BingjunChen, YongChen, QuangLin, XiaozheWei, ChangyinLiu, Caixia
Nowadays, increasing greenhouse gas emissions and economic considerations leads to the seek for cleaner and sustainable solutions. The exponential rise of number of on road vehicles in recent past lead to environmental problems to alarming situation due to increasing greenhouse gases. In 2020, global Co2 emissions was 33908 Mt Co2 & out of which 7153 Mt Co2 from transportation sector. Hydrogen fuel based internal combustion engine & fuel cell can lead the way for the global goal to achieve zero greenhouse gas emission. Though hydrogen fuel cell usage in the mobility application has its own limitation due to its slow dynamic response to the driver demanded power. In order to sync with transient and dynamic demand behavior of vehicles, Powertrain needs to deliver instant drive torque to the wheels, which is difficult to achieve from fuel cell powertrain (fuel cell + HV Battery Pack) alone. Our research emphasis on research of Fuel cell & Super capacitor hybrid power source to deliver
Sharma, PrashantPenta, AmarGarg, MuditDey, SupriyoAgrawal, Mridul
This paper analyzes the current control, mode control and boost strategy of permanent magnet synchronous motor in dual hybrid system, which has good stability and robustness. Current control includes current vector control, MTPA control, flux weakening control, PI current control and SVPWM control. Motor mode includes initialization mode, normal mode, fault mode, active discharge mode, power off mode, battery heating mode and boost mode. The boost strategy of the hybrid system is based on boost mode management, boost target voltage determination and boost PI control. The specific content is as follows: Boost mode control. Boost mode includes initial mode, normal mode, off mode and fault mode. Boost target voltage is determined. Boost converter is controlled by variable voltage, which depends on the operation status of the motor and generator.. In order to improve the overall performance of the voltage control strategy, the voltage control strategy of the boost converter is dynamically
Jing, JunchaoHuang, WeishanLiu, YiqiangDai, ZhengxingZhang, Junzhi
Taking into account the high rotor speed of the generator and the trend of high voltage in direct current microgrids in high-power aviation hybrid propulsion systems, a hybrid power system with a power of 200 kilowatts (kW), a voltage of 540 volts (V), and a rated generator speed of 10500 r/min was established. Anticipating the demands of future high-power system tests, a matching simulation model was developed. The paper discusses various aspects including model construction, test design, and result validation, proposing an overall control strategy for series hybrid aviation propulsion systems – utilizing lithium-ion batteries to stabilize grid voltage and using the turboshaft-generator unit as the primary power source to meet the main power demands of the electric propulsion system. The established model consists of four modules: turboshaft engine, power generator, voltage-stabilizing battery, and electric motor/propeller. These modules are independently controlled and are unified
Diao, BoLi, PoZhu, JianfengHuang, GuochenShe, YunfengXing, Yaoren
Hybrid electric vehicles (HEVs) with multiple vibration excitation sources have complex torsional vibration problems of the drivetrain. When the drivetrain system resonates, it will lead to an increase in vehicle vibration and noise. The parameters of the passive damping mechanisms cannot be adjusted in real time according to the torsional vibration level of the vehicle, and it is difficult to meet the damping requirements of each vibration frequency band. Active torsional vibration control systems need high cost and energy consumption, strict maintenance, and complex control technology in practical applications. A novel electronically controlled damper (ECD) is proposed in this paper and is applied to a parallel hybrid power system. The structure of the ECD is introduced, the dynamic model of the ECD is established, and the relationship curve is obtained between the electromagnetic damping torque, excitation current, and speed using finite element analysis (FEA). The dynamic
Yan, ZhengfengLiu, ShaofeiCheng, ShiboBai, Xianxu
In recent years, global warming, depletion of fossil fuels, and reducing pollution have become increasingly prominent issues, resulting in demand for environmentally-friendly two-wheeled vehicles capable of reducing CO2 emissions. However, it remains necessary to meet customers’ expectations by providing smaller drivetrains, lighter vehicles, and support for long-distance riding, among other characteristics. In the face of this situation, hybrid electric vehicle (HEV) systems are considered to be the most realistic method for creating environmentally-friendly powertrains and are widely used. This research introduces a hybrid electric two-wheeled vehicle fitted with an electrical variable transmission (EVT) system, a completely new type of electrical transmission that meets the aforementioned needs, achieving enhanced fuel efficiency with a compact drivetrain. The EVT system comprises double rotors installed inside the stator. The hybrid electric two-wheeled vehicle equipped with the
Furuta, HidekiYoshida, Jun
Due to the intense variation of operational loads of tugboats, the hybrid power system structure with composite energy storage including prime movers, batteries, and super-capacitors is issued, and then combined with the rule-based power management strategy to evaluate the potential to improve the energy efficiency at a typical working scenario. Furthermore, to optimize the energy and emissions performance of this system at real sea conditions, the equivalent consumption minimization strategy is introduced as the constraint, which can attribute to the reduction of fuel consumption and emissions. The results show that fuel consumption and NOx emissions can be reduced by up to 9.24% and 44.6% respectively, by implementing the super-capacitor. At the same time, smoother load fluctuation and overall discharge rate of batteries can be obtained by using ECMS, which is advantageous in improving the cycle life and stability of the battery, and the reliability during the whole voyage
Wu, ShenLi, TieWang, Hang-LinChen, RunHuang, ShuaiLi, Shi-Yan
Among the myriad of potential hybrid powertrain architectures, selecting the optimal for an application is a daunting task. Whenever available, computer models greatly assist in it. However, some aspects, such as pollutant emissions, are difficult to model, leaving no other option than to test. Validating plausible options before building the powertrain prototype has the potential of accelerating the vehicle development even more, doing so without shipping components around the world. This work concerns the design of a system to virtually couple—that is, avoiding physical contact—geographically distant test rigs in order to evaluate the components of a powertrain. In the past, methods have been attempted, either with or without assistance of mathematical models of the coupled components (observers). Existing methods are accurate only when the dynamics of the systems to couple are slow in relation to the communication delay. Also, existing methods seem to overlook the implications of
Ametller, AdriaBrace, Chris
The future battlefield will be filled with multiple dissimilar energy networks including unmanned and manned vehicular platforms actively engaged in cooperative control and communications capable of overpowering an adversary and dominating the battlespace. This chaotic multi-domain operational environment will be limited by variable operating conditions (mission profiles, terrain, atmospheric conditions), copious amounts of real-time actionable intelligence derived from weapon and sensor suites, and most importantly, the energy capabilities of each platform
To achieve battlespace dominance, energy flow characterizations of individual platforms and the aggregate battlespace must be developed to adapt and exploit the variable operating conditions. Army Research Laboratory, White Sands Missile Range, New Mexico The future battlefield will be filled with multiple dissimilar energy networks including unmanned and manned vehicular platforms actively engaged in cooperative control and communications capable of overpowering an adversary and dominating the battlespace. This chaotic multi-domain operational environment will be limited by variable operating conditions (mission profiles, terrain, atmospheric conditions), copious amounts of real-time actionable intelligence derived from weapon and sensor suites, and most importantly, the energy capabilities of each platform. To achieve dominance within the battlespace, energy flow characterizations of individual platforms and the aggregate battlespace must be developed with respect to the variable
Gas turbines are fast being explored to replace the existing steam or diesel-based power packs to propel marine transportation. Marine gas turbines have already come to power high-speed marine vessels transporting perishable goods as well as high-speed naval fleets. This article investigates the potential of gas turbine to be made hybrid with supercritical recompression-regeneration carbon dioxide (CO2) cycle drawing thermal energy from the exhaust of marine gas turbines. The recompression unit acts as the topping cycle and the regeneration unit acts as the bottoming cycle of the proposed combined supercritical CO2 (sCO2) cycle. The cycle has a maximum temperature of 530°C and supercritical pressure of 20 MPa. The proposed sCO2 powerplant is compact because of the smaller size of the turbomachinery, owing to the low specific volume of working fluid in the supercritical range. The proposed combined cycle is analyzed for different operating conditions including maximum temperature
Sahoo, AbhijeetSanjay, R.Jain, Mukul
Leonardo DRS Inc. Arlington, VA 571-447-4624
With the strict requirements of harmful emission regulations, carbon peaking and neutralization goal, the internal combustion engine (ICE) industry is facing great challenges. Compared with pure ICE powertrain, hybrid powertrain has the advantages on fuel consumption and harmful emissions, which is more suitable for the market today. In series hybrid powertrain, because of the direct mechanical connection between ICE and motor, the motor can be used as an assistant in optimizing the performance of ICE. In order to realize the cycle-based or crank angle-based control of ICE, a high-frequency motor control system need to be built. Field Programmable Gate Array (FPGA) has the characteristics of high calculation frequency and high reliability to meet the demand. At the same time, the ICE control based on LabVIEW and FPGA has been realized. In order to realize the high-frequency co-control of ICE and motor, this paper developed a high-frequency and high-precision control system for
Zhou, YangLi, MinglongLong, QuanYuan, DengkeHu, ZongjieLi, Liguang
A Dual Power Split Electronic Continuously Variable Transmission (DPS-ECVT) with an input-split, output coupled, split-power-path configuration is proposed for improving overall system efficiency and range for electric vehicles. By modulating the power split ratio between the mechanical (planetary gear meshes) and electrical (Motor Generator Units) driveline components, a continuous range of gear ratios operating at higher efficiency is obtained. The proposed concept leverages two power-split units that lead to significantly reduced power flow through the electrical drivelines (compared with single speed EV transmissions as well as single power-split E-CVTs) while providing the same overall ratio spread for transmission operation. A multi-layered optimization is performed, first an inner layer optimization on the operational control strategy to maximize the end-of-cycle SOC (State of Charge) of the battery for a given set of transmission design parameters, and then subsequently an
Swain, AnshumanGopalswamy, Swaminathan
The use of electric energy to drive the drive wheels allows you to improve not only the environment, but also the performance indicators of cars. A hybrid car uses both thermal energy from an internal combustion engine (ICE) and electrical energy from generators or batteries. The authors of the paper have conducted a study on the dynamics of a hybrid car, in which ICE energy is used to charge rechargeable batteries, and the latter provide the driveline. By reducing the amplitude of the traction force oscillations, the energy costs for the forward movement of the car are reduced. The purpose of the study is to determine the energy savings for accelerating a car with a combined power plant with electric engines on wheels using battery power. As a result of the study, a mathematical model of the car acceleration process with a combined power plant and powered electric engines of the driving wheels from the batteries has been obtained. The obtained analytical dependencies allow us to
Bazhinov, AlexeyBazhinova, TetyanaPodrigalo, MikhailKholodov, MykhailoHaiek, YevhenSierikova, Iryna
As the global automotive market shifts towards electric vehicles, the United States Army must naturally consider this alternative for its combat vehicles. Indeed, electric vehicles offer numerous tactical advantages over traditional diesel engines, including higher torque at lower speeds and lower signature. Unfortunately, full electrification of most military vehicles is not feasible due to the weight of the requisite battery pack. However, the Army can take advantage of electric vehicles through hybrid power trains. Hybrid options allow for quiet, resilient, and powerful vehicles that are less constrained by battery technology. This study looks at the feasibility of hybrid power systems for military vehicles including the Infantry Squad Vehicle, the High Mobility Multipurpose Wheeled Vehicle, and the Joint Light Tactical Vehicle. The analysis models standard drive profiles to determine the mileage and fuel consumption for traditional, hybrid, and electric powertrains for each vehicle
Mittal, VikramNovoselich, BrianRodriguez, Andrew
The article proves the necessity for heating the air in the pneumatic engine of a hybrid power unit designed for moving a compact wheeled vehicle. The aim is to improve the pneumatic engine operation indicators by heating the compressed air before it is supplied to the cylinder using the obtained theoretical and experimental studies. For the easy-to-use of assessing the effectiveness of heating the air supplied to a pneumatic engine, the experiments were carried out by two pressure ps = 0.7 MPa and ps = 0.9 MPa, according to them the testing of a pneumatic unit was conducted without heating the compressed air at the temperature equal to the ambient temperature Ts = 293 K. Also, during the experiments a pneumatic engine was tested at other temperatures while supplying the compressed air at the inlet to the engine cylinder. So, at an inlet pressure ps = 0.7 MPa, the compressed air was heated up to the temperature Ts = 383 K, and at a pressure ps = 0.9 MPa it was heated up to the
Leontiev PhD, DmitryVoronkov, OleksandrNikitchenko, IgorKorohodskyi, VolodymyrRyzhykh, LeonidRudenko, NataliiaMakarova, Tamara
Electricity is the fuel of tomorrow — a future powered by battery technology. With the global electric mobility market expected to reach nearly $500 billion by 2025, battery and power storage needs will be pushed beyond current limits. Design teams are being challenged to rethink how systems work on the ground, in the skies, and at sea
Power and efficiency characteristics of a hybrid cycle combining an electrochemical device (Fuel-Cell) and an internal combustion engine (ICE) were analyzed using the low-dissipation model. The low-dissipation model links energy dissipation with the energy transfer rate through the cycle. In the considered cycle, the electrochemical device transforms chemical potential of the fuel to electrical work, and the ICE uses the heat rejected by the electrochemical device and its exhaust effluent for mechanical work production. The cycle efficiency was calculated as a function of the hybridization level. The latter is defined as the electrical work fraction in the total cycle work. The results of the study show that the cycle efficiency is growing with the electrical work fraction increase. On the other hand, maximum power of the cycle is attained at an intermediate hybridization level. Moreover, power to weight ratio and power density of the cycle have maxima at different hybridization level
Diskin, DavidTartakovsky, Leonid
In this study, a new system of assessment method was developed to evaluate the characteristics of urban buses based on remote online monitoring. Four types of buses, including China V emission standards diesel bus, lean-burn CNG bus, air-fuel equivalence ratio combustion CNG bus and gas-electric hybrid bus, were chosen as samples to analyze the emission characteristics of urban buses with different engine types in urban scenario. Based on the traffic conditions in Beijing, the actual emission characteristics of buses under newly-built driving conditions were analyzed. Moreover, the emission factor database of urban buses in Beijing was established to analyze the characteristics of excess emission. The research results are shown as follows. 1) Compared with other types of buses, NOX emission factor and emission rate of lean-burn CNG bus are much higher. The equivalent air-fuel ratio CNG engine combined with TWC catalytic converter and hybrid power technology can better reduce NOX
Feng, QianZhen, KaiLu, YangYang, XingziYang, YanyanLiu, BaoxianLi, MengliangLi, Zhijun
This work investigates a combined internal combustion engine and solid oxide fuel cell (SOFC) hybrid powertrain for unmanned aerial vehicles (UAV). UAVs are increasingly used in large agriculture for crop management and water resource visual inspection, and in militarized applications, as they allow for safer, unmanned reconnaissance missions. The limited flight time of UAVs, as a result of the traditional lithium polymer batteries used for power, has restricted the widespread implementation of the UAV technology. A hybrid power train, utilizing energy dense liquid fuel, provides the capability of powering a UAV for longer duration missions. The hybrid power train consists of a small internal combustion engine that acts as a partial oxidation fuel reformer, simultaneously producing mechanical shaft power. The 0.3 in3 piston engine is a typical air cooled, glow engine utilizing a 60/40 percent (by volume) mixture of methanol and nitromethane, respectively. The syngas generated by the
Metcalf, AlexanderWelles, ThomasAhn, Jeongmin
Our project named AGR Hybrid Power: system for the use of alternative fuels in tractors deals with the development of new powertrain technologies and the improvement of the fuel consumption of medium tractors from 51.5kW to 58.1kW - Kilowatt, considering the participation in Brazilian agricultural activity, fuel distribution logistics in Brazil and environmental factors. It is possible to notice a huge growth potential associated with lower agricultural costs, improved energy efficiency in operations, reduced environmental impacts and higher accessibility to renewable fuels. Considering feasibility studies, benchmark, reverse engineering, agricultural requisitions, development research, and other engineering tools, this work highlights the factors which determine how an innovative solution based on ethanol-powered, renewable fuel, and an electric plug-in hybrid series powertrain system can be achieved along with a huge potential to generate larger energy efficiency, superior to the
Iotti, Rafael A.Pereira, Diego D.de Araújo Neto, Emilio T.dos Santos, Lucas F.de B. Dortas, Rebeca V. F.Miguel, Ricardo G.da Silva, Wilmar T. M.
In this paper, an energy management method based on vehicular networking is proposed for the dual power sources fuel cell electric articulated vehicle. Vehicular networking includes a cloud computing center, which predicts the information of power demand for the real-time driving condition based on the history data analysis, and solves the energy management strategy for the dual power sources utilizing the Radau pseudospectral method (RPM). The global interpolation polynomial is used to approximate the state variables and control variables in the system. The derivative of the interpolation polynomial approximates the differential equation of the state variables in the dynamic equation. Further, the optimal control problem (OCP) is transformed into nonlinear problem (NLP) to be solved. The simulation result of the proposed strategy show that the capacity degradation of the fuel cell can be reduced while meeting the power output demand, which means the lifetime of the fuel cell could be
Liang, JianshengLi, ZhenyeLiu, Yanwei
The article considers the actual problem of vehicles fuel efficiency and environmental friendliness increasing. This problem is solved by developing of a new type of hybrid power unit. A feature of this development is that such a hybrid power unit can be implemented in the budget segment of cars. As a result of the study, conceptual solutions for creating a hybrid power unit were developed. The concept is based on the following theoretical provisions. The most economical speed of the hybrid vehicle in the "only electricity" mode lies in the range from 0 m / s to 16 m / s. The further set of speed and movement is advisable to carry out on an internal combustion engine. Mileage in the "only electricity" mode can be in the range from 20 km to 50 km, depending on the energy consumption of the battery. This distance can be chosen by the buyer of the hybrid vehicle depending on the estimated average daily mileage and the cost of the batteries. Traction batteries are charged in three cases
Smirnov, OlehBorysenko, AnnaMarchenko, AntonGritsuk, IgorLitikova, OleksandraParsadanov, IgorKalinin, EvgeniyAhieiev, MaksymVolodarets, MykytaSamarin, OleksandrVrublevskyi, RomanKhudiakov, Igor
In this contribution, the mechanical torque transmission between the Electric Motor (EM) and the Internal Combustion Engine (ICE) of a P0 architecture hybrid power unit is analysed. In particular, the system is made up of a brand new, single-cylinder 480cc engine developed on the basis of the Ducati 959 Panigale V90 2-cylinders engine. The thermal engine is assisted by a custom electric motor (30 kW), powered by a Li-Ion battery pack. The Ducati 959 Panigale engine is chosen because of its high power-to-weight ratio, and for taking advantage of its V90 2-cylinders layout. In fact, the proposed hybridization process considers to remove the vertical engine head and to replace it by the electric motor directly engaged to the crankshaft using the original valvetrain transmission chain, thus achieving a very compact package. This solution could be suitable for many V-type engines and it aims to obtain a small hybrid power unit for possible motorcycle/small vehicle applications. The original
Mangeruga, ValerioGiacopini, MatteoBarbieri, SaverioRusso, Michele
With the growing shortage of oil resources and the increasingly strict environmental regulations, countries are vigorously developing new energy vehicles, and as a truly zero-emission vehicle in the application, fuel cell electric vehicles can not only completely replace gasoline cars in term of fuel, but also have the advantages of high energy conversion efficiency, short hydrogenation time and long driving range. For Fuel Cell Hybrid Electric Vehicle (FCEV), and the Energy Management Control Strategy is the "core" of the whole vehicle control system, which has a direct and significant effect on the power and economy of the vehicle. In this paper, the "dual energy source system" composed of fuel cell and power battery is taken as the research object. Based on the proposed power system structure, a fuel cell hybrid power management control strategy is designed, and the simulation model based on Matlab/Simulink and real vehicle are adopted to perform performance verification on standard
Zhao, YongqiangSong, HaoyuanLiu, YuanzhiYu, Zhao
Due to current progresses in the field of driver assistance systems and the continuously growing electrification of vehicle drive trains, the evaluation of driver behavior has become an important part in the development process of modern cars. Findings from driver analyses are used for the creation of individual profiles, which can be permanently adapted due to ongoing data processing. A benefit of data-based dynamic control systems lies in the possibility to individually configure the vehicle behavior for a specific driver, which can contribute to increasing customer acceptance and satisfaction. In this way, an optimization of the control behavior between driver and vehicle and the resulting mutual system learning and -adjustment hold great potential for improvements in driving behavior, safety and energy consumption. The submitted paper deals with the analysis of different methods and measurement systems for the identification and classification of driver profiles as well as with
Domijanic, MarkoHirz, MarioPucher, Gregor
Global warming has put the transport sector, a major contributor of CO2 emissions, under high pressure to improve efficiency. In this context, ultra-light vehicles weighting less than 500 kg, as well as hybrid powertrains, are nowadays seen as promising development trends. The design process of the powertrain of a vehicle combining the advantages of the two concepts is presented in this paper. Through a performance study based on a simple MATLAB model, and mathematical simulation, a proposal is made. A powertrain using a battery and supercapacitor 48V dual power source network, two electric motors and clutches to switch between conventional, parallel, series and full electric modes proves to be an interesting system in terms of performance and costs. A simulation study conducted on a scenario with different outcome possibilities showed that high modularity of the system allows to achieve fuel efficiencies equivalent to approximately 3 l/100 km on the Artemis cycle. Finally, integration
El Ganaoui-Mourlan, OuafaeMiliani, El HadjCarlos Da Silva, DanielCouillandeau, MatthieuGonod, CharlieMiller, Guillaume
Technological and commercial development of vehicles specifically conceived for urban use would certainly be a crucial aspect in making mobility sustainable in urban contexts thanks to their limited in size and low fuel consumption and emissions. Hybrid drive trains are particularly suited to this purpose: if properly designed, very small-sized thermal engines can give all the energy and power required for the application, also making pure electric driving possible when required. The authors are involved since a decade in proposing new low-cost solutions to address this market sector. Market itself explored these possibilities and nowadays offers some BEV solutions in this market share, but it is still lacking in proposing solutions for a parallel full hybrid drive. The main reason must be searched in the complexity of normally applied parallel-hybrid propulsion systems which is not compatible with the limited costs of the application. Taking the lead from these considerations, the
Villante, CarloAnatone, MicheleDe Vita, AngeloOrtenzi, FernandoUrsitti, Erminio Maria
This paper presents the development of a parallel hybrid power unit for Formula SAE application. In particular, the system is made up of a brand new, single-cylinder 480 cc internal combustion engine developed on the basis of the Ducati “959 Superquadro” V90 2-cylinders engine. The thermal engine is assisted by a custom electric motor (30 kW), powered by a Li-Ion battery pack. The performance of the ICE has been optimized through CFD-1D simulation (a review of this activity is reported in a parallel paper). The main design goal is to get the maximum amount of mechanical energy from the fuel, considering the car typical usage: racing on a windy track. The Ducati “959 Superquadro” engine is chosen because of its high power-to-weight ratio, as well as for its V90 2-cylinder layout. In fact, the vertical engine head is removed and it is subsequently replaced by the electric motor directly engaged to the crankshaft using the original valvetrain transmission chain, thus achieving a very
Mangeruga, ValerioGiacopini, MatteoBarbieri, Saverio GiulioBerni, FabioMattarelli, EnricoRinaldini, Carlo
The paper reviews the CFD optimization of a motorcycle engine, modified for the development of a hybrid powertrain of a Formula SAE car. In a parallel paper, the choice of the donor engine (Ducati 959 Panigale: 2-cylinder, V90, 955 cc, peak power 150 HP at 10500 rpm, peak torque 102 Nm at 9000 rpm) is thoroughly discussed, along with all the hardware modifications oriented to minimize the new powertrain dimensions, weight and cost, and guarantee full reliability in racing conditions. In the current paper, the attention is focused on two main topics: 1) CFD-1D tuning of the modified Internal Combustion Engine (ICE), in order to comply with the Formula SAE regulations, as well as to maximize the power output; 2) simulation of the vehicle in racing conditions, comparison with a conventional combustion car and a full electric vehicle. The stock engine has been strongly modified, since the head of the vertical cylinder has been replaced by the electric motor, and the intake system of the
Mattarelli, EnricoRinaldini, Carlo AlbertoScrignoli, FrancescoMangeruga, Valerio
An “APU” (Auxiliary Power Unit) is a small gas turbine engine to provide supplementary power to an aircraft and is located at the tails of larger jets. APU generators provide auxiliary electrical power for running aircraft systems on the ground. Applications include powering environmental systems for pre-cooling or preheating the cabin, and providing power for crew functions such as preflight, cabin cleanup, and galley (kitchen) operation and long-haul airliners must be started using pneumatic power of APU compressor. The Honeywell 131-9A gas turbine APU has 440 kW shaft power and 90 kW electric generator consuming 120 kg fuel/hour. Hybrid power systems based on fuel cells are promising technology for the forthcoming power generation market. A solid oxide fuel cell (SOFC) is the perfect candidate for utilizing waste heat recovery. This case deals with waste heat recovery from fuel cell exhaust using Brayton cycle as bottoming cycle for additional power production. Here in this paper
Singh, Anand ShankarChoudhary, TusharS, Sanjay
Traditionally, internal combustion engines follow thermodynamic cycles comprising a fixed number of crank revolutions, in order to accommodate compression of the incoming air as well as expansion of the combustion products. With the advent of computer-controlled valve trains, we now have the possibility of detaching compression from expansion events, thus achieving an “adaptive cycle” molded to the performance required of the engine at any given time. The adaptive cycle engine differs from split-cycle engines in that all phases of the cycle take place within the same cylinder, so that in an extreme case the gas contained in all cylinders can be undergoing expansion events, resulting in a large increase in power density over the conventional four-stroke and two-stroke cycles. Key to the adaptive cycle is the addition of a variable-timing “transfer” valve to each cylinder, plus a space for air storage between compression and expansion events. If the air-storing space has sufficient
Ruiz, Francisco
Items per page:
1 – 50 of 169