Browse Topic: Renewable energy

Items (303)
With better performance and usage of clean and renewable energy, electric vehicles have ushered in more and more consumers’ favor nowadays. However, insufficient driving range especially in hot and cold ambient conditions still greatly restricts the extensive application of electric vehicles. This paper presents a methodology of establishing multi-discipline coupled full vehicle model in AMESim to investigate the energy consumption and driving range of an electric vehicle in normal and hot ambient conditions. Full vehicle energy consumption test was carried out in the climate chamber to check the accuracy of simulation results. Firstly, basic framework of the full vehicle model established in AMESim was introduced. Next, modeling details of sub-systems including vehicle dynamic system, electrical system, coolant circuit system, air-conditioning system and control strategy were illustrated. Then, full vehicle energy consumption tests were carried out in 23°C and 38°C ambient conditions
Zhou, ShuaiLiu, HuaijuYu, HuiliYan, XuYan, Junjie
In 2022, the U.S. transportation sector was the largest source of greenhouse gas emissions in the country, with the combination of passenger and commercial vehicles contributing 80% of these emissions. As adoption of passenger electric vehicles continues to climb, sights are being set on the electrification of heavy-duty commercial vehicle (HDCV) fleets. The sustainability of these shifts relies in part on the addition of significant renewable energy generation resources to both bolster the grid in the face of increased demand, and to prevent a shift in the source of greenhouse gas (GHG) emissions to the grid, as opposed to a true net reduction. Additionally, it is necessary to quantify the variations in economic viability across the country for these technologies as it pertains to their productive capabilities. Doing so will encourage investment and ensure that the transition to electrified HDCV fleets is commercially viable, as well as sustainable. In an effort to meet these goals
Miller, BrandonSun, RuixiaoSujan, Vivek
The Object of research in the article is the ventilation and cooling system of bulb hydrogenerators. The Subject of study in the article is the design and efficiency of using the cooling system of various structural types for bulb hydro units. The Purpose of the work is to carry out a three-dimensional study of two cooling systems (axial and radial) of the bulb hydro unit of the Kanivskaya HPP with a rated 22 MW. Research Tasks include analysis of the main design solutions for effective cooling of bulb-type hydrogenerators, in particular, the use of radial, axial, and mixed cooling systems; formulation of the main assumptions for the three-dimensional ventilation and thermal calculation of the bulb hydrogenerator; carrying out a three-dimensional calculation for a hydrogenerator with axial ventilation; determining airflow speeds in the channels and temperatures of active parts of the hydrogenerator under the conditions of using discharge fans and without them; carrying out a three
Tretiak, OleksiiArefieva, MariiaMakarov, PavloSerhiienko, SerhiiZhukov, AntonShulga, IrynaPenkovska, NataliiaKravchenko, StanislavKovryga, Anton
The integration of advanced horizontal axis turbines (HATs) into unmanned marine vehicles (UMVs) significantly enhances their operational efficiency by providing power sources. These vehicles, designed for diverse applications, require efficient power systems to operate autonomously over extended periods. The major disadvantages are limited battery life and energy storage capabilities that restrict the operational range and endurance of the UMVs. Utilizing HATs in UMVs provides a renewable energy source, reducing operational costs. This continuous power supply enhances mission capabilities and promotes energy independence, making them ideal for long-term missions. Thus, using Computational fluid dynamics (CFD) models, hydrodynamic and aerodynamic analyses were carried out. For the hydrodynamic scenario, a velocity of 10 m/s and for the aerodynamic case, 27.7778 m/s, were taken into consideration. It is concluded that the UMV with Stepped HAT modification can be effectively employed for
Gunasekaran, Durga DeviKannan, HaridharanSourirajan, LaxanaVinayagam, GopinathGnanasekaran, Raj KumarKulandaiyappan, Naveen KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
This research explores the use of salt gradient solar ponds (SGSPs) as an environmentally friendly and efficient method for thermal energy storage. The study focuses on the design, construction, and performance evaluation of SGSP systems integrated with reflectors, comparing their effectiveness against conventional SGSP setups without reflectors. Both experimental and numerical methods are employed to thoroughly assess the thermal behavior and energy efficiency of these systems. The findings reveal that the SGSP with reflectors (SGSP-R) achieves significantly higher temperatures across all three zones—Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ)—with recorded temperatures of 40.56°C, 54.2°C, and 63.1°C, respectively. These values represent an increase of 6.33%, 11.12%, and 14.26% over the temperatures observed in the conventional SGSP (SGSP-C). Furthermore, the energy efficiency improvements in the UCZ, NCZ, and LCZ for the SGSP-R are
J, Vinoth Kumar
The rising demand for fossil fuels and the exploration of renewable energy sources from plants have gained significant attention due to their role in reducing emissions and enhancing energy security. Prosopis juliflora, abundantly available in India, offers a viable source for biodiesel production. This study investigates the performance and emission characteristics of a 5.2 kW, 1500 rpm, four-stroke single-cylinder compression ignition (CI) engine using blends of diesel, vegetable oil, and biodiesel derived from Prosopis juliflora seeds. The engine was tested with pure diesel, vegetable oil (PJO), biodiesel (B100), and biodiesel-diesel blends at 20%, 40%, 60%, and 80% by volume, designated as B20, B40, B60, and B80, respectively. Key performance metrics, including brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), were measured, along with emissions such as carbon monoxide (CO), smoke, hydrocarbons (HC), and nitrogen oxides (NO). Results indicated that BTE
Duraisamy, BoopathiStanley Martin, JeromeThiyagarajan, PrakashRajendran, SilambarasanMarutholi, MubarakJohn, Godwin
PEM electrolysis system has characteristic of excellent performance such as fast response, high electrolysis efficiency, compact design and wide adjustable power range. It provides a sustainable solution for the production of hydrogen, and is well suited to couple with renewable energy sources. In the development process of PEM electrolysis controller, this article originally applied the V-mode development process, including simulation modeling, RCP testing, and HIL testing, which can provide guidance in the practical application of electrolytic hydrogen production. In this paper, we present modeling and simulation study of PEM water electrolysis system. Model of electrolytic cell, hydrogen production subsystem and thermal management subsystem are constructed in Matlab/Simulink. Controller model was designed based on PI control strategy. A rapid prototyping controller with MPC5744 chip was used to develop the control system of electrolytic hydrogen production system. Hardware in the
Hua, YuweiJin, ZhenhuaTian, YingTao, Yuepeng
In order to clarify the cavitation flow characteristics in future fuel nozzles and guide the design of new nozzle structural blocks, this research work was carried out in both experimental and simulation aspects. In the experiment, it was found that under high injection pressure, methanol showed more severe cavitation than diesel. By adding frosted glass, a better light effect was achieved in the nozzle hole. It was found that the front section of the nozzle had geometric induced cavitation, the middle section had vortex cavitation, and the rear section had expanded vortex cavitation. Traditional numerical models cannot accurately calculate this phenomenon. To this end, the two-phase physical properties that change with temperature and pressure were constructed, combined with multiphase, turbulence, and energy models, CFD calculations were performed and verified based on visualization results. On this basis, a comparative analysis of the flow mechanism in future fuel and traditional
Zhang, HanwenFan, LiyunLi, BoWei, YunpengZhang, Dianhao
Sodium-ion batteries (SIBs) make their marks in energy storage and electric vehicles due to their abundant reserves, cost-effectiveness, environmental resilience, and high safety. However, maintaining high battery performance in intricate operating conditions is challenging, which necessitates precise control based on timely and accurate acquisition of operation parameters, especially for the state of charge (SOC). Equivalent circuit model (ECM) is the most widely used in the evaluation of SOC. In this work, a 2nd-order resistor-capacitor ECM (2ORC-ECM) is chosen because of its balance between accuracy and computational efficiency. Furthermore, dynamic parameters in the 2ORC-ECM are accurately identified online by introducing an enhanced recursive least squares method with a forgetting factor. Finally, the proposed method is carried out based on the measured data of commercial SIBs. The results show that the proposed method can mitigate data saturation effectively while ensuring high
Qi, HonghaoPan, LyumingXu, XiaoqianRao, HaoyaoYu, YueshengLiu, XiangchiZhu, YifeiYang, CanWu, WeixiongLi, YubaiLi, WenjiaZeng, LinXu, QianRen, JiayouWei, Lei
This paper presents the strategy design, development, and detailed simulation of an Energy Management System (EMS) for a range extender energy storage microgrid project. Initially, a microgrid system model including photovoltaic (PV) and energy storage devices was established. Secondly, the Latin Hypercube Sampling (LHS) method was employed to generate possible operational scenarios, and an improved K-means clustering algorithm was used for scenario classification. Subsequently, a series of constraints were constructed for the economic viability of the microgrid to minimize its annualized comprehensive cost, while satisfying power balance and equipment operation. Finally, the microgrid system was simulated and solved using the GUROBI solver, covering cost analyses of the energy storage system and diesel generators under different configurations, as well as the State of Charge (SOC) variations of the energy storage system. The simulation results indicate that, after considering the one
Hua, YuweiJin, ZhenhuaHuang, HuilongWang, Zihao
Hydrogen fuel cell vehicles are seen as an ideal solution to the issues of energy security and environmental pollution. There is a great need for a comprehensive understanding of the ecological impacts associated with fuel cells throughout their entire life cycle, from fuel extraction through manufacturing, operation, and ultimately to the disposal stage. This paper reviews the progress of research on measuring the emissions of hydrogen fuel cells and focuses on the carbon footprint throughout the fuel cell’s life cycle. The study defines the boundary conditions of the fuel cell system using the PLAC (Process-based life cycle assessment) method, analyzes the proportion of each material in the system, and divides its life cycle into six stages: raw material preparation, manufacturing and assembly, transportation and logistics, utilization, maintenance and repair, and scrap and recycling. This study uses the GREET analysis software to introduce a carbon footprint analysis model for a
Zhang, RuojingZhu, HaominZhou, XiangyangPan, Xiangmin
The degradation of vehicle performance resulting from powertrain degradation throughout the lifecycle of alternative energy vehicles (AEVs) has consistently been a focal issue among scholars and consumers. The purpose of this paper is to utilize a one-dimensional vehicle simulation model to analyze the changes in power performance and economy of fuel cell vehicles as the Proton Exchange Membrane Fuel Cell (PEMFC) stack degrades. In this study, a simulation model was developed based on the design parameters and vehicle architecture of a 45kW fuel cell vehicle. The 1D model was validated for accuracy using experimental data. The results indicate that as the stack performance degrades, the attenuation rate of the fuel cell engine is further amplified, with a degradation of up to 13.6% in the system's peak output power at the End of Life (EOL) state after 5000 hours. Furthermore, the level of economic performance degradation of the complete vehicle in the EOL state is dependent on the
Li, YouDu, JingGuo, DonglaiWang, KaiWang, Yupeng
The development of hydrogen economy is an effective way to achieve peak carbon emission and carbon neutralization. Therein, the green production of hydrogen is a prerequisite to reach the goal of decarbonization. As an ideal route, water electrolysis has triggered intense responses under the strong support from policies, which further presenting a phenomenon of water electrolysis equipment manufactures competing to enter the market. However, the extensive growth mode is not conducive to a long term healthy development of the water electrolysis hydrogen production market where products can be sold without requiring compulsory inspection or quality inspection process due to the absence of laws and test & evaluation standards. Considering the market status and technology maturity, the main working principles and characteristics of alkaline water electrolysis (AWE) and proton exchange membrane (PEM) hydrogen production systems are summarized, and the test frameworks of the AWE and PEM
Jiao, DaokuanWang, XiaobingHao, Dong
To explore the heat and mass transfer processes within the low-temperature catalyst layer, a coupled heat and mass transfer lattice Boltzmann model and electrochemical model were established, creating a pore-scale model for heat and mass transfer in the catalyst layer. The influence of the catalyst layer parameters was investigated. The results indicate that as time progresses, heat gradually accumulates at the top of the catalyst layer (CL) and is transmitted towards the bottom. Once oxygen enters the CL, it quickly fills the pores within the CL, resulting in a rapid decrease in oxygen concentration within the ionomer. As the platinum volume fraction increases, there is a significant rise in temperature across the entire calculation domain. With the increasing platinum volume fraction, the current density also increases rapidly due to the larger reaction area. When the carbon volume fraction is 0.15, more oxygen enters the ionomer to participate in reactions, and the large porosity
Xu, ShengChen, XinSheng, Tao
In recent trends, renewable energy has gained significance in worldwide applications due to avail from nature, low cost, and pollution-free. Based on the world population, a large volume of municipal and sewage water waste affects the environmental water sources, resulting in pollution. To save the earth and maintain a green environment, the present investigation aims to produce bio-hydrogen from municipal and sewage waste through a gasification process with a pyrolysis reactor. The temperature and time of the gasification process were varied by 600-900°C and 60 min. The impact of gasification temperature (600-900°C) and 60 min on molar fraction, gas yield, and gasification efficiency behaviour has to be investigated, and higher temperature (900°) with 60 min gasification process showed the superior molar fraction with 18.4 mol/kg hydrogen yield and improved gasification efficiency of 72%. The gained bio-hydrogen suggested energy storage applications.
De Poures, Melvin VictorVenkatesh, R.Karthikeyan, N.Manivannan, S.Sugadeva Boopathi, M.Baranitharan, BalakrishnanMadhu, S.Kaliyaperumal, GopalSakthi Murugan, V.
Cold thermal energy storage using phase changing materials is being researched to find freezing and thawing points. The use of inorganic hydrated salts, a type of phase changing material (PCM) used in cold energy storage systems without the use of existing renewable energy systems, allows for a longer cooling effect and saves energy. A high volumetric storage density and relatively high thermal conductivity make hydrated salts suitable materials for thermal energy storage. They can be used only as inorganic mixtures or else they can also be used as eutectic mixtures, which involve mixtures of inorganic–inorganic salts or simply a combination of two or more inorganic salts. This research deals with eutectic mixtures, which are 4% KNO3 + 96% H2O, 4% NaHCO3 + 96% H2O, and 2% KNO3 + 2% NaHCO3 + 96% H2O. Three different novel eutectic mixtures were examined and found a suitable mixture for a cold thermal energy system. An efficient phase change approach involving 2% KNO3 + 2% NaHCO3 + 96
Vasanthkumar, P.Santhoshkumar, A.Gopika, P.Murali, M.Meera, C.
In order to deploy renewable energy sources for balanced power generation and consumption, batteries are crucial. The large weight and significant drain on the energy efficiency of conventional batteries urge the development of structural batteries storing electrical energy in load-bearing structural components. With the current shift to a green economy and growing demand for batteries, it is increasingly important to find sustainable solutions for structural batteries as well. Sustainable structural batteries (SSBs) have strong attraction due to their lightweight, design flexibility, high energy efficiency, and reduced impact on the environment. Along with sustainability, these structural batteries increase volumetric energy density, resulting in a 20% increase in efficiency and incorporate energy storage capabilities with structural components, realizing the concept of massless energy storage. However, the significant problems in commercializing SSBs are associated with their
Kusekar, Sambhaji KashinathPirani, MahdiBirajdar, Vyankatesh DhanrajBorkar, TusharFarahani, Saeed
The (commercial) aviation sector (passenger and freight), which is strongly engaged with the world efforts to mitigate the carbon emissions and their inherent climate change effects, has accounted in 2018 for 2.4 % of global carbon dioxide (CO2) emissions (pre-pandemic levels). Despite the reductions in air travel demand during the 2020 pandemic, with a reduction of up to 80% in passenger travel during the peak pandemic period, the air travel demand has already recovered to around 80% of the pre-pandemic level, with aviation emissions in 2022 reaching around 800 Mt CO2, accounting for 2% of the global energy related CO2 emissions. Moreover, the demand for air travel is expected to double by 2040, growing at an annual average rate of 3.4%, which means that. despite the efficiency improvement trend (average 2%/year), will almost double the aviation’s greenhouse (GHG) emissions, with a significant increase in its relative GHG share, compared to the other transport modes. Meanwhile the
Barbosa, Fábio Coelho
The goal of this research is to better understand the methodologies for manufacturing biodiesel worldwide and the main raw materials used in its production. We aim to compare the solutions established by relevant countries with those used in Brazil, identifying their advantages and disadvantages. Our primary areas of interest include the United States, Indonesia, and Europe, where we will analyze the solutions and, whenever possible, understand the commercial and political interests involved. We will highlight aspects related to sustainability in the production, transportation, and use of biodiesel. The methodology is based on research from recent publications and news, organized into graphs to facilitate analysis and comparison. Next, we will also examine the consequences of the solutions adopted in Brazil, envisioning future scenarios and recommended paths. In the short term, biodiesel is expected to be replaced by renewable diesel (also known as green diesel in some regions
Labigalini, Marcio RobertoBarreto, Gilmar
The twin challenges of the automotive industry namely petroleum dependence and environmental pollution paved way for the development of an environmentally friendly and feasible substitute for diesel, possessing power characteristics equivalent to those of a diesel engine. Biofuel has potential as a renewable energy source, offering a more sustainable alternative to traditional fossil fuels. However, it does come with some challenges, such as varying quality and combustion properties. To enhance its performance, engines can be fine-tuned by adjusting fuel injection parameters, such as timing, pressure, and duration. Accordingly, this research article focuses on optimizing the fuel injection parameters for a CRDi engine powered by D+LPO (20% lemon peel oil and 80% diesel) biofuel, with the goal of improving both performance and emission characteristics. The experimental design matrix was generated using Design Expert-13 software, employing the I-optimal technique. Utilizing response
Saiteja, PajarlaAshok, B.
It is emerging the need to take action to reduce the greenhouse effect, which is one of the major causes of climate change and environmental disasters that has been occurring frequently in recent decades throughout the planet. The burning of fossil fuels for electricity and energy generation are the main concerns and those that have greater incentives for its reduction, as its by-product of the reaction of burning CO2, which among the greenhouse gases is primarily responsible for its aggravation. The transport sector excels in CO2 emissions, emits about 20% of gas, according to the Intergovernmental Panel on Climate Change (IPCC), a scientific organization linked to the United Nations (UN). A promising solution to reduce the impact of this sector would be the use of hydrogen fuel cell, which if carried out through renewable energies, the electrolysis of hydrogen has zero CO2 emission throughout the cycle. However, one of the biggest challenges to make viable the use of hydrogen as fuel
Alves, JoyceSilva, AntônioPaterlini, BrunoSantos, FelipePedroso, HenriqueHenrique, PedroMilani, Pedro
Adoption of Electric Vehicles (EVs) reduces air pollution by reducing harmful gas emissions. Such adoption, however, needs a reliable and convenient charging infrastructure, including smart EV charging. Renewable energy sources such as solar photovoltaic cells, battery and wind energy systems can address these infrastructural gaps which work in conjunction with main grid power supply thereby providing low-cost electricity. This paper introduces an energy management algorithm for integrated renewable and grid power sources available at charging stations across India that considers techno-economic and environmental factors. The current work proposes a supervisory controller model that manages the load power demand of the charging station. The controller effectively deploys low cost energy sources based on the status of all available power supplies and reduces the overall charging costs in real time. The energy management algorithm ensures adequate stand-alone energy generation and
Shukla, AnkitKushwah, Yogendra SinghSuman, Saurabh
The different energy policies and legislations across the globe, unions, or country wise are the key influencer for evaluation of Transport Industry in both advancement of Technologies and Ecosystem development. Accordingly, European Climate law is focusing to achieve net zero greenhouse (or carbon neutral) gas emissions for EU (European Union) countries by 2050. Similarly in India, National Green Hydrogen Mission (NGHM) by Ministry of New and Renewable Energy (MNRE) is aiming for significant decarbonization and to become market leader in Green Hydrogen Transition. Hydrogen is potential fuel for H2-FCEV (Hydrogen Fuel Cell Electric vehicle) and H2-ICE (Hydrogen -Internal combustion Engine) due to its carbon free molecule and other properties. This review paper is focusing on comprehensive study of different aspects of H2- ICE vehicle. Key study areas are mainly Hydrogen (H2) as fuel, Hydrogen Storage System (HSS), H2-ICEs, Hydrogen storge pressure and H2-ICE vehicle architecture. The
Biswas, SanjoyNaik, Amit KumarKashyap, Krishna
As we move towards sustainable transportation, it is essential to look for alternative powertrain technologies that might reduce emissions and depend less on fossil fuels. This paper offers a thorough analysis and comparison of several viable solutions along with their benefits, cost and conclusion for hydrogen fuel cells, solar cells, electric hybrid systems, compressed natural gas (CNG) and CNG hybrid systems alongside the latest proposal of using nuclear batteries. Hydrogen cars have zero emissions from their exhaust and can be refueled quickly, however there are some drawbacks like hydrogen production, storage, and infrastructure. The efficiency, affordability, and scalability of various hydrogen production techniques, fuel cell stack designs and storage technologies (compressed gas, liquid, and metal hydrides) are evaluated in this paper. Solar FCEVs on the other hand, are designed to utilize solar energy like Solar EVs but are very different in their operation and fundamentals
Hebbale Ramkumar, RamyaTrivedi, Shubham
It’s common knowledge that a major challenge for solar energy is how to store excess energy produced when conditions are right, like noon-time sun, so that it can be used later. The usual answer is batteries. But renewable energy resources are causing problems for the electricity grid in other ways as well. In a warm, sunny location like California, mid-afternoon had been a time of peak demand for the electric utility, but with solar it’s now a time of peak output.
Safe and efficient energy storage is important for American prosperity and security. With the adoption of both renewable energy sources and electric vehicles on the rise around the world, it is no surprise that research into a new generation of batteries is a major focus. Researchers have been developing batteries with higher energy storage density, and thus, longer driving range. Other goals include shorter charging times, greater tolerance to low temperatures, and safer operation.
As the world looks to net-zero emissions goals, hybrid electric vehicles may play an increasingly important role. For passenger electric vehicles (EVs) that predominantly make short journeys but occasionally need to make longer trips, electrofuel range extension may be more cost effective than either hydrogen or rapid charging. Micro gas turbines and catalytic combustion show significant potential to deliver low-cost, low-maintenance, lightweight engines with virtually no emissions, and hydrocarbon consuming solid oxide fuel cells show even greater potential in these areas. Aditioanlly, sodium-ion batteries for EVs, dispatachable vehicle-to-grid power and buffering, and variable intermittent renewable energy could also play key roles. The Role of Hybrid Vehicles in a Net-zero Transport System explores the costs, considerations, and challenges facing these technologies. Click here to access the full SAE EDGETM Research Report portfolio.
Muelaner, Jody E.
Hydrogen-powered mobility is believed to be crucial in the future, as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context, the hydrogen-fueled internal combustion engine represents one of the suitable technical solution for the future sustainable mobility. In a short-term perspective, the development of the green hydrogen production capability and distribution infrastructure do not allow a substantial penetration of pure hydrogen IC engines. For this reason, natural gas – hydrogen blends can represent a first significant step towards decarbonization, also determining a trigger effect on the hydrogen market development. The present paper is focused on the analysis of the combustion and performance characteristics of a production PFI natural gas engine, run on blends with 15% in volume of hydrogen (HCNG). More specifically, a fuel-flexible, predictive 1D simulation model has been developed within the
Baratta, MirkoDi Mascio, ValerioMisul, DanielaMarinoni, AndreaCerri, TarcisioOnorati, Angelo
The ongoing transition from fossil fuels to renewable energy sources has never been more important as climate change and sustainability awareness continue to rise.
Researchers at the Department of Energy’s Oak Ridge National Laboratory are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide.
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed. Thus, national production of these fuels in the EU is inefficient in terms of cost and carbon footprint due to the low utilisation rate of renewable energy
Stoll, TobiasKulzer, AndreBerner, Hans-Juergen
With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer. Technologies are compared in respect of their TLR level and
Rothbart, Martin
Hydrogen has gained global recognition as a crucial energy resource, holding immense potential to offer clean, efficient, cost-effective, and environmentally friendly energy solutions. Through water electrolysis powered by green electricity, the production of decarbonized “green hydrogen” is achievable. Hydrogen technology emerges as a key pathway for realizing the global objective of “carbon neutrality.” Among various water electrolysis technologies, proton exchange membrane water electrolysis (PEMWE) stands out as exceptionally promising. It boasts high energy density, elevated electrolysis efficiency, and the capacity for high output pressure, making it a frontrunner in the quest for sustainable hydrogen production. The Application of Proton Exchange Membrane Water Electrolysis delves into the challenges and trends ahead of PEMWE—from fundamental research to practical application—and briefly describes its relative characteristics, key components, and future targets. The cost
Lin, Rui
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, hybridization and lower carbon-intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions. The development included the conversion of a 5.2 L diesel engine to
Wallace, JulianMitchell, RobertRao, SandeshJones, KevinKramer, DustinWang, YanyuChambon, PaulSjovall, ScottWilliams, D. Ryan
Let’s start with the uncomfortable truth, climate change is happening, and the automotive industrial network is one of the main industries contributing to greenhouse gas emissions. SKF is an energy intensive business – directly using energy, mainly in the form of electricity and gas, in its operations around the world. In addition, SKF utilizes materials, predominantly steel, and services which can be energy and carbon intensive – such as transports and raw material in production and processing. The combined impact of these direct and indirect energy uses (scope 1, 2 and 3 upstream) generates an excess of over two million metric tons of CO2e per year. This figure would however be significantly higher were it not for the actions SKF has taken to reduce both energy and carbon intensity. In 2000, we were one of the first companies to start to report and set climate targets. Acting on energy and material efficiency improvements and by switching to renewable energy, SKF is targeting
Sguotti, LauraLeprotti, ArturoFerrero, AlessandroD'Aleo, MicheleBerglund, Mats
Life cycle analyses suggest that electric vehicles are more efficient than gasoline internal combustion engine vehicles (ICEVs). Although the latest available data reveal that electric vehicle (EV) life cycle operational efficiency is only 17% (3 percentage points) higher than a gasoline ICEV, overall life cycle efficiencies including manufacturing for EVs are 2 percentage points lower than for ICEVs. Greenhouse gas (GHG) emissions of EVs are only 4% lower than ICEVs, but criteria emissions of NOx and PM are approaching or exceeding two times those of gasoline ICEVs. Significant reductions in electric grid emissions are required to realize EV’s anticipated emission benefits. In contrast, hybrid electric vehicles (HEVs) have over 70% higher efficiency and 28% lower GHG emissions than today’s EVs. For heavy-duty trucks using today’s gray hydrogen, produced by steam–methane reforming, overall life cycle efficiencies of ICEs and fuel cells are 63% higher than electric powertrains using
Wade, Wallace R.
In the dynamic landscape of battery development, the quest for improved energy storage and efficiency has become paramount. The contemporary energy transition, coupled with growing demands for electric vehicles, renewable energy sources, and portable electronic devices, has underscored the critical role that batteries play in our modern world. To navigate this challenging terrain and harness the full potential of battery technology, a well-defined and comprehensive data strategy resp. knowledge management strategy are indispensable. Conversely, the imminent and rapid progression of artificial intelligence (AI) is poised to have a substantial impact on the forthcoming landscape of work and the methodologies organizations employ for the management of their knowledge management (KM) procedures. Conventional KM endeavors encompass a spectrum of activities such as the creation, transmission, retention, and evaluation of an enterprise’s knowledge over the entire knowledge lifecycle. However
Badi, IbtihalBraun, AndreasKallis, Lena
Bhutan is a small nation in the eastern Himalayas, between two of the world's largest neighbors and fastest-growing economies; China, and India. The GDP of the country is $2.707 Billion as of 2022. Bhutan’s largest renewable source is hydropower, which has a known potential of 30,000 MW. However, it has only been able to harvest only 1,480 MW (5% of the potential). The current overall electrification rate is 99% overall with 98.4% in rural areas. It exports 75.5% of total electricity generated in the country to India. However, the reliable supply of electricity remains a big challenge. The government is also pushing the use of renewable energy sources like solar and wind to diversify the energy mix and enhance the power security of the country. The share of renewable energy is very minimal at present amounting to 723 kW Solar PV and 600 kW Wind power. Bioenergy in the form of fuel wood, energy crops & crop residues, and cattle dung has great potential in the country as the country’s
Wangchuk, SingyeKumar, Naveen
Battery terminal voltage modelling is crucial for various applications, including electric vehicles, renewable energy systems, and portable electronics. Terminal voltage models are used to determine how a battery will respond under load and can be used to calculate run-time, power capability, and heat generation and as a component of state estimation approaches, such as for state of charge. Previous studies have shown better voltage modelling accuracy for long short-term memory (LSTM) recurrent neural networks than other traditional methods (e.g., equivalent circuit and electrochemical models). This study presents two new approaches – sequence training and data shuffling – to improve LSTM battery voltage models further, making them an even better candidate for the high-accuracy modelling of lithium-ion batteries. Because the LSTM memory captures information from past time steps, it must typically be trained using one series of continuous data. Instead, the proposed sequence training
Chen, JunranKollmeyer, PhillipPanchal, SatyamMasoudi, YasamanGross, OliverEmadi, Ali
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs. Thus, the object is to show how much present, typical in-service life-mileage differs from the
Watson, Harry C.
The global transition to alternative power sources, particularly fuel cells, hinges on the cost-effective production and distribution of hydrogen fuel. While green hydrogen produced through water electrolysis using renewable energy sources holds immense promise, it currently falls short of meeting the burgeoning demand for hydrogen. To address this challenge, alternative methods, such as steam reforming and partial oxidation of hydrocarbon fuels with integrated carbon capture, are poised to bridge the gap between supply and demand in the near to midterm. Steam reforming of methane is a well-established technology with a proven track record in the chemical industry, serving as a dependable source of hydrogen feedstock for decades. However, to meet the demand for efficient hydrogen storage, handling, and onboard reforming, researchers are increasingly exploring liquid hydrocarbon fuels at room temperature, such as methanol and ethanol. In this work, we have developed reformer models for
Hariharan, DeivanayagamChhatija, HarishBrown, JonathanGundlapally, Santhosh
Amid escalating concerns over climate change and emissions, this study presents a novel approach to develop sustainable fuels, leveraging advanced process modeling that uses waste CO2 streams from the biological ethanol fermentation process to produce e-methanol. Using Aspen Plus software, this research focuses on the conversion of biomass such as sugar cane and sugar beet to reduce reliance on fossil fuels and fortify energy resilience in a sustainable manner. In the first phase, bagasse, a byproduct of sugar production that is rich in carbon is used as a precursor for gasification and as a fuel to generate high-pressure steam. Oxygen obtained from electrolysis of water using renewable energy is used to preheat the biological exothermic fermentation phase. The CO2 captured during the fermentation phase is mixed with hydrogen obtained from the electrolysis process to synthesize e-methanol. Lignin, a byproduct of second-generation bioethanol, and surplus bagasse are identified and
Fernandes, Renston JakeNguyen, DucduyShakeel, Mohammad RaghibTurner, James W.G.
Perovskite solar cells should be subjected to a combination of stress tests simultaneously to best predict how they will function outdoors, according to researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL).
This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day. This research addresses a critical research gap in comprehensively evaluating the synergy between hybrid RES and V2G technology within a microgrid context. The
Al-Shetwi, Ali Q.
Road transport is bound to play a major role in the imminent transition to green energy. India has pledged to reach net-zero greenhouse gas emissions by 2070 at the COP26 [1] and is committed to have 30% electric vehicle (EV) sales by 2030 [2]. The Indian government is promoting fleet electrification through initiatives like FAME–II. India’s EV market is expected to grow at an annual rate of 90% between 2022 and 2030 [3]. With this projection combined with climate targets, comes an anticipated exponential rise in renewable energy contribution to the national power grid, accompanied by a huge transport-related demand for electricity. NITI Aayog – India’s public policy think tank – and the Ministry of Power are already looking into the expansion of EV charging infrastructure in India as part of smart grid implementation. The deployment of Vehicle-to-Grid (V2G) technology as an extension of the smart charging initiative is essential for a smooth transition to renewable energy. The
Sandhu, RoubleCao, XinyuanFaßbender, MaxSchade, ThomasEmran, AshrafAndert, JakobXia, FeihongSharma, Vijay
In a rush to move towards a sustainable future, the number of electric vehicles has risen significantly in recent years. With this, the need for power to charge those vehicles has also increased. In any electric vehicle fleet location, there could be many vehicles with different arrival and departure times and energy requirements, which might vary every day. Depending on the geographical location, the available solar energy might differ. The electricity costs might change on an hourly basis. This in total can affect the charging costs. In addition, a non-optimal sizing of the energy components could result in an under-sized system, where the energy demands are not met, or it could result in an over-sized system, where the owner must invest more than required. Based on all the information related to vehicle charging load, electricity charges, energy intensity profile of renewable energy generation like solar and wind, an optimal size of components, operational cost, and investment
Munirajappa, ChandrashekaraShrivastava, HimanshuPrasad P, Shilpa
Letter from the Special Issue Editors
Zhang, RonghuiKolhe, Mohan Lal
Items per page:
1 – 50 of 303