Browse Topic: On-board energy sources

Items (27,541)
The automotive regulatory landscape in India is evolving rapidly, driven by a dynamic policy intervention by GOI, striking push for sustainable mobility, safety, technological advancements, dEnvironmentally soundeeper localization, energy self-reliance, product quality control and simplified registration process. Key regulations cover areas like vehicle safety norms, emission norms, fuel economy norms, BIS QCO, the promotion of EVs and alternative fuel vehicles, R & D roadmaps, ELVs, incentive policies and vehicle registration reforms. India has been keeping a close eye on the automotive regulatory progress in the Europe as well as other developed countries as a cornerstone for technical harmonization, cross learning, gauge benefits and economic implications. India is progressively aligning its automotive regulations with global standards, particularly with UN Regulations and GTRs, while also considering unique Indian driving and environmental conditions. This alignment is crucial for
Patil, Dharmarayagouda
Identification of renewable and sustainable energy solutions remains a key focus area for the engine designers of the modern world. An avenue of research and development is being vastly dedicated to propelling engines using alternate fuels. The chemistry of these alternate fuels is in general much simpler than fossil fuels, like diesel and gasoline. One such promising and easily available alternate fuel is compressed natural gas (CNG). In this work, a 3-cylinder, 3-liter naturally aspirated air-cooled diesel engine from the off-highway tractor application is converted into a CNG Diesel Dual fuel (CNG-DDF) engine. Part throttle performance test shows the higher NMHC and CO emissions in CNG-DDF mode which have been controlled by an oxidation catalyst in C1 8-mode emission test. A comparative performance shows that the thermal efficiency is up to 2% lower with CNG-DDF with respect to diesel. However, it has shown the benefit of 44% in Particulate Matter, while retaining the same NOx
Choudhary, VasuMukherjee, NaliniKumar, SanjeevTripathi, AyushNene, Devendra
The CPCB-IV+ emission compliance for genset application is applicable with effect from 1st July 2023 as per as per GSR 804(E). The CPCB-II to CPCB-IV+ changeover in very stringent in emission front by almost 90 % emission reduction. It’s a significant advancement in environmentally sustainable powertrain technology. To meet the CPCB-IV+ Emission, combustion development & ATS technology plays an important role. First is the base engine need to optimize enough with combustion & associated parts. Second is the after treatment system which will carry the battle further to the engine emission with minimum margin of 10 % engineering target. This paper present the systematic approach followed to meet CPCB-IV+ emission norms for upgradation of 21 litre TCIC engine for the power range (56 < P ≤ 560). Here the challenge to avoid major changes in the existing CPCB-II FIE recipe & meet the CPCB-IV+ emission with ECU calibration & ATS system calibration with its potential. Here interesting parts
Rane, VikasJagtap, ShaileshGothekar, SanjeevPawar, Narendra VKhedkar, PrasadKagade, SamadhanKendre, MahadevG Bhat, PrasannaThipse, S
The maximum power is recorded with Gasoline than CNG and Hydrogen fuel. The maximum exergy and energy efficiency is with Hydrogen, followed by CNG and then Gasoline. Hydrogen fuel has a maximum potential to convert into energy. The maximum energy destruction of 48.7kW for gasoline fuel at 3000 rpm and followed by CNG and hydrogen. The maximum entropy generation of 85.5 W/K with Gasoline and 60.72 W/K and 29.39W/K for CNG and hydrogen engine respectively at 10000 rpm. The entropy generation rate increase with engine speed. The highest rate of heat release is from hydrogen fuel, followed by Gasoline and CNG.
Shinde, Apurwa BalasahebKadam, Tusharkarunamurthy, KSHINDE, DR BALU
Hydrogen combustion in internal combustion engines offers numerous advantages, such as zero CO2 emissions and high flame speed, which make it a promising alternative fuel for green vehicle solutions. In order to maximize the engine performance with hydrogen, however, meticulous calibration of the air-fuel mixture must be performed, particularly when lean and stoichiometric combustion conditions are considered. Lean burning, i.e., excess air, offers better thermal efficiency and lower NOx emissions but can cause lower engine power and combustion instability. Stoichiometric combustion, however, ensures complete combustion of the fuel-air mixture, but at the cost of higher combustion temperatures and consequently, high NOx emissions. Calibration strategies for hydrogen engines are presented in this paper by comparing the lean and stoichiometric strategies and their implications on engine power output, efficiency, and emissions. Test data from several hydrogen engine configurations
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
Affordable and clean energy has been one of the major objectives adopted by United Nations under the 2030 Agenda for Sustainable Development. In this direction, fuel cell electric vehicles have gained popularity in recent times due their efficiency and environmental friendliness. Fundamentally, it uses compressed hydrogen from the vehicle-mounted tank and combines with ambient air to generate DC electricity. Water is created as a by-product and expelled through the tailpipe. The technology being integrated on powertrain architecture, along with battery pack can prove to be an efficacious approach for zero emission automotive system. However, hydrogen being the primary fuel, and being stored at high pressure, the system involves handling and potential hazards of hydrogen, and possibility of explosions due to hydrogen leaks. Hence, safety is the key issue in handling fuel cell vehicles. This paper discusses about role of Unified Diagnostic Services (UDS) in providing safety and
PRASAD, Dr. P SHAMBHUJacob, JoeHadke, TanmayWagh, PriyankaAchanur, Mallappa
In order to control the engine performance which is driven by the strict emission regulations and customer request for the improved fuel economy, precise air intake measurement and fuel control system are essential. In the modern engines, the mass air flow sensor (MAF) acts an important role which provides a precise estimation of air flow from the clean side ducting of air intake system to engine control unit module (ECU). The hot wire mass air flow sensor are mounted on the clean side of the air intake system in order to protect the sensing element from the contamination and to extend their lifespan as well as maintain its accuracy. It is essential to maintain a steady and a uniform airflow at the sensing element of the MAF sensor for reliable sensor reading at different engine speeds and varying engine load. However, the physical limitations of engine packaging inside the engine bay, limits the sensor placement. Incorrect sensor mounting can lead to errors in the airflow estimation
Sonone, Sagar DineshZope, MaheshKale, VishalPadmawar, HarshadSridhar, SKolhe, Vivek MPanwar, Anupam
Turbochargers play a crucial role in modern engines by increasing power output and fuel efficiency through intake air compression, thereby improving volumetric efficiency by allowing more air mass into the combustion chamber. However, this process also raises the intake air temperature, which can reduce charge density, lead to detonation, and create emissions challenges—such as smoke limits in diesel engines and knock in gasoline spark-ignited (GSL) engines. To mitigate this, intercoolers are used to cool the compressed air. Due to packaging constraints, intercoolers are typically long and boxy, limiting their effectiveness, especially at low vehicle speeds where ram air flow is minimal. This study investigates the use of auxiliary fans to enhance intercooler performance. Two methodologies were adopted: 1D simulation using GT-Suite and experimental testing on a vehicle under different fan configurations—no fan, single fan, and dual fans (positioned near the intercooler inlet and outlet
Patra, SomnathHibare, NikhilGanesan, ThanigaivelGharte, Jignesh Rajendra
Aluminum alloy wheels have become the preferred choice over steel wheels due to their lightweight nature, enhanced aesthetics, and contribution to improved fuel efficiency. Traditionally, these wheels are manufactured using methods such as Gravity Die Casting (GDC) [1] or Low Pressure Die Casting (LPDC) [2]. As vehicle dynamics engineers continue to increase tire sizes to optimize handling performance, the corresponding increase in wheel rim size and weight poses a challenge for maintaining low unsprung mass, which is critical for ride quality. To address this, weight reduction has become a priority. Flow forming [3,4], an advanced wheel rim production technique, which offers a solution for reducing rim weight. This process employs high-pressure rollers to shape a metal disc into a wheel, specifically deforming the rim section while leaving the spoke and hub regions unaffected. By decreasing rim thickness, flow forming not only enhances strength and durability but also reduces overall
Singh, Ram KrishnanMedaboyina, HarshaVardhanG K, BalajiGopalan, VijaysankarSundaram, RaghupathiPaua, Ketan
Engine braking is a deceleration technique that leverages the internal friction and pumping losses within the engine. By closing the throttle and potentially selecting a lower gear, the engine creates a retarding force that slows the vehicle. This practice contributes to better fuel economy, decreased brake system load, and improved vehicle handling in specific driving scenarios, such as steep declines or slippery road surfaces. To alleviate stress on their primary braking systems and prevent overheating, heavy vehicles frequently incorporate engine-based braking. While older trucks relied on simple exhaust brakes with a butterfly valve to restrict exhaust flow, these had limited impact. Hence contemporary heavy vehicles almost exclusively use more advanced engine braking technologies. Traditionally, our heavy-duty vehicles use Exhaust brake system to elevate the braking performance on hilly terrains. Hence an improved sample of Engine brake was developed for enhanced braking
M, Vipin PrakashRajappan, Dinesh KumarR, SureshN, Gopi Kannan
In the pursuit of environmental sustainability and cleaner transportation, the global automotive industry is expediting transformation. This paper utilized multi-decade data spanning from 1975 to 2024, for the development of predictive models for fuel economy and CO₂ emissions across a wide range of vehicle technologies from 2026 - 2050. This is done with the help of advanced machine learning algorithms like Linear and Random Forest Regression in Python and integrating insights through Power BI visualizations, the project identifies key correlations between vehicle attributes such as weight, powertrain, and footprint and their environmental performance. Results highlight the increasing impact of electric vehicle adoption, hybridization, and light weighting on overall emissions reduction. These insights help forecast the direction of fuel economy standards, emission patterns, and technology shifts across manufacturers and vehicle types. Beyond technical predictions, the study offers a
Hazra, SandipTangadpalliwar, SonaliHazra, Sanjana
Customers in off-highway industry are increasingly seeking high-performance capabilities for their tractors due to increasing penetration of mechanisation and labour scarcity. One effective solution to achieve enhanced performance is turbocharging of engines, while meeting emission and highly dynamic transient response of tractor field applications. The process of selecting and validating a suitable turbocharger for tractor field application suitability is significantly time and resources consuming activity due to extensive testbed and field trials. This study focuses on the selection of turbocharger for tractor engines through analytical calculations to freeze key parameters like lambda, boost pressure ratio & temperature within boundaries of exhaust temperature and turbo efficiency maps to deliver best field transient performance and fuel consumption. The selected parameters are further validated under real-world transient operating conditions, involving tractors and their implements
Kumar, Harish KumarRawat, SaurabhDogra, DaljitSinghSingh, SachleenSingh, Amarinder
This study examines the evolving landscape of India's automotive sector in the context of the global push for net-zero emissions. As the world's third-largest automotive market, India is poised to play a momentous role in this transition. The country's automotive sector is anticipated to experience rapid growth, with its market size projected to inflate from USD 437 billion in 2022 to USD 1.8 trillion by 2030. The study also highlights the importance of diverse mobility solutions, such as electric vehicles, green hydrogen, and alternative fuels like bio-CNG and ethanol, in addressing transportation challenges and reducing greenhouse gas emissions. The Indian government's comprehensive approach to promoting green mobility, while balancing the needs of a large and diverse population of 1.4 billion people, is a key focus of this research. Through a detailed analysis of economic, social, energy, regulatory, and technological factors, this study provides insights into the current dynamics
Seshan, VivekBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut SDe Castro Gomez, Daniel J.
In line with global peers (EU, Japan, etc.), the Automotive Industry Standard (AIS) Committee in India has decided to adopt “World harmonized Light vehicle Test Procedure (WLTP)” for M2 and N1 category vehicles not exceeding 3500 kg and for all M1 category vehicles. As a result, “World harmonized Light-duty vehicles Test Cycle (WLTC)” is set to replace currently applicable “Modified Indian Drive Cycle (MIDC)” in the next couple of years. The draft Corporate Average Fuel Economy (CAFE) III & CAFE IV norms for CO2 emission limits, which are set to be implemented in year 2027 and 2032 respectively refer to a shift to WLTP from MIDC. The latest draft of Central Motor Vehicle Rules (CMVR) for BS-VI emissions is also being revised to use WLTC as test cycle. This migration to WLTC is in sync with the demand for test procedures to replicate real driving conditions more appropriately. Further, the move to WLTC along with stricter emission norms is a major step towards realizing India’s COP26
Pawar, BhushanEhrly, MarkusSandhu, RoubleEmran, AshrafBerry, Sushil
Today, passenger car makers around the world are striving to meet the increasing demand for fuel economy, high performance, and silent engines. Corporate Average Fuel Economy (CAFE) regulations implemented in India to improve the fuel efficiency of a manufacturer's fleet of vehicles. CAFE goal is to reduce fuel consumption and, by extension, the emissions that contribute to climate change. CNG (Compressed Natural Gas) engines offer several advantages that help manufacturers meet and exceed these standards. The demand for CNG vehicles has surged exponentially in recent years, CNG engine better Fuel efficiency and advantage in CAFÉ norms make good case for OEM & Customer to use more CNG vehicle. CNG is dry fuel compared to gasoline. These dry fuels lack lubricating properties, unlike conventional fuels like petrol, diesel and biofuels, which are wet and liquid. Consequently, the operations and failures associated with these fuels differ. The materials and designs of engine parts, such as
Poonia, SanjayKumar, ChandanSharma, ShailenderKhan, PrasenjitBhat, AnoopP, PrasathNeb, Ashish
The pressing global need for de-fossilization of the transport sector, especially within the heavy-duty segment, has intensified the exploration of alternative clean fuels. In this context, methanol gained traction due to their renewable production pathways, carbon-neutrality, and are being highly promoted by the Indian government to reduce CO2 emissions. Dual direct injection compression ignition (DDICI) is an effective combustion strategy to use methanol in heavy-duty engines, which combines the advantage of high-efficiency compression ignition with the clean-burning potential of methanol. In contrast to spark-ignited premixed methanol engines, this strategy involves a diffusion combustion of the methanol flame, thereby eliminating knocking and enabling running with high compression ratios. This experimental and numerical study presents a comprehensive investigation into the DDICI strategy using methanol as primary fuel and diesel as a pilot for ignition assistance. The work
Singh, InderpalDhongde, AvnishRaut PhD, AnkitGüdden, ArneEmran, AshrafBerry, Sushil
The Government of India has mandated biofuel blending in automotive fuels to reduce crude oil imports and support the national economy. As part of this initiative, Oil Marketing Companies (OMCs) have begun nationwide blending of E20 fuel (20% ethanol in petrol). Ethanol supply is expected to exceed demand by the end of 2025 due to initiatives like the Pradhan Mantri JI-VAN Yojana. Alternative applications for ethanol are being explored; one promising approach is its use as a co-blend with diesel fuel (ED blends). However, ethanol’s low cetane number and poor lubricity pose challenges for direct use in diesel engines without modifications. ED blends demonstrated reduced emissions while maintaining performance comparable to conventional diesel. To further address concerns related to materials compatibility of ED blends with fuel system components, particularly plastomers that may impact engine durability, a detailed study was conducted using elastomers such as FVMQ, FKM, HNBR, and NBR in
Johnpeter, Justin PChakrahari, KiranChakradhar, MayaArora, AjayPrakash, ShantiPokhriyal, Naveen Kumar
As conventional fossil fuels are on the verge of depletion, the demand of alternative fuel has intensified. Among these, Hydrogen offers higher energy output per unit weight compared to conventional fuels, high octane number, and compatibility with Internal combustion engines (ICE). However, the volatility of hydrogen (H2) presents challenges, particularly during the refueling process, where uncontrolled temperature rise occurs because of negative Joule-Thomson (JT) effect. This brings an alarming bell for the safety of fueling stations, vehicles, and mankind. This paper investigates the physics involved in hydrogen tank filling, focusing on maintaining the hydrogen gas temperature below 85 °C during the process. A 3D Computational Fluid Dynamics (CFD) analysis was performed to model the temperature and pressure behavior of hydrogen during filling. The study provides insights into the optimal fill rates, temperature distribution, and the evolution of peak temperature locations inside
Khanna, GouravVeerbhadra, SwatiSahu, Abhay Kumar
Noise quality at idle condition is an important factor which influences customer comfort. Modern diesel engines with stringent emission norms together with fuel economy requirements pose challenges to noise control. Common rail engine technology has advantage of precise fuel delivery and combustion control which needs optimization to achieve the conflicting requirements of noise, emission and fuel efficiency. Engine noise at low idle condition is dominated by combustion noise which depends on rate of pressure rise inside the cylinder during combustion. The important parameters which influence cylinder pressure rise are fuel injection timing, pilot injection quantity and its separation, rail pressure and EGR valve position. The study on effect of these parameters at varying levels demand large no of experiments. Taguchi design of experiments is a statistical technique which can be used to optimize these parameters by significantly reducing no of experiments needed to achieve the desired
P, PriyadarshanChavan, AmitA, KannanswamyPatil, SandeepChaudhari, Vishal V
The transportation and mobility sector are undergoing a profound transformation, with a growing emphasis on sustainability and minimizing the environmental impact of transportation. Among the most significant trends is the transition to electric vehicles (EVs) in the form of Battery and Fuel cell, which produce zero emissions without any harmful gases release in nature. This review highlights several infrastructure-related issues and critical factors that could drive India's transportation sector toward adopting electric vehicles. It also delves into the fundamental understanding of e-mobility, shedding light on the daily challenges and barriers it faces. Furthermore, the study explores research aspects, including the strategies, methods, and tools used for electric vehicles to complete the research on Battery electric vehicles (BEV) and also comparative analysis with Fuel cell vehicles (FCVs). The shift BEVs has been driven by decreasing battery costs and advancements in charging
Kumar, Dr. Vijay Bhooshan
The stringent emission norms over the past few years have driven the need to use low-carbon fuels and after treatment technology. Natural gas is a suitable alternative to diesel heavy-duty engines for power generation and transportation sectors. Stoichiometric combustion offers the advantages of complete combustion and low carbon dioxide emissions. Turbocharging and cooled exhaust gas recirculation (EGR) technology enhances the power density along with reduced exhaust emissions. However, there are several constraints in the operation of natural gas spark ignition engine such as exhaust gas temperature limit of 780 °C, sufficient before turbine pressure for EGR drivability, boost pressure, peak cylinder pressure limit and knocking. These limits coulld restrict the engine BMEP (brake mean effective pressure). In the present study, tests were conducted on a V12, 24 liters, heavy duty natural gas fuelled spark ignition engine (600 HP) with different EGR and turbocharger configurations to
Khaladkar, OmkarMarwaha, Akshey
The purpose of this research is to examine the fundamental principles of a circular economy (CE) in relation to the automotive industry in India, which plays a vital role in the country's economy. As a result, energy consumption and environmental impacts also pose significant challenges. CE provide a transformative approach through the life cycle of a vehicle, guiding the automotive industry toward a more sustainable transportation system. In order to decarbonize this industry, the global automotive commission recommends that recycled plastic content in vehicles be increased to 20-25% by 2030. This target necessitates the recovery of plastics from end-of-life vehicles, though these materials are rarely integrated into compounds today. The automotive industry's reliance on plastics has grown substantially due to their lightweight properties, which enhance fuel efficiency, reduce CO₂ emissions, and improve versatility and mechanical performance. polypropylene polymer and several other
Kumar, Vijay Bhooshan
This paper presents the methodology and outcomes of modifying a 1.2L naturally aspirated (NA) engine to enable flex-fuel compatibility, targeting optimal performance with ethanol blends ranging from E20 to E100. Ethanol is being increasingly promoted due to its potential to reduce greenhouse gas emissions and to provide an additional source of income for farmers. As per the road map for Ethanol blending released by Govt. of India, there has been continuous increase in blending of ethanol in gasoline. An initial target of 20% ethanol blending in gasoline by April 2025 has already been achieved. This work is in alignment with the broader push for development of flex-fuel vehicles, which necessitates engine adaptations capable of operating on varying ethanol blends. The primary objective was to upgrade the engine, which can give optimum performance with both lower range of ethanol blends starting from E20 as per IS 17021:2018 standard till higher blends of up to E100 as per IS 17821:2022
Tyagarajan, SethuramalingamPise, ChetanKavekar, PratapAgarwal, Nishant Kumar
Compressed Natural Gas (CNG) offers a compelling alternative fuel solution due to its lower carbon emissions and cost-effectiveness compared to conventional gasoline. However, the dry combustion characteristics of CNG, coupled with higher combustion temperatures, often accelerate Exhaust valve face and Exhaust seat insert wear in internal combustion engines. Intake valve face and Intake seat insert are exposed to fresh air charge and temperature during engine operation remain with in limit and no issue reported in Intake valve side. This study addresses the critical challenge of premature exhaust valve wear in CNG applications by investigating the root cause and implementing improvements in the exhaust valve facing material, aiming to enhance durability and reliability for widespread CNG vehicle adoption. Exhaust valve face in CNG engine subjected to extreme condition leads to excessive valve face wear and cracking. To address these challenges, various technologies like hard material
Poonia, SanjayKumar, ChandanKundu, SoumenKumar, PrabhakarVats, RajeshKhan, PrasenjitSharma, Shailender
Hydrogen Fuel Cell Electric Vehicles (FCEVs) are emerging as a sustainable solution to reduce greenhouse gas emissions in the transportation sector, in line with the Paris Agreement and global net-zero emission goals. This paper presents a comprehensive performance analysis of the FCEV powertrain under intercity and intra-city driving conditions. The study focuses on key parameters such as fuel cell system efficiency, energy consumption, hydrogen usage, and overall drivetrain response. Using simulation models validated with real-world driving data, the performance of the powertrain is evaluated across varying speed profiles, vehicle loads, and driving cycles. The analysis also considers the impact of auxiliary load including HVAC systems and consumption of other electric components on the powertrain efficiency and energy balance. Results highlight that the FCEV powertrain performs efficiently during intercity driving due to stable speed conditions and low stop-start frequency, while
Patil, Nikhil N.Bhardwaj, RohitSaurabh, SaurabhAhmed, YasirGawhade, RavikantAmancharla, Naga ChaithanyaGadve, Dhananjay
This project introduced a brand-new tire size 245/90R16 for the first time globally in the 16-inch tube-type category, designed specifically for commercial vehicles with Vehicles 8.5T -12T gross vehicle weight (GVW). The main goal was to create a compact vehicle that can carry more payload, reduce overall weight, and improve fuel efficiency with use of rear single tyre instead of twin tyre in 8.5T. This helps customers lower their operating costs and improve vehicle performance, especially on narrow roads. The new tire supports high load capacities: up to 2300 kg for single tire use and 2180 kg for dual tire fitment. It enables a new type of vehicle to be developed an 8.5-ton GVW vehicle with rear single tires offering better payload capacity without increasing the size of the vehicle. By using this new tire, the kerb weight of the vehicle is reduced, which increases the payload and helps improve fuel economy. This helps lower the cost of the vehicle by optimizing surrounding
Pawar, Dhondiram DnyandeoShaikh, MatinAmbekar, Prasad
Modern automotive powertrains are increasingly adopting engine downsizing and down speeding to meet stringent emission regulations and improving fuel efficiency However, these changes result in higher torsional vibrations excitation amplitudes and NVH (Noise, Vibration, and Harshness) refinement more challenging. With growing customer expectations for premium driving experiences conventional clutch is no longer sufficient. To meet the NVH performance targets of the vehicle Dual Mass Flywheels (DMFs) are used In DMF due to lower stiffness and inertia separation there is a greater advantage on torsional filtration in normal drive and idle condition. But the torsional resonance frequency of the connected DMF is lower than the idle RPM. Engine startup is a key drawback with DMF equipped vehicles. The proper tuning of starter motor performance & DMF stiffness is required to cross the resonance zone faster otherwise it will lead to DMF to stay in the resonance zone for a longer time leading
Jayachandran, Suresh KumarVijayaragavan, ThirupathiM, DevamanalanKanagaraj, PothirajAhire, ManojVellandi, Vikraman
The transition toward zero-carbon propulsion technologies has highlighted the urgent need for specialized test infrastructure to support hydrogen and alternative fuel research. This paper presents the conceptualization, design, and operation of a High-Pressure Direct Injection (HPDI) Hydrogen Internal Combustion Engine (H2 ICE) test facility with integrated ammonia fuel testing capability, marking a significant advancement in India’s sustainable automotive research efforts. Drawing from practical experience, it outlines crucial technical specifications, safety protocols, and best practices for establishing robust, adaptable, and secure testing environments. Addressing the industry’s need for dedicated infrastructure, it is engineered for adaptability across various engine types including heavy-duty, light-duty, and multi-utility vehicles while aligning with global technical standards. Key technical considerations include a transient dynamometer with an advanced automation system for
Dhyani, VipinKurien, CaneonSubramanian, BalajiKhandai, ChinmayanandaMuralidharan, M
The globe is looking headlong to set up new benchmarks for the reduction of GHG (Green House Gases) considering short-term and long-term strategies. Efforts in the Internal Combustion Engines (ICE) domain have been accelerating to find an alternative way to reduce harmful emissions. Hydrogen is considered as a promising fuel to leapfrog this transition. Hydrogen fuel can be categorized into vast mobility areas viz. ICE and Fuel Cell Electric Vehicle (FCEV). Hydrogen fuel has attracted global attention from engine researchers due to the crude oil crisis and its rise in prices in recent years. This will serve the nation's goal towards carbon neutrality. Hydrogen has a few advantages such as less fueling time, higher heating value and more efficiency making it an eye-touching fuel for the automotive industry. In the contemporary FCEV segment, many fuel cell technologies have evolved, wherein the development of Proton Exchange Membrane (PEM) fuel cell technology has taken a new height for
Joshi, Ashish RajendraKandalgaonkar, SiddheshSontakke, Rushikesh
Hydrogen recirculation is a primary requirement for improving fuel efficiency and anode stability in Proton Exchange Membrane Fuel Cell (PEMFC) systems, particularly in automotive applications. Effective hydrogen recirculation is critical for maintaining high efficiency and fuel utilization. A hydrogen recirculation ejector equipped with a regulated pressure inlet, which eliminating the need for mechanical pumps while maintaining optimal hydrogen utilization. The passive operation of the ejector eliminating the need for rotary components which significantly improves system reliability and reduces failure modes associated with moving parts. This work presents a numerical investigation of a hydrogen recirculation ejector featuring a regulated pressure inlet, with the objective of extending its operating range across varying fuel cell power levels. A combination of 1D system-level modelling and 2D multi-species Computational Fluid Dynamics (CFD) simulations was employed to evaluate
Khot, Ranjit UttreshwarT P, MuhammadChougule, AbhijeetAchanur, Mallappa
Ammonia has emerged as a promising alternative fuel for transportation because of its high energy density (NH3 has more hydrogen than propane in a similar size tank), simple and carbon-free combustion, and potential to produce sustainably. This paper investigates the feasibility of using ammonia as fuel for internal combustion engines (ICE) and fuel cells in automotive applications. In many ways, ammonia captures these benefits by being produced from renewable energies and having the potential to reduce reliance on fossil fuels. There are significant drawbacks of ammonia however, such as its decreased energy content per unit volume, NOx emissions potential, and necessary engine adaptations. This paper discusses the combustion characteristics of ammonia and how it functions in typical ICE's as well as new fuel cell technology, and the necessary infrastructure to produce, store, and distribute ammonia for automotive applications. The study compares operations to conventional fuels
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
There is continuous push from the legislation for stringent fuel economy and emission regulations while the modern customers are demanding more engaging driving experience in terms of performance and refinement. To meet this Tata Motors has developed an advanced 1.2L 3-cylinder turbocharged gasoline direct injection engine. This next-generation powertrain delivers optimum efficiency, reduced emissions, superior performance with refined NVH characteristics. The key features used to enable these demanding requirements includes a 35 MPa fuel injection system, Miller Cycle operation and electrically actuated variable nozzel turbocharger (VNT). A uniquely designed BSVI complaint (WLTP ready) exhaust after-treatment system with Four-Way Conversion Catalyst (FWC+TM) ensures optimum emission control. A centrally mounted variable cam phaser minimizes pumping losses. The lightweight yet rigid all-aluminum engine structure, featuring an integrated structural oil sump, enhances durability and
Hosur, ViswanathaGhadge, Ganesh NarayanJoshi, ManojJadhav, AashishPanwar, Anupam
The increasing adoption of ethanol-blended fuels, such as E20 (20% ethanol and 80% gasoline) and E85 (85% ethanol and 15% gasoline), necessitates a comprehensive understanding of their compatibility with automotive engine components to ensure durability and operational reliability. Fuel compatibility is particularly critical for components in direct contact with ethanol-rich fuels, as improper material selection or insufficient testing can lead to corrosion, material degradation, and compromised engine performance. This study focuses on evaluating the behavior of sintered materials extracted from potential fuel-contact part of automotive engine when exposed to E20 and E85 fuels. Testing was conducted in accordance with the SAE J1747 standard, which provides a systematic approach for assessing corrosion resistance and material degradation in fuel environments. Following the exposure tests, post-test evaluations included visual inspection to identify surface changes and Scanning Electron
Karthikeyan, C.Venugopal, SivakumarGopalan, Vijaysankar
Hydrogenated nitrile butadiene rubbers (HNBR) and their derivatives have gained significant importance in automotive compressed natural gas (CNG) valve applications. In one of the four-wheelers, CNG valve application, HNBR elastomeric diaphragms are being used for their excellent sealing and pressure regulation properties. The HNBR elastomeric diaphragm was developed to sustain CNG higher pressure However, it was found permanently deformed under lower pressures. In this research work, number of experiments was carried out to find out the primary root cause of diaphragm permanent deformation and to prevent the failure for safe usage of the CNG gas. HNBR diaphragm deformation investigation was carried out using advanced qualitative and quantitative analysis methods such as Soxhlet Extraction Column, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Optical Microscopy (OM), Scanning Electron Microscopy (SEM), and Thermogravimetric Analysis (TGA). For
Patil, Bhushan GulabNAIKWADI, AMOLMali, ManojTata, Srikanth
Higher latent heat of vaporization of ethanol deteriorates low ambient temperature starting of engines with ethanol blended fuels. In case of flex fuel vehicles, cold starting becomes very critical on account of higher ethanol content. This case study highlights how pivot table based analytics were effectively employed to enhance engine start strategy during the development of small commercial vehicle running on E20 and E85 fuel blends. The approach showcases how structured data interpretation can significantly support development work in Flex Fuel calibration. The analysis is focused on various critical engine start events such as first crank success, failure to start, battery voltage behavior, and post-start stability across a range of coolant temperatures, particularly below 20°C. Real world test data was categorized using data analysis based on parameters such as crank RPM, battery voltage during cranking, fuel, phase detection status, throttle input, and spark advance, and start
Undre, ShrikantKulkarni, DeepakThonge, RavindraUpadhyay, RajdipKanchan, Shubham
This study presents a comprehensive 1D simulation approach of an automotive solenoid-based diesel fuel injector and a common rail injection system for a marine engine using Simcenter AMESim. The injector model was developed to analyse the injection rate and total injected fuel at various solenoid actuation durations (1.2 ms and 2.0 ms) and common rail pressures. The experimental results from a well-established research study are used for validating the simulation results of the solenoid-based injector. Overall error in total fuel injected ranges from -6.14 percent to 1.93 percent, while timing errors for the start of injection vary from 1.7° crank angle (CA) to 0.08° CA and the end of injection from 2.8° CA to 0.20° CA at 1200 rpm demonstrating strong agreement at higher rail pressures (above 1000 bar) and solenoid actuation times. Building on this validated injector model, a detailed marine common rail system was developed incorporating key hydraulic components: a check valve to
Bhoware, YashPise, UdaySaha, DiptaGaikwad, Nilesh
With the inevitable shift of automotive industry towards E-mobility and mandatory fuel efficiency targets, there is a need to evaluate the energy losses in the vehicle & identify potential areas of improvement. Energy losses are calculated for different components in the corner module system of a passenger car. Contribution of losses (resistances) from respective component are depicted using simple analytical models. Potential energy saving improvements were identified and analyzed basis emerging technologies in respective areas.
Raghatate, Kumar ShreyasVedartham, RaghavendraKhanger, RakeshBisht, Arun
Worldwide, the automotive industry is pivoting towards electrification and zero-emission vehicles (ZEV) to address greenhouse gas emissions and to meet net-zero emission goals. Although pure electric vehicles with rechargeable high-voltage batteries seem to be the most popular choice to achieve climate goals, hydrogen-powered vehicles are also seen by many as a viable technology to clean up the transportation sector. Hydrogen fuel cells and fuel cell-powered vehicles have been in development for a long time, and hydrogen internal combustion engines (ICE) have seen rapid development in the past few years. While the technological feasibility of hydrogen fuel cells and H2 ICE is being proven, the mass adoption of these technologies depends, along with other factors such as hydrogen infrastructure, upon financial feasibility as well. This paper presents a systematic analysis of the total cost of ownership (TCO) of hydrogen-powered vehicles, especially fuel cell electric vehicles. Different
Jacob, JoeChougule, Abhijeet
This paper compares carbon dioxide, carbon monoxide, methane, and oxides of nitrogen emissions from medium and heavy-duty buses using diesel, diesel-hybrid, and CNG powertrains. Comparisons are made using results from chassis dynamometer-based tests with driving cycles intended to simulate a wide range of operating conditions. Tail pipe emissions are measured by diluting the vehicle’s exhaust in a full-scale dilution tunnel by mixing with conditioned air. Samples are drawn through probes of raw exhaust, diluted exhaust and measured using laboratory grade emission analyzers. Fuel consumption of diesel is measured using a weighing scale, while a gas flow meter is used for measuring CNG consumption. Experimental data from 19 buses tested on a chassis dynamometer over the last 8 years has been analyzed and a comparison of results from similar buses with the differently fueled powertrains is presented. Based on these test results, it is shown that replacing diesel engines with CNG engines
Iyer, Suresh
India being highly populated and developing country, the demand for various alternative fuel is increasing drastically. It is driven by the need to reduce dependency on traditional fossil fuels & reduce impact on environmental issues like Greenhouse gas, emissions & pollution. The potential options, CNG (Compressed Natural Gas) & Biodiesel, are becoming increasingly popular and important. Biodiesel, a renewable fuel which is produced from waste materials & crops which grown repeatedly & easily available while CNG is more sustainable than diesel as natural gas is a cleaner-burning fossil fuel in comparison to coal or oil. This paper will focus on comparison between basic properties of Diesel, CNG & Biodiesel. In this study will also focus on survey of various Government initiatives, policies & infrastructural development which are evolving to encourage the usage of CNG & Biodiesel. These fuels are emerging as promising alternative contenders to traditional diesel. It has the potential
Bondada, NanditaBaruah, LabanyaMokhadkar, Rahul
The present work demonstrates a transient Fluid-Structure-Interaction (FSI) based numerical methodology for estimation of aerodynamic-induced flutter of the rear bumper of a Sports Utility Vehicle (SUV). Finite Volume Method (FVM) based High-fidelity transient full vehicle aerodynamic simulations were conducted for the estimation of the transient aerodynamic load. Subsequently, by mapping this transient aero load onto the surface of the rear bumper, Finite Element Method (FEM) based dynamic structural simulations were performed to predict its response. The results obtained through simulations were then compared against experimental wind tunnel test data of a prototype car with modified bumper for the specific test-case. The pressure and the time series data of rear bumper deflection were captured at multiple probe locations from wind tunnel experiments at 140 and 200 kmph. The distribution of pressure on the rear surfaces of the car was well captured by the aerodynamic simulation at
Choudhury, SatyajitYenugu, SrinivasaWalia, RajatZander, DanielGullapalli, AtchyutBalan, ArunAstik, Pritesh
On the way to net zero emissions and to cut the oil import bills, NITI Aayog, Government of India and Ministry of Petroleum & Natural Gas (MoP&NG) has rolled out roadmap for ethanol blending in India during 2020-2025. Also, National Policy on Biofuels – 2018, provides an indicative target of 20% ethanol blending under the Ethanol Blended Petrol (EBP) Programme by 2030. Considering these Government’s initiatives current studies were performed on BSVI compliant gasoline direct injection vehicle on RDE compliant route (Route formulated by Indian Oil R&D Centre) with different ethanol blended gasoline fuel formulations i.e., E0 (Neat Gasoline), E10 (10% Ethanol in gasoline) & E20 (20% Ethanol in gasoline). The study aims to determine the compliance of Conformity Factor (C.F.) for ethanol blended gasoline fuel on Direct Injection gasoline engine. The conformity factors were calculated in each case for CO, NOx & PN using moving window average evaluation method. For reference CO2
Kant, ChanderArora, AjaySaroj, ShyamsherKumar, PrashantSithananthan, MChakradhar, Dr MayaKalita, Mrinmoy
This study investigates the phenomenon of receptacle icing during Compressed Natural Gas (CNG) refueling at filling stations, attributing the issue to excessive moisture content in the gas. The research examines the underlying causes, including the Joule-Thomson effect, filter geometries, and their collective impact on flow interruptions. A comprehensive test methodology is proposed to simulate real-world conditions, evaluating various filter types, seal materials and moisture levels to understand their influence on icing and flow cessation. The findings aim to offer ideas for reducing icing problems. This will improve the reliability and safety of CNG refueling systems.
Virmani, NishantSawant, Shivraj MadhukarC R, Abhijith
In automotive engineering, understanding driving behavior is crucial for decision on specifications of future system designs. This study introduces an innovative approach to modeling driving behavior using Graph Attention Networks (GATs). By leveraging spatial relationships encoded in H3 indices, a graph-based model constructed, which captures dependencies between various vehicle operational parameters and their operational regions using H3 indices. The model utilizes CAN signal features such as speed, fuel efficiency, engine temperature, and categorical identifiers of vehicle type and sub-type. Additionally, regional indices are incorporated to enrich the contextual information. The GAT model processes these heterogeneous features, learning to identify patterns indicative of driving behavior. This approach offers several significant advantages. Firstly, it enhances the accuracy of driving behavior modeling by effectively capturing the complex spatial and operational dependencies
Salunke, Omkar
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
Choudhary, Aditya KantPetale, MahendraDutta, SurabhiBagul, Mithilesh
Items per page:
1 – 50 of 27541