Browse Topic: Energy management
As automotive technology advances, the need for comprehensive environmental awareness becomes increasingly critical for vehicle safety and efficiency. This study introduces a novel integrated wind, weather, and motion sensor designed for moving objects, with a focus on automotive applications. The sensorās potential to enhance vehicle performance by providing real-time data on local atmospheric conditions is investigated. The research employs a combination of sensor design, vehicle integration, and field-testing methodologies. Findings prove the sensorās capability to accurately capture dynamic environmental parameters, including wind speed and direction, temperature, and humidity. The integration of this sensor system shows promise in improving vehicle stability, optimizing fuel efficiency through adaptive aerodynamics, and enhancing the performance of autonomous driving systems. Furthermore, the study explores the potential of this technology in contributing to connected vehicle
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
The focus on thermal system efficiency has increased with the introduction of electric vehicles (EV) where the heating and cooling of the cabin represents a major energy requirement that has a direct impact on vehicle range in hot and cold ambient conditions. This is further exacerbated during heating where EVs do not have an engine to provide a source of heat and instead use stored electrical energy from the battery to heat the vehicle. This paper considers two approaches to reduce the energy required by the climate control and hence increase the range of the vehicle. The first approach considers minimizing the energy to keep the passengers comfortable, whilst the second approach optimizes the heating and ventilation system to minimize the energy required to achieve the target setpoints. Finally, these two approaches are combined to minimize both the passengerās demand and the energy required to meet the demand. This paper covers the development process from simulation to
Charging a battery electric vehicle at extreme temperatures can lead to battery deterioration without proper thermal management. To avoid battery degradation, charging current is generally limited at extreme hot and cold battery temperatures. Splitting the wall power between charging and the thermal management system with the aim of minimizing charging time is a challenging problem especially with the strong thermal coupling with the charging current. Existing research focus on formulating the battery thermal management control problem as a minimum charging time optimal control problem. Such control strategy force the driver to charge with minimum time and higher charging cost irrespective of their driving schedule. This paper presents a driver-centric DCFC control framework by formulating the power split between thermal management and charging as an optimal control problem with the goal of improving the wall-to-vehicle energy efficiency. Proposed energy-efficient charging strategy
E-mobility is revolutionizing the automotive industry by improving energy-efficiency, lowering CO2 and non-exhaust emissions, innovating driving and propulsion technologies, redefining the hardware-software-ratio in the vehicle development, facilitating new business models, and transforming the market circumstances for electric vehicles (EVs) in passenger mobility and freight transportation. Ongoing R&D action is leading to an uptake of affordable and more energy-efficient EVs for the public at large through the development of innovative and user-centric solutions, optimized system concepts and components sizing, and increased passenger safety. Moreover, technological EV optimizations and investigations on thermal and energy management systems as well as the modularization of multiple EV functionalities result in driving range maximization, driving comfort improvement, and greater user-centricity. This paper presents the latest advancements of multiple EU-funded research projects under
Items per page:
50
1 ā 50 of 2933