Browse Topic: Energy management
This study introduces a computational approach to evaluate potential noise issues arising from liftgate gaps and their contribution to cabin noise early in the design process. This computational approach uses an extensively-validated Lattice Boltzmann method (LBM) based computational fluid dynamics (CFD) solver to predict the transient flow field and exterior noise sources. Transmission of these noise sources through glass panels and seals were done by a well-validated statistical energy analysis (SEA) solver. Various sealing strategies were investigated to reduce interior noise levels attributed to these gaps, aiming to enhance wind noise performance. The findings emphasize the importance of integrating computational tools in the early design stages to mitigate wind noise issues and optimize sealing strategies effectively.
Artificial intelligence (AI) systems promise transformative advancements, yet their growth has been limited by energy inefficiencies and bottlenecks in data transfer. Researchers at Columbia Engineering have unveiled a groundbreaking solution: a 3D photonic-electronic platform that achieves unprecedented energy efficiency and bandwidth density, paving the way for next-generation AI hardware.
Technological advances have led to the widespread use of electric devices and vehicles. These innovations are not only convenient but also environmentally friendly, offering an alternative to polluting fuel-driven machines. Lithium-ion batteries (LIBs) are widely used in electrical appliances and vehicles. Commercial LIBs comprise an organic electrolyte solution, which is considered indispensable to make them energy efficient. However, ensuring safety becomes a concern and may be difficult to achieve with the rising market demand.
E-mobility is revolutionizing the automotive industry by improving energy-efficiency, lowering CO2 and non-exhaust emissions, innovating driving and propulsion technologies, redefining the hardware-software-ratio in the vehicle development, facilitating new business models, and transforming the market circumstances for electric vehicles (EVs) in passenger mobility and freight transportation. Ongoing R&D action is leading to an uptake of affordable and more energy-efficient EVs for the public at large through the development of innovative and user-centric solutions, optimized system concepts and components sizing, and increased passenger safety. Moreover, technological EV optimizations and investigations on thermal and energy management systems as well as the modularization of multiple EV functionalities result in driving range maximization, driving comfort improvement, and greater user-centricity. This paper presents the latest advancements of multiple EU-funded research projects under
In traffic scenarios, the spacing between vehicles plays a key role, as the actions of one vehicle can significantly impact others, particularly with regards to energy conservation. Accordingly, modern vehicles are equipped with inter-vehicle communication systems to maintain specific distances between vehicles. The aerodynamic forces experienced by both leading vehicles (leaders) and following vehicles (followers) are connected to the flow patterns in the wake region of the leaders. Therefore, improving our understanding of the turbulent characteristics associated with vehicles platooning is important. This paper investigates the effects of inter-vehicle distances on the flow structure of two vehicles: a small SUV as the leader and a larger light commercial van as the follower, using a Delayed Detached Eddy Simulation (DDES) CFD technique. The study focuses on three specific inter-vehicle distances: S = 0.28 L, 0.4L, and 0.5L, where S represents the spacing between the two vehicles
Items per page:
50
1 – 50 of 2971