Browse Topic: On-board energy sources
This research investigates the impact of combustion duration on combustion characteristics, emissions, and residual gas in a propane-fueled spark ignition engine under varying engine speeds. Using a two-cylinder V-twin engine and AVL-Boost simulation, experiments were conducted at speeds ranging from 3000 to 8000 rpm with combustion durations between 40° and 80° crank angle. The study integrates simulation and experimental methods to address challenges in measuring residual gas and effective release energy (ERE) under different conditions. Results show that longer combustion durations generally lead to increased residual gas and BSFC, while also influencing peak fire temperature, effective release energy, and emission characteristics. At 3000 rpm, optimal conditions were observed with a peak BMEP of 11.11 bar, torque of 25.01 Nm, power output of 14.87 kW, and a minimum BSFC of 311.43 g/kWh. Longer combustion durations elevated the residual gas, reaching up to 0.946 at 8000 rpm, and
This SAE Aerospace Information Report (AIR) discusses the sources of copper in aviation jet fuels, the impact of copper on thermal stability of jet fuels and the resultant impact on aircraft turbine engine performance, and potential methods for measurement of copper contamination and reduction of the catalytic activity of copper contamination in jet fuels. This document is an information report and does not provide recommendations or stipulate limits for copper concentrations in jet fuels.
This study introduces a computational approach to evaluate potential noise issues arising from liftgate gaps and their contribution to cabin noise early in the design process. This computational approach uses an extensively-validated Lattice Boltzmann method (LBM) based computational fluid dynamics (CFD) solver to predict the transient flow field and exterior noise sources. Transmission of these noise sources through glass panels and seals were done by a well-validated statistical energy analysis (SEA) solver. Various sealing strategies were investigated to reduce interior noise levels attributed to these gaps, aiming to enhance wind noise performance. The findings emphasize the importance of integrating computational tools in the early design stages to mitigate wind noise issues and optimize sealing strategies effectively.
The rapid adoption of electric vehicles (EVs) necessitates updates to the automotive testing standards, particularly for noise emission. This paper examines the vehicle-level noise emission testing of a Nikola Class 8 hydrogen fuel cell electric semi-truck and the component-level noise emission testing needed to create a predictive simulation model using Wave6 software. The physical, component-level noise emission testing focused on individual cooling fans in a semi-anechoic chamber to assess their isolated noise contributions. With this data, an initial model was developed using spatial gradient statistical energy analysis, which successfully predicted pass-by noise levels based on varying fan locations and speeds. Real-world pass-by testing confirmed the model's accuracy across different cooling fan speeds. By leveraging advanced simulation techniques, engineers aim to enhance the accuracy and reliability of pass-by noise predictions through cost-effective studies of architectural
Compressed Natural Gas (CNG) engines are emerging as a viable alternative to gasoline and diesel in heavy commercial and passenger transport worldwide. They offer reduced CO₂ emissions and support energy independence in regions rich in natural gas. In India, enhanced CNG infrastructure and strict emission regulations have driven OEMs to develop CNG vehicles across all segments. Moreover, from a noise and vibration standpoint, CNG vehicles are expected to deliver cabin refinement comparable to that of their fossil fuel counterparts. However, one of the major challenges associated with CNG vehicles is the excitation due to additional components like CNG Pressure Regulator, Injector et al. The operational metallic/pulsation noises are generally higher as compared to liquid fuels like gasoline due to dry nature of the CNG fuel. This paper describes in detail the pulsation noise phenomena encountered during one of the late-stage vehicle development projects. An experimental root cause
Items per page:
50
1 – 50 of 27208