Browse Topic: Energy harvesting
A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt. About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.
As automotive technology advances, the need for comprehensive environmental awareness becomes increasingly critical for vehicle safety and efficiency. This study introduces a novel integrated wind, weather, and motion sensor designed for moving objects, with a focus on automotive applications. The sensor’s potential to enhance vehicle performance by providing real-time data on local atmospheric conditions is investigated. The research employs a combination of sensor design, vehicle integration, and field-testing methodologies. Findings prove the sensor’s capability to accurately capture dynamic environmental parameters, including wind speed and direction, temperature, and humidity. The integration of this sensor system shows promise in improving vehicle stability, optimizing fuel efficiency through adaptive aerodynamics, and enhancing the performance of autonomous driving systems. Furthermore, the study explores the potential of this technology in contributing to connected vehicle
From humble Chevrolet Bolts to six-figure Lucid Airs, every EV can reverse its electric motors to slow the vehicle while harvesting energy for the battery, the efficient tag-team process known as regenerative braking. Today's EVs do this so well that traditional friction brakes, which clamp onto a spinning wheel rotor or drum, can seem an afterthought. Witness Volkswagen's decision to equip its ID.4 with old-fashioned rear drum brakes, with VW claiming drums reduce EV rolling resistance and offer superior performance after long periods of disuse.
Researchers have developed a three-dimensional stretchable piezoelectric energy harvester that can harvest electrical energy using body movements. The device is to be used as a wearable energy harvester as it can be attached to the skin or clothes.
The Korea Research Institute of Standards and Science (KRISS) has developed a metamaterial that traps and amplifies micro-vibrations in small areas. This innovation is expected to increase the power output of energy harvesting, which converts wasted vibration energy into electricity, and accelerate its commercialization.
MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment. Because it requires no battery that must be recharged or replaced, and because it requires no special wiring, such a sensor could be embedded in a hard-to-reach place, like inside the inner workings of a ship’s engine. There, it could automatically gather data on the machine’s power consumption and operations for long periods of time.
A stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices may be possible, according to an international team of researchers, led by Huanyu “Larry” Cheng, the Dorothy Quiggle Career Development Professor in Penn State’s department of engineering science and mechanics. The research team, with members from Penn State and Minjiang University and Nanjing University, both in China, recently published its results in Nano Energy.
Researchers at NASA’s Langley Research Center have designed an electrode-based system for guidance, navigation, and control of aircraft or spacecraft moving at hypersonic speeds in ionizing atmospheres. The system operates based on the principles of magnetohydrodynamics (MHD) and uses energy harvested from the ionized flow occurring during flight at hypersonic speeds to power the electromagnet and generate extremely large Lorentz forces capable of augmenting lift and drag forces to steer and control the craft. The energy harvested can alternatively be stored for later use.
Researchers at the University of Massachusetts Amherst have engineered a biofilm that harvests the energy in evaporation and converts it to electricity. This biofilm has the potential to revolutionize the world of wearable electronics, powering everything from personal medical sensors to personal electronics.
A new device known as MC-TENG — short for multilayered cylindrical triboelectric nanogenerator — generates electrical power by harvesting energy from the sporadic movement of the tree branches from which it hangs. The self-powered sensing system could continuously monitor the fire and environmental conditions without requiring maintenance after deployment.
Wireless IoT sensing devices can be placed on, in, or near people, equipment, infrastructure, and our environment. This gives us new tools to address the most urgent challenges of our 21st century world: from climate change, to ensuring clean energy, safe food, and foremost, caring for the health and well-being of an aging population. However, to achieve this, we need to address the ‘powering the IoT’ gap. That is, solutions need to run on batteries that outlive the IoT devices they power.
Engineers have developed a neural implant that can be both programmed and charged remotely with a magnetic field. The integrated microsystem — MagNI (magnetoelectric neural implant) — incorporates magnetoelectric transducers that allow the chip to harvest power from an alternating magnetic field outside the body.
An energy-harvesting circuit based on graphene could be incorporated into a chip to provide clean, limitless, low-voltage power for small devices or sensors. The findings show that freestanding graphene — a single layer of carbon atoms — ripples and buckles in a way that holds promise for energy harvesting.
This article presents the suspension performance and the energy harvesting capabilities of a hydraulic regenerative suspension system. A regenerative shock absorber is designed based on a hydraulic transmission mechanism. The proposed regenerative shock absorber is implemented in a quarter-car model to replace the conventional passive damper. The nonlinear damping force of the regenerative shock absorber, which depends on the pressure in the shock absorber chambers, is derived. Using the continuity equation and Kirchhoff’s law, the flow of oil through the valves is described including the oil compressibility. The variation of the check valve opening as a function of pressure difference is also considered in the mathematical modeling. The amount of the harvested power and the efficiency of the regenerative system are introduced to assess the effectiveness of the new suspension system compared to the traditional passive suspension system. Suspension performance indices such as ride
This work analyzes a cantilevered piezoelectric beam device for harvesting energy from the simultaneous rotation and translational vibration of vehicle wheels. The device attaches to the wheel rim so that it displaces tangentially during operation. A lumped-parameter analytical model for the coupled electromechanical system is derived. The device has one natural frequency that is speed-dependent because of centripetal acceleration affecting the total stiffness of the device. Even though the device has one natural frequency, it experiences three resonances as the rotation speed varies. One resonance occurs when the rotation speed coincides with the speed-dependent natural frequency of the device. The other two resonances are associated with excitations from the vibration of the vehicle wheel. The device’s parameters are chosen so that these three resonances occur when the wheel travels near 30 mph, 55 mph, and 70 mph. There are two excitation frequencies that give these resonant speeds
Active suspension could achieve good ride comfort and road holding performance. Traditional active suspension which utilizes air actuator or hydraulic actuator features relatively slow response or high energy consumption. Utilizing Permanent Magnet Synchronous Motor (PMSM) as actuator, the Electromagnetic Actuated Active Suspension (EAAS) benefits quick response and energy harvesting from vibration at the same time. Benchmarked with luxury cars available on the market, design parameters and design boundary are determined. A mechanism includes push bar and bell crank is designed to transfer the rotary motion of PMSM into linear motion of suspension, or verse vice. A prototype of EAAS is built in compromise of limited budget and a test bench is designed and set up. Different from conventional quarter car model, the model of EAAS in this paper is investigated and the total inertial of PMSM, gearbox and suspension control arms are calculated and simplified as an equivalent mass. Also
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs. Demonstrated on a 2015 Fiat 500e BEV, this system integrates a semi-hermetic refrigeration loop with a coolant network and serves three functions: (1
With the development of intelligent vehicle and active vehicle safety systems, the demand of sensors is increasing, especially in-tire sensors. Tire parameters are essential for vehicle dynamic control, including tire pressure, tire temperature, slip angle, longitudinal force, etc.. The diversification and growth of in-tire sensors require adequate power supply. Traditionally, embedded batteries are used to power sensors in tire, however, they must be replaced periodically because of the limited energy storage. The power limitation of the batteries would reduce the real-time data transmission frequency and deteriorate the vehicle safety. Heightened interest focuses on generating power through energy harvesting systems in replace of the batteries. Current in-tire energy harvesting devices include piezoelectric, electromagnetic, electrostatic and electromechanical mechanism, whose energy sources include tire deformations, vibrations and rotations. Through comparison, in-tire energy
Energy has the worldwide concern since the World War. Recently, the energy harvesting technology has got more attraction in different fields and applications. Hence, in a world where energy becomes rare and expensive, even the small quantities are worth to be harvested where it can be exploited in different applications. Vehicle suspension is one of the vibration power dissipation sources in which the undesired vibration is dissipated into heat waste. Accordingly, the principal motivation of this study is exploitation the conflict between the potentially harvested power and vehicle dynamics in automotive suspension system induced by road irregularity. Therefore, in terms of RMS conflict diagrams, the conflict between the potential power and vehicle dynamics are sufficiently and comprehensively defined considering a vehicle speed of 20 m/s. The conflict analysis includes ride comfort (body acceleration), road handling (dynamic tire force) and potentially harvested power considering the
A new, ultrathin energy harvesting system has the potential to harvest electricity from human motion. Based on battery technology and made from layers of black phosphorus that are only a few atoms thick, the new device generates small amounts of electricity when it is bent or pressed even at the extremely low frequencies characteristic of human motion.
Evolution in Radio Frequency (RF) semiconductor technology has led to highly power efficient devices. A typical automobile key fob for remote lock-unlock operations operates on 3V lithium coin cell battery having 200 mAh capacity and can last up to 75,000 key press events or two to three years. The typical transmission currents are less than 10 mA while sleep currents are less than 0.1 uA. As the lithium coin cell batteries are not rechargeable, they need to be replaced and safely disposed. Improper disposal of lithium batteries impose risk to the environment as lithium is highly poisonous and reactive. This paper proposes to replace the coin cell battery with a RF energy harvesting circuit involving voltage multiplier circuit consisting of zero bias schottky detector diodes and a hybrid energy storage capacitor. Authors have conducted experiments as well as simulation to evaluate the feasibility of the RF energy harvester replacing conventional coin cell battery. RF energy harvesting
When most individuals hear “energy harvesting,” they often think of alternative energy sources like wind and solar power. There is a distinct difference, however, between alternative energy and energy harvesting, or EH, approaches, based on the amount of power each can generate.
Traditional active suspension which is equipped with hydraulic actuator or pneumatic actuator features slow response and high power consumption. However, electromagnetic actuated active suspension benefits quick response and energy harvesting from vibration at the same time. To design a novel active and energy regenerative suspension (AERS) utilizing electromagnetic actuator, this paper investigates the benchmark cars available on the market and summaries the suspension features. Basing on the investigation, a design reference for AERS design is proposed. To determine the parameters of the actuator, a principle is proposed and the parameters of the actuator are designed accordingly. Compared the linear type and rotary type Permanent Magnet Synchronous Motor (PMSM), the rotary type is selected to construct the actuator of the AERS. Basing on the suspension structure of the design reference model and utilizing rotary type PMSM, a novel AERS structure is proposed. A prototype concept is
A two-stage power management and storage system from Georgia Institute of Technology improves the efficiency of triboelectric generators to harvest energy from irregular human motion, such as walking, running or finger tapping. The storage device supplies DC current at voltages appropriate for powering wearable and mobile devices such as watches, heart monitors, and thermometers.
The romantic notion of grizzled ranchers out riding the range on horseback to shepherd their herd of cattle may soon be a distant memory, as cloud-based sensor technology now permits real-time animal tracking from the comfort of home or office, or by smartphone.
As more connected devices enter the market and see wider adoption by an ever increasing number of industries, the Internet of Things (IoT) is rapidly expanding.
Semiconductor chip technology has miniaturized by leaps and bounds over the past couple of decades, enabling the modern era we live in with smartphones, tablets, and small electronic gadgets everywhere. However, battery technology, which provides the lifeblood to power these devices, has been at a near standstill since the commercial availability of lithium-ion batteries in the early 1990s. In no other application is this discrepancy more profound than in medical implants.
Radio-Frequency IDentification (RFID) is a technology that provides automatic identification of objects, and relies on storing and remotely retrieving data using devices called RFID tags or transponders. The RFID tag is an object that can be applied to and/or incorporated into a product, animal, or person for the purpose of identification using radio waves. Some tags can even be read from several meters away and beyond the line of sight of the reader. Generally, there are three varieties of RFID tags: passive, active, or semi-passive (also known as battery-assisted). Passive tags require no internal power source, are powered by harvesting energy from various artificial energy sources and/or natural energy sources (such as voice signals, other electromagnetic waves, sunlight, vibrations, or RF noise), and are only active when a reader is nearby to power them; semi-passive and active tags require a power source to function (usually a small battery).
Sensors have improved in terms of size, capability, and power consumption, but their deployment in remote areas is limited by battery power supplies. Using piezoelectric (PE) materials for energy scavenging is a possible way to remedy the situation. The technology developed in this work converts existing sources of nonpolluting energy (mechanical strain) from nature into electricity. The quantity of energy produced is not massive, but it can be easily generated from free sources such as vibration and electromagnetic waves.
The goal of this work was to investigate using harvested energy to directly control the vibration response of flexible aerospace systems. Small, lightweight, flexible Micro Air Vehicles (MAVs) operate near flutter, providing both harvesting opportunities and vibration suppression requirements. The possibility that ambient energy might be harnessed and recycled to provide energy to mitigate the vibrations through various control laws was investigated. The goal was to integrate harvesting, storage, control, and computation into one multifunctional structure, and illustrate its benefits.
Specifying the ideal power management solution for remote wireless devices found in extreme environments and hard-to-access locations requires more ruggedized solutions. Fortunately, two viable options are now available: lithium thionyl chloride (LiSOCL2) chemistry that can operate for 40+ years, and energy harvesting devices coupled with special rechargeable lithium-ion batteries designed for extreme environments that can deliver up to 20+ years of battery life. Lithium thionyl chloride chemistry is proven for use in extreme environments.
Items per page:
50
1 – 50 of 63