Browse Topic: Electric power grid
ABSTRACT Situations exist that require the ability to preposition a basic level of energy infrastructure. Exploring and developing the arctic’s oil potential, providing power to areas damaged by natural or man-made disasters, and deploying forward operating bases are some examples. This project will develop and create a proof-of-concept electric power prepositioning system using small autonomous swarm robots each containing a power electronic building block. Given a high-level power delivery requirement, the robots will self-organize and physically link with each other to connect power sources to storage and end loads. Each robot mobile agent will need to determine both its positioning and energy conversion strategy that will deliver energy generated at one voltage and frequency to an end load requiring a different voltage and frequency. Although small-scale robots will be used to develop the negotiation strategies, scalability to existing, large-scale robotic vehicles will be
ABSTRACT The roll-up roll-away Tactical Vehicle-to-Grid / Vehicle-to-Vehicle (V2G/V2V) system provides a plug-and-play, very fast forming, smart, aggregated, and efficient power solution for an emerging (including austere) contingency base that is ready to generate up to 240kW of 208 VAC 3-phase power in less than 20 minutes. The system is designed to provide grid services (peak shaving, Volt/VAR control, power regulation, and current source mode) beneficial to emerging and mature grids (CONUS or OCONUS). The system uses vehicle Transmission-Integrated Generators (TIGs) to produce 600VDC power for use by vehicle hotel-loads (electrification) and off-board loads (tents/shelters, communications centers, or other electrical loads). Each vehicle is equipped with a Vehicle Communication Module (VCM), which provided the communication capability prior to initiation of transfer of up to 100kW of power via the J1772 SAE Combo Connector between vehicles (V2V) and/or for export power off-vehicle
ABSTRACT Silicon carbide (SiC) semiconductor devices have demonstrated promise in increasing power density by offering reduced continuous and switching losses compared to traditional silicon (Si) semiconductors. SiC can also withstand higher temperatures than Si devices. This presents an opportunity to achieve higher power density for vehicle inverters by using SiC. In this work, we describe the design and testing of a prototype SiC three-phase inverter that can achieve higher temperatures and power density than any off-the-shelf offerings, while fitting in a package roughly the size of a shoebox. This will enable future ground vehicle platforms to deliver greater power without needing to increase space claim or vehicle-level cooling compared to traditional Si inverters, enabling greater capabilities for a given platform to support future Warfighter capabilities (such as directed energy weapons, silent mobility, high power radar/communications/jamming on-the-move, and vehicle to grid
ABSTRACT Electric vehicle (EV) aggregation to provide vehicle-to-grid (V2G) services is a topic that has generated research into the economics and viability of using EVs for more than transportation, but little has been demonstrated to this point. This is especially true of using bidirectional power flows to move energy to the grid from EVs or to provide variable charge and discharge control. Our work focuses on implementing bi-directional functionality to demonstrate both V2G services and islanded microgrid support. The use of an intelligent microgrid controller combined with an EV aggregator provides new control capabilities for EV participation as energy storage devices
It’s common knowledge that a major challenge for solar energy is how to store excess energy produced when conditions are right, like noon-time sun, so that it can be used later. The usual answer is batteries. But renewable energy resources are causing problems for the electricity grid in other ways as well. In a warm, sunny location like California, mid-afternoon had been a time of peak demand for the electric utility, but with solar it’s now a time of peak output
Tracking of energy consumption has become more difficult as demand and value for energy have increased. In such a case, energy consumption should be monitored regularly, and the power consumption want to be reduced to ensure that the needy receive power promptly. Our objective is to identify the energy consumption of an electric vehicle from battery and track the daily usage of it. We have to send the data to both the user and provider. We have to optimize the power usage by using anomaly detection technique by implementing deep learning algorithms. Here we are going to employ a LSTM auto-encoder algorithm to detect anomalies in this case. Estimating the power requirements of diverse locations and detecting harmful actions are critical in a smart grid. The work of identifying aberrant power consumption data is vital and it is hard to assure the smart meter’s efficiency. The LSTM auto-encoder neural network technique is used here for predicting power consumption and to detect anomalies
Smart devices can be hacked. That makes the electric grid vulnerable to bad actors who might try to turn off the power, damage the system, or worse. Recently, a team of experts at the Department of Energy’s Pacific Northwest National Laboratory put forth a new approach to protect the grid
A commonplace chemical used in water treatment facilities has been repurposed for large-scale energy storage in a new battery design by researchers at the Department of Energy’s Pacific Northwest National Laboratory. The design provides a pathway to a safe, economical, water-based, flow battery made with Earth-abundant materials. It provides another pathway in the quest to incorporate intermittent energy sources such as wind and solar energy into the nation’s electric grid
Modern automotive industry field is recently moving to more electrification level, so the presence of Battery Electric Vehicles (BEVs) is constantly increasing, along with charging technology evolution. Typically, BEVs do not use a significant portion of their battery’s capacity in day-to-day travel, which means their most valuable asset, the battery, sits idle during most of its life. Vehicle to Load (V2L) feature enables the transfer of energy from vehicle to the external loads (like utility tools, dryer, camping equipment or any other electrical appliance) which is connected to the power socket present in the Power Panel to perform AC Discharging. V2L technology lets consumers get more energy from a vehicle, even when it is turned off, improving consumer appeal. Bottomline, consumers can use this on-board Power Panel like a normal portable generator. More specifically, this paper will explore a scalable V2L architecture design with on-board Smart Power Panel technology, requested to
UC Santa Cruz Assistant Professor of Electrical and Computer Engineering Yu Zhang and his lab are leveraging tools to improve the efficiency, reliability, and resilience of power systems, and have developed an artificial intelligence (AI)-based approach for the smart control of microgrids for power restoration when outages occur
As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line. A set of optimal controls that has been developed, including power flow controls on the tie line
With the increased demand for electricity due to the rapid expansion of EV charging infrastructure, weather events, and a shift towards smaller, more environmentally responsible forms of renewable sources of energy, Microgrids are increasing in growth and popularity. The integration of real time communication between all PGSs (Power Generating Sources) and loadbanks has allowed the re-utilization of waste electricity. Pop-up Microgrids in PSPS events have become more popular and feasible in providing small to medium size transmission and distribution. Due to the differing characteristics of the PGSs, it is a challenge to efficiently engage the combined PGSs in harmony and have them share and carry the load of the microgrid with minimal ‘infighting.’ Different Power generating sources each have their own personality and unique ‘quirks.’ With loadbanks being able to perform various functions automatically by monitoring and responding to individual PGSs needs and demands, efficiency is
Researchers at the National Institute of Standards and Technology (NIST) have fabricated a novel device that could dramatically boost the conversion of heat into electricity. If perfected, the technology could help recoup some of the recoverable heat energy that is wasted in the U.S. at a rate of about $100 billion each year
A novel method which has the potential for improving the U.S. Navy's ability to perform continuous assurance on autonomous and other cyberphysical systems. Naval Postgraduate School, Monterey, CA Autonomous systems are poised to provide transformative benefits to society. Autonomous vehicles (AVs) have the potential to reduce the frequency and severity of collisions, enhance mobility for blind, disabled, and underage drivers, lower energy consumption and environmentally harmful emissions, and reduce population density in metropolitan regions. In civilian aviation, increasingly autonomous systems could mitigate two of the most costly features of human pilots: the cost associated with training and paying highly skilled operators, and the reduced efficiency incurred by flight time limitations and crew rest requirements. Additionally, autonomous air traffic management systems could reduce the cognitive burden on air traffic controllers by automating the monitoring and analysis of high
Electrification of public transport in cities puts lots of stress onto the vehicle's traction batteries and the power grid during charging. The authors present a self-learning operating strategy to improve the battery life and reduce stress on the power grid by lengthening charging operations as long as possible and avoiding extreme states of charge. During regular service operation, the operating strategy observes the vehicle state and energy flows inside of the vehicle and between vehicle and charging infrastructure. Based on these observations, the operating strategy plans a guidance state of charge trajectory for the trip and dispatches recommendations for charging and discharging the traction battery to the vehicle's ECU. Additionally, the operating strategy ensures reliable service trips by checking if the current state of charge matches the estimated energy consumption for a fixed range laying ahead. The operating strategy can detect and mitigate a situation in which the vehicle
CASE VP Jay Joseph outlines dramatic cost reductions in fuel-cell systems, the move into stationary power, and new models for mobile and residential energy. Is the long-promised “hydrogen economy” still 15 years away, as it reportedly has been for… more than 15 years? Or is it just around the corner? SAE Media traveled to Honda's U.S. campus in Torrance, California, to see the company's latest progress. This was the introduction of Honda's zero-emission stationary fuel-cell power station, which now is in service as a backup power source for the company's data center. Honda's FCX was the the world's first production fuel-cell vehicle when it debuted in 2002. Since then the company's hydrogen developments have continued. Honda began collaborating on fuel-cell systems in 2013 and the two OEMs share a fuel-cell manufacturing joint venture. The Torrance event also presented the opportunity to speak with Jay Joseph, Honda's VP of Connected, Autonomous, Shared and Electrified (CASE
Printed radio frequency (RF) surface acoustic wave (SAW) sensor devices are a promising technology for providing highly reconfigurable, cost-effective, and multi-parameter sensing. A new method was developed to print high-fidelity, passive sensors for energy applications that can reduce the cost of monitoring critical power grid assets
Items per page:
50
1 – 50 of 501