Browse Topic: Electric power grid

Items (530)
The growing adoption of electric vehicles (EVs), particularly those utilizing High-Voltage battery systems, demands fast-charging infrastructure that ensures high efficiency and power quality. The proposed GJO algorithm is employed to optimize the control and switching parameters of the Vienna rectifier, thereby improving harmonic performance and conversion efficiency without altering the converter hardware. This paper focuses solely on control optimization of the Vienna rectifier topology and does not include DC–DC isolation or galvanic separation. Filter components are modeled with equivalent series resistance (ESR) to account for incremental losses. Simulation results demonstrate that the Golden Jackal optimization (GJO) based control reduces input current THD to 2.09%, has a power factor of 0.998, and achieves an efficiency of 98.53%, representing a fractional but consistent improvement over conventional control methods such as SSA, ALO, and PSO. These findings highlight the
R, Mohammed AbdullahN, Kalaiarasi
The transition to electric mobility has accelerated the evolution of drivetrain technologies, particularly in the design and performance of electric vehicle (EV) transmissions. Unlike traditional internal combustion engine (ICE) vehicles, EVs utilize simpler yet diverse transmission systems cater to specific performance, efficiency, and application requirements. The growing adoption of electric vehicles across diverse transportation sectors has intensified the need for optimized electric transmission systems as per vehicle requirements. This research presents a comparative study of electric transmission performance across various vehicle segments, including Passenger Cars, Small commercial Vehicle, Commercial three-wheelers and All-terrain vehicles. The study evaluates different transmission configurations namely single-speed and multi-speed, based on key performance metrics such as Drag loss and Efficiency. Through a combination of literature review, and performance benchmarking, the
Jain, SankalpP, Ekhesh
Precise estimation of power metrics like active power, reactive power and apparent power is mandatory for effective control and monitoring of three phase power systems. On the other hand there might be challenges like waveform distortion, noisy signals and unbalanced load circumstances. traditional methods may not always provide accuracy in such an environment thus to address that in this study, we are using cross correlation and zero crossing methods to estimate power parameters of a three phase system. We are using these signal processing techniques to find phase angle, which in turn determines all other power parameters like active power, reactive power, apparent power, power factor. While Cross correlation tracks both the signals at different time lags and evaluate similarity between both the signals, zero crossing point approach identifies some particular locations where signal crosses zero axis. This analysis can be used in various applications such as power parameters monitoring
Panchal, Sanjivani VishwanathRoy, Sandipan
This paper explains the method of precooling of electric vehicle from grid connected charger reduce load on HVAC and improve the range. HVAC systems are integral part of a commercial EV bus. With the rise of ambient temperatures during various seasons, the load on HVAC System is increasing. Once an Electric vehicle is released from a depot for service, with an initial soaked up ambient vehicle, the HVAC system demands peak power for cooling the interiors which consumes a lot of battery power thus affecting the range. That cause the additional energy consumption required for precooling, which cannot be estimated as it is highly dependent on ambient temperature and range of the vehicle is also dependent on HVAC consumption during summer and peak loads. This paper is proposing a method that uses a special precooling mode which is activated depending on the selection of the vehicle route based on backend application running on cloud. The Application in the cloud checks if the vehicle is
Ganguly, SutanuShukla, AmishaJain, SarikaPatil, RohanSahu, PritishYadav, AnkitMarskole, DeepaAmancharla, Naga Chaithanya
The advancement of electric mobility has driven the development of technologies aimed at enabling smart, secure, and interoperable electric vehicle (EV) charging. In this context, this paper presents a technical and market analysis of the Vehicle-to-Grid (V2G) and Plug & Charge (PnC) functionalities, focusing on their architectures, applicable technical standards, communication protocols, levels of commercial maturity, and emerging applications. The discussion begins with a review of the main national and international standards relevant to charging infrastructure, with emphasis on IEC 61851, IEC 62196, and ISO 15118 series, which address the technical requirements of equipment, connectors, and vehicle-to-grid communication. The operation of V2G is then discussed as a technology that enables bidirectional energy flow between the EV and the power grid, with a focus on topological configurations, pilot project applications, and regulatory and economic challenges that currently limit its
Marques, Felipe L. R.Arioli, Vitor T.Bernardo, RodrigoNakandakare, Cleber A.Pizzini, Luiz R.Nicola, Eduardo V.
This paper examines the effect of vehicle-to-grid (V2G) integration on battery aging and the economic viability of plug-in hybrid electric vehicles (PHEVs). Due to their energy storage potential, V2G technologies are considered an environmentally friendly means to increase the stability of power grids. Persistent V2G operations tend to reduce battery lifetime and, consequently, will increase its replacement cost, which is a source of uncertainty for EV owners. This work investigates battery degradation under two scenarios: first, under normal vehicle operation using the US06 drive cycle, and second, under V2G operation with a 10-kW and 15-kW bidirectional charger. In the case of V2G operation, the charger discharges the battery by 20 kWh and then recharges it back to 90% state of charge (SoC) at a constant 1C-rate. Real-time simulations are performed in order to validate these results: a grid, a bidirectional charger, and the vehicle battery are modeled in a real-time simulator
Timilsina, LaxmanMoghassemi, AliBuraimoh, ElutunjiArsalan, AliRahman, S.M. ImratMuriithi, GraceOzkan, GokhanPapari, BehnazEdrington, Christopher S.
As the electric vehicle (EV) industry grows rapidly in Saudi Arabia, driven by the development of companies such as CEER, Lucid, and Tesla, there is an increasing need to evaluate and adapt electricity tariff structures to address changing demand patterns. This study explores the interaction between EV charging infrastructure, electricity pricing strategies, and consumer behavior, aiming to provide insights that support the sustainable expansion of the electric mobility ecosystem in the Kingdom. The methodology incorporates demand-supply analysis, energy consumption forecasting, and comparative assessments of tariff models implemented in other countries, with Saudi Arabia serving as a case study aligned with Vision 2030 objectives. Although EV adoption is expected to increase electricity demand, the Kingdom’s generation capacity, which reached 453 TWh in 2023 and is projected to exceed future consumption, ensures a stable and sufficient supply. Currently, public EV charging services
AlJuhani, Haneen Radi ABedywi, Lama Mohammed AAbdulNour, Bashar
Why smart electrical distribution is the new frontier in sustainable manufacturing. From transitioning to renewable energy, embracing the circular economy and pursuing carbon offsets, today's automakers are actively working to become more sustainable. Many OEMs have big goals to become fully carbon-neutral by 2050. Some believe they can get there even earlier. But look past the cars and sources of energy right into the factories in which the vehicles of today and tomorrow are born and focus on a key question: how can carmakers make significant strides inside their plants to cut waste and improve sustainability?
Hamadani, Mariam
This SAE Recommended Practice establishes the communication for the variety of potential functions for plug-in electric vehicle (PEV) customers. This includes features for use case items in SAE J2836/3 that may be PEV/customer optional equipment, such as AC vehicle-to-load (V2L) and AC vehicle-to-vehicle systems. These systems conform to SAE J1772 with variations required to identify to the PEV bidirectional onboard charger (OBC) the mode of operation changes and output requirements. SAE has published multiple documents relating to PEV and vehicle-to-grid (V2G) interfaces. The various document series are listed below, with a brief explanation of each. Figure 1 shows the sequencing of these documents and their primary function (e.g., the SAE J2836 and SAE J2847/1 documents start with smart charging, SAE J2836 and SAE J2847/2 then add DC charging, etc.). The intent is to have subsequent slash sheets complement each other as more functions and features are included. The /6 series of
Hybrid - EV Committee
A home in Silicon Valley goes dark for a moment, then clicks back to life. A GM Energy employee had switched off the house's access to the grid. When it detects a lack of power the GM Energy PowerShift Charger box, inverter, and Silverado EV switch from charging the vehicle or sitting idle to powering the home. Ford's F-150 Lighting and Kia's EV9 also have bi-directional charging boxes that can keep the lights on when the grid fails. Bidirectional charging, or V2H (vehicle to home), is one of the more important features of electric vehicles. It has the potential to keep the lights on during blackouts, save people money on their utility bills and help balance the grid.
Baldwin, Roberto
University of Waterloo researchers are tapping into idled electric vehicles (EVs) to act as mobile generators and help power overworked and aging electricity grids.
With the rapid expansion of the electric vehicle (EV) market, the frequency of grid-connected charging has concentrated primarily during peak hours, notably from 7:00 a.m. to 10:00 a.m. and 6:00 p.m. to 10:00 p.m., resulting in substantial demand surges during both morning and evening periods. Such uncoordinated charging patterns pose potential challenges to the stability and economic efficiency of power systems. As vehicle-to-grid (V2G) technology advances, facilitating bidirectional energy exchange between EVs and smart grids, the need for optimized control of EV charging and discharging behaviors has become critical to achieving effective peak shaving and valley filling in the grid. This paper proposes a microgrid energy scheduling optimization algorithm based on existing smart grid and EV charging control technologies. The method establishes a multi-objective optimization model with EVs’ 24-h charging and discharging power as decision variables and microgrid load rate, load
Fan, LongyuChen, YuxinZhang, Dacai
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836-1 use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 schema and application specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Hybrid - EV Committee
Mitsubishi Fuso Truck and Bus has announced it will conduct a joint demonstration of its Battery 2nd Life initiative this year. This initiative will be jointly conducted with CONNEXX Systems and will repurpose used batteries from Mitsubishi eCanter trucks to build energy storage systems. According to Mitsubishi, CONNEXX will remove the used batteries from end-of-life eCanters and repurpose them as power sources for what CONNEXX has dubbed its EnePOND EV Charger energy storage systems. These units have integrated EV chargers developed by CONNEXX that can reportedly reduce the load on the existing power grid while allowing for DC fast charging of multiple EVs simultaneously. CONNEXX also noted that these units enable EV charging during power outages.
Wolfe, Matt
This research investigates how distributed energy resources (DERs) and electric vehicles (EVs) affect distribution networks. With sensitivity analysis, the research focuses on how these integrations affect load profiles. The research focuses on sizing of various DERs and EV charging/discharging strategies to optimize the load profile, voltage stability, and network loss minimization. System parameters including load profile, EV charging pattern, weather conditions, DER sizes, and electricity pricing are analyzed to quantify their individual and combined impacts on load variability. However, with increased capacity of DERs, network losses increase. A mathematical model with system and operational constraints has been developed and simulated in MATLAB Simulink environment, validation of the proposed approach in improving the load profile, and reduction in network losses, with the intermittent power generation from DERs and EV integration. Simulation result shows that optimal capacity of
Khedar, Kamlesh KumarGoyal, Govind RaiSingh, Pushpendra
This paper presents the strategy design, development, and detailed simulation of an Energy Management System (EMS) for a range extender energy storage microgrid project. Initially, a microgrid system model including photovoltaic (PV) and energy storage devices was established. Secondly, the Latin Hypercube Sampling (LHS) method was employed to generate possible operational scenarios, and an improved K-means clustering algorithm was used for scenario classification. Subsequently, a series of constraints were constructed for the economic viability of the microgrid to minimize its annualized comprehensive cost, while satisfying power balance and equipment operation. Finally, the microgrid system was simulated and solved using the GUROBI solver, covering cost analyses of the energy storage system and diesel generators under different configurations, as well as the State of Charge (SOC) variations of the energy storage system. The simulation results indicate that, after considering the one
Hua, YuweiJin, ZhenhuaHuang, HuilongWang, Zihao
Our energy future may depend on high-temperature superconducting (HTS) wires. This technology’s ability to carry electricity without resistance at temperatures higher than those required by traditional superconductors could revolutionize the electric grid and even enable commercial nuclear fusion.
This SAE Technical Information Report (TIR) establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability, and security. This includes the history, current status, and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., [1] If I want to do V2G with an off-board inverter, what documents and items within them do I need, [2] What do we intend for V3 of SAE J2953, …).
Hybrid - EV Committee
Adoption of Electric Vehicles (EVs) reduces air pollution by reducing harmful gas emissions. Such adoption, however, needs a reliable and convenient charging infrastructure, including smart EV charging. Renewable energy sources such as solar photovoltaic cells, battery and wind energy systems can address these infrastructural gaps which work in conjunction with main grid power supply thereby providing low-cost electricity. This paper introduces an energy management algorithm for integrated renewable and grid power sources available at charging stations across India that considers techno-economic and environmental factors. The current work proposes a supervisory controller model that manages the load power demand of the charging station. The controller effectively deploys low cost energy sources based on the status of all available power supplies and reduces the overall charging costs in real time. The energy management algorithm ensures adequate stand-alone energy generation and
Shukla, AnkitKushwah, Yogendra SinghSuman, Saurabh
It’s common knowledge that a major challenge for solar energy is how to store excess energy produced when conditions are right, like noon-time sun, so that it can be used later. The usual answer is batteries. But renewable energy resources are causing problems for the electricity grid in other ways as well. In a warm, sunny location like California, mid-afternoon had been a time of peak demand for the electric utility, but with solar it’s now a time of peak output.
A device was developed that uses composite-based nonlinear transmission lines (NLTLs) for a complete high-power microwave system, eliminating the need for multiple auxiliary systems. The interest in NLTLs has increased in the past few decades because they offer an effective solid-state alternative to conventional vacuum-based, high-power microwave generators that require large and expensive external systems such as cryogenic electromagnets and high-voltage nanosecond pulse generators.
Tracking of energy consumption has become more difficult as demand and value for energy have increased. In such a case, energy consumption should be monitored regularly, and the power consumption want to be reduced to ensure that the needy receive power promptly. Our objective is to identify the energy consumption of an electric vehicle from battery and track the daily usage of it. We have to send the data to both the user and provider. We have to optimize the power usage by using anomaly detection technique by implementing deep learning algorithms. Here we are going to employ a LSTM auto-encoder algorithm to detect anomalies in this case. Estimating the power requirements of diverse locations and detecting harmful actions are critical in a smart grid. The work of identifying aberrant power consumption data is vital and it is hard to assure the smart meter’s efficiency. The LSTM auto-encoder neural network technique is used here for predicting power consumption and to detect anomalies
Deepan Kumar, SadhasivamArun Raj, VR, Vishnu Ramesh KumarManojkumar, R
The mobility industry with its entire ecosystem is currently striving towards sustainable solutions, which leads to a continuous production ramp-up of electrified vehicles. The parallel extension of the charging infrastructure is needed but faced with various challenges like high investments and power limitations of local electrical grid connection. To fulfill the user requirements of electrified vehicle owners, large-scaled but cost-efficient charging systems for different parking scenarios in residential buildings, at work or at the destination are essential. MAHLE chargeBIG offers large-scaled and centralized charging infrastructure with more than 2,000 already installed charging points since 2019. This paper is a first scientific publication with an in-dept evaluation of the large-scaled charging infrastructure usage. Based on backend data of multiple MAHLE chargeBIG charging infrastructure installations with more than 600 charging points, more than 70,000 recorded charging events
Mehlig, DennisKrumbholz, MatthiasGerstadt, Max
Nowadays, electrification is largely acknowledged as a crucial strategy to mitigate climate change, especially for the transportation sector through the transition from conventional vehicles to electric vehicles (EVs). As the demand for EVs continues to rise, the development of a robust and widespread charging infrastructure has become a top priority for governments and decision-makers. In this context, innovative approaches to energy management and sustainability, such as Vehicle-to-Grid (V2G), are gradually being employed, leading to new challenges, like grid service integration, charge scheduling and public acceptance. For instance, the planned use scenario, the user’s behavior, and the reachability of the geographical position influence the optimal energy management strategies both maintain user satisfaction and optimize grid impact. Firstly, this paper not only presents an extensive classification of charging infrastructure and possible planning activities related to different
Innocenti, EleonoraBerzi, LorenzoKociu, AljonDelogu, Massimo
Life cycle analyses suggest that electric vehicles are more efficient than gasoline internal combustion engine vehicles (ICEVs). Although the latest available data reveal that electric vehicle (EV) life cycle operational efficiency is only 17% (3 percentage points) higher than a gasoline ICEV, overall life cycle efficiencies including manufacturing for EVs are 2 percentage points lower than for ICEVs. Greenhouse gas (GHG) emissions of EVs are only 4% lower than ICEVs, but criteria emissions of NOx and PM are approaching or exceeding two times those of gasoline ICEVs. Significant reductions in electric grid emissions are required to realize EV’s anticipated emission benefits. In contrast, hybrid electric vehicles (HEVs) have over 70% higher efficiency and 28% lower GHG emissions than today’s EVs. For heavy-duty trucks using today’s gray hydrogen, produced by steam–methane reforming, overall life cycle efficiencies of ICEs and fuel cells are 63% higher than electric powertrains using
Wade, Wallace R.
Smart devices can be hacked. That makes the electric grid vulnerable to bad actors who might try to turn off the power, damage the system, or worse. Recently, a team of experts at the Department of Energy’s Pacific Northwest National Laboratory put forth a new approach to protect the grid.
The benefits of EVs are still being explored and introduced to the world. The latest is GM Energy's new bidirectional charging system. With a host of EVs on the market and more on the way, GM Energy unveiled its Vehicle-to-Home (V2H) bidirectional charging solution. The wall box and companion apps will initially be available on the 2024 Chevrolet Silverado EV First-Edition RST2. Compatibility with other vehicles under the GM umbrella will be supported in the future.
Baldwin, Roberto
A commonplace chemical used in water treatment facilities has been repurposed for large-scale energy storage in a new battery design by researchers at the Department of Energy’s Pacific Northwest National Laboratory. The design provides a pathway to a safe, economical, water-based, flow battery made with Earth-abundant materials. It provides another pathway in the quest to incorporate intermittent energy sources such as wind and solar energy into the nation’s electric grid.
This Aerospace Information Report (AIR) is intended to provide information relating to the construction, calibration, and usage of parallel plate transmission lines in electromagnetic compatibility susceptibility testing.
AE-4 Electromagnetic Compatibility (EMC) Committee
In the process of automobile industrialization, integrated electric drive systems turn to be the mainstream transmission system of electric vehicles gradually. The main sources of noise and vibration in the chassis are from the gear reducer and motor system, as a replacement of engine. For improving the electric vehicles NVH performance, effective identification and quantitative analysis of the main noise sources are a significant basis. Based on the rotating hub test platform in the semi-anechoic chamber, in this experiment, an electric vehicle equipped with a three-in-one electric drive system is taken as the research object. As well the noise and vibration signals in the interior vehicle and the near field of the electric drive system are collected under the operating conditions of uniform speed, acceleration speed, and coasting with gears under different loads, and the test results are processed and analyzed by using the spectral analysis and order analysis theories. Combining the
Jin, MingxinZuo, ShuguangShi, LeiMao, Qingshao
Modern automotive industry field is recently moving to more electrification level, so the presence of Battery Electric Vehicles (BEVs) is constantly increasing, along with charging technology evolution. Typically, BEVs do not use a significant portion of their battery’s capacity in day-to-day travel, which means their most valuable asset, the battery, sits idle during most of its life. Vehicle to Load (V2L) feature enables the transfer of energy from vehicle to the external loads (like utility tools, dryer, camping equipment or any other electrical appliance) which is connected to the power socket present in the Power Panel to perform AC Discharging. V2L technology lets consumers get more energy from a vehicle, even when it is turned off, improving consumer appeal. Bottomline, consumers can use this on-board Power Panel like a normal portable generator. More specifically, this paper will explore a scalable V2L architecture design with on-board Smart Power Panel technology, requested to
Tavella, DomenicoTolkacz, JosephKasture, ArchanaSarkar, Ashish
With the increasing demand for efficient & clean transport solutions, applications such as road transport vehicles, aerospace and marine are seeing a rise in electrification at a significant rate. Irrespective of industries, the main source of power that enables electrification in mobility applications like electric vehicles (EV), electric ships and electrical vertical take-off & landing (e-VTOL) is primarily a battery making it fundamentally a DC system. Fast charging solutions for EVs & e-VTOLs are also found to be DC in nature because of several advantages like ease of integration, higher efficiency, etc. Likewise, the key drivers of the electric grid are resulting in an energy transition towards renewable sources, that are also essentially DC in nature. Overall, these different business trends with their drivers appear to be converging towards DC power systems, making it pertinent. However, DC circuit protection poses serious challenges compared to AC due to the absence of natural
Milind, T. R.Thomas, AmalRastogi, SarthakK, Satyadeep
UC Santa Cruz Assistant Professor of Electrical and Computer Engineering Yu Zhang and his lab are leveraging tools to improve the efficiency, reliability, and resilience of power systems, and have developed an artificial intelligence (AI)-based approach for the smart control of microgrids for power restoration when outages occur.
This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day. This research addresses a critical research gap in comprehensively evaluating the synergy between hybrid RES and V2G technology within a microgrid context. The
Al-Shetwi, Ali Q.
This SAE Information Report establishes use cases for a plug-in electric vehicle (PEV) communicating with a DER Managing Entity (DME) as a distributed energy resource (DER) which is supported by SAE J2847/3. This document also provides guidance for updates to SAE J2847/2 to allow an inverter in an EVSE to use the PEV battery when operating together as either a DER or as a power source for loads which are not connected in parallel with the utility grid. Beyond these two specific communication objectives, this document is also intended to serve as a broad guide to the topic of reverse power flow (discharging) and vehicle-to-grid (V2G) technology.
Hybrid - EV Committee
With increase in number of EVs on Indian roads, poised EV makers to produce innovative and pragmatic concept of electric vehicle features. The concept of bidirectional charging is one of that and which is creating buzz and curiosity among EV buyers. The bidirectional charging enables EV owners to lend the power to grid, other vehicles or use for other auxiliary applications. This paper focuses on idea of vehicle-to-vehicle (V2V) level 1, level 2 AC charging using J1772 standard, and level 3 DC fast charging using ISO 15118 or DIN 70121. where one user can lend a range of few kilometers to other based on requirement as a helping hand. This paper proposes a new idea which enable vehicle-to-vehicle (V2V) charging using ISO 15118, DIN70121 and J1772 protocol. In V2V charging, source vehicle shall function as a mobile charging source (EVSE) and other shall function as a sink (EV). The idea of making source vehicle as charging station involves sink vehicle authentication and managing the
Kumar, RohitPenta, AmarVenugopal, Karthick BabuSahu, HemantArya, Harshita
Road transport is bound to play a major role in the imminent transition to green energy. India has pledged to reach net-zero greenhouse gas emissions by 2070 at the COP26 [1] and is committed to have 30% electric vehicle (EV) sales by 2030 [2]. The Indian government is promoting fleet electrification through initiatives like FAME–II. India’s EV market is expected to grow at an annual rate of 90% between 2022 and 2030 [3]. With this projection combined with climate targets, comes an anticipated exponential rise in renewable energy contribution to the national power grid, accompanied by a huge transport-related demand for electricity. NITI Aayog – India’s public policy think tank – and the Ministry of Power are already looking into the expansion of EV charging infrastructure in India as part of smart grid implementation. The deployment of Vehicle-to-Grid (V2G) technology as an extension of the smart charging initiative is essential for a smooth transition to renewable energy. The
Sandhu, RoubleCao, XinyuanFaßbender, MaxSchade, ThomasEmran, AshrafAndert, JakobXia, FeihongSharma, Vijay
The battery electric buses (BEB) are set as key tools to enable cities to meet their challenging transport environmental targets, i.e. the reduction of Greenhouse gas (GHG) emissions, improvement of local air quality, as well as to provide a quieter system for both passengers and the urban community. The recent evolutions of the traction battery technology, with increasing battery energy and power densities, battery durability and dynamic performance, driven by both the light and heavy duty vehicles segment, has opened the way for a series of transit bus electrification initiatives, focused on the evaluation of the feasibility of the BEB technology for the zero local emission bus fleet targets, already set by transit authorities in some important cities worldwide. In this context, as important as the onboard electric traction technology itself, currently already mature for BEB test trials, is the required electric charging infrastructure and its inherent operational effects, which
Barbosa, Fábio C.
Electric vehicles (EV) are an effective eco-friendly means of transportation due to the increased use of batteries for energy storage. Additionally, they connect with electricity grids by supplying power and managing the charging rate to achieve quicker charging times. Owing to their ability to operate in a Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) mode, electric vehicles can fulfil this task by supplying bidirectional power flow to tackle the various challenges associated with faster charging and introducing additional services to the grid. Maintaining a stable output voltage and current during the energy exchange process is a crucial factor in these systems. To overcome this challenge, the proposed system employs a bi-directional buck-boost converter (BBBC) with a sophisticated control strategy that considers the current State of Charge (SoC) of the storage system. This BBBC enables bidirectional energy transfer between the power grid and the vehicle's energy storage system
R, UthraJena, SwetaparnaMajeed, SalmanAgarwal, Janvhi
Items per page:
1 – 50 of 530