Browse Topic: Off-board energy sources

Items (3,033)
Road transport contributes 12% of India’s energy-related Carbon Dioxide (CO2) emissions. It is one of the major source of air pollution in urban area. These vehicle related emissions has increased more than three times since 2000 which is mainly driven by rapid urbanization and the growing demand for private vehicles. If there is no shift away from fossil to renewables, climate change intensity and air quality challenges will increase. Among sustainable alternatives, electric vehicles (EVs) have emerged as a promising solution. However, a comprehensive understanding of their environmental performance, particularly in the Indian context, is essential for informed decision-making. This study employs a Life Cycle Assessment (LCA) method to evaluate the environmental consequences of typical passenger vehicle with an gasoline/diesel powered vehicle compared to its EV powertrain covering Cradle-to-Grave life cycle phases. Key life cycle stages—manufacturing, transportation, distribution
Sonawane, NayanSathaye, AsmitaGode, AbhishekDeshpande, AshishShinde, HarshavardhanKothe, Anjali
The need for energy is ever increasing, though the dependency on renewable energy have increased, it is not sufficient to cater the demand. India is one of fastest developing country which depends on coal 55% for its total energy need. To achieve coal digging & transportation an underground mining vehicle has gained high importance. Underground mine environment is inherently dangerous due to various factors, including explosive and toxic gases, dust, and the potential for collapses. Thereby vehicles running in coal mines requires extreme safety features to safeguard its operator & coal mine workers. In India the Directorate General of Mines Safety (DGMS) under Government of India circulates notification to Manager of Coal and Metalliferous Mines & OEM, concerned about the minimum safety evaluations to be taken care for the mining trucks. It has been observed that there are significant inconsistencies in design practices for mining vehicles, with the presence of multiple, unverified
Babar, SagarAkbar Badusha, A
In response to the significant environmental challenges posed by climate change driven by global warming, the automotive industry is accelerating the transition toward electrification. While electric vehicles offer considerable potential for mitigating CO₂ emissions, their elevated upfront costs pose a notable challenge to large-scale market penetration. Energy efficiency improvement of electric vehicles is emerging field of research to reduce total cost of ownership. Electric vehicle powertrain component selection in small commercial vehicles including three and four wheelers is a complex process which has to fulfil multiple requirements which includes range, performance, drivability, packaging, total cost of ownership of vehicle and comfort. In addition, powertrain configuration including battery, motor and transmission ratio selection plays a fundamental role in cost of electric vehicle. Hence, The task of selecting the right powertrain configuration, encompassing architecture
Wani, KalpeshJadhav, VaibhavShendge, RamanWarule, Prasad
In the context of increasing global energy demand and growing concerns about climate change, the integration of renewable energy sources with advanced modelling technologies has become essential for achieving sustainable and efficient energy systems. Solar energy, despite its considerable potential, continues to face challenges related to performance variability, limited real-time insights, and the need for reactive maintenance. To overcome these barriers, this work presents a Digital Twin framework aimed at optimizing solar-integrated energy systems through real-time monitoring, predictive analytics, and adaptive control. This work presents a Digital Twin framework designed to address the challenges of designing, operating, maintaining, and estimating renewable energy systems, specifically solar power, based on dynamic load demand. The framework enables real-time forecasting and prediction of energy outputs, ensuring systems operate efficiently and maintain peak performance across
R, AkashBurud, Priti RajuGumma, Muralidhar
Requirement for Construction Equipment Vehicles (CEVs) in India is continuously growing as India being fastest growing country in the world in terms of Infrastructure. The technology in the automotive industry is evolving rapidly in recent times. Thus, with the development of new technologies, the challenges are also ever-increasing from an Electromagnetic Interference, Susceptibility (EMI/EMC) and Safety perspective. Recently CEVs include various types of machines including Compactor, Wheel Loader, Crane, Paver, Truck Crane, Cement Mixer etc. EMC requirements of all these types are internationally governed by ISO 13766-1, 2. This paper provides insights about various considerations to be taken during EMC Tests of each type of machines. It also includes guidelines related to antenna positioning, reference point calculations, Narrow Band and Broad band considerations. It will also provide general EMC guidelines and precautions related to component selection and placement along with
Yeola, MayurShinde, Avinash
This study presents the development of a mini power plant prototype designed to convert solar energy into mechanical energy through the use of green hydrogen. The system comprises a photovoltaic panel, an electrolyzer, a hydrogen fuel cell, and a DC motor with a propeller. The main objective is to assess the technical feasibility of generating and consuming green hydrogen in real time for clean energy applications. The process begins with water electrolysis powered by solar energy, producing hydrogen to be fed into the fuel cell, which in turn supplies electrical energy to the DC motor. The results demonstrate the potential of this approach for sustainable energy conversion and highlight the importance of optimizing system components such as electrodes, membranes, and energy storage. Future improvements include enhancing hydrogen purity, implementing modular designs, and integrating process automation.
Grandinetti, Francisco Josédos Santos Guedes, Thiago ThiagoCastro, Thais SantosMartins, Marcelo Sampaiode Souza Soares, Alvaro Manoelde Faria Neto, Antonio dos Reis
The advancement of electric mobility has driven the development of technologies aimed at enabling smart, secure, and interoperable electric vehicle (EV) charging. In this context, this paper presents a technical and market analysis of the Vehicle-to-Grid (V2G) and Plug & Charge (PnC) functionalities, focusing on their architectures, applicable technical standards, communication protocols, levels of commercial maturity, and emerging applications. The discussion begins with a review of the main national and international standards relevant to charging infrastructure, with emphasis on IEC 61851, IEC 62196, and ISO 15118 series, which address the technical requirements of equipment, connectors, and vehicle-to-grid communication. The operation of V2G is then discussed as a technology that enables bidirectional energy flow between the EV and the power grid, with a focus on topological configurations, pilot project applications, and regulatory and economic challenges that currently limit its
Marques, Felipe L. R.Arioli, Vitor T.Bernardo, RodrigoNakandakare, Cleber A.Pizzini, Luiz R.Nicola, Eduardo V.
The market-oriented reform of railway coal transport price is a key initiative to optimize the transport structure and enhance the railway’s market share in coal transport. Based on the competitive relationship between road and railway, this paper explores the impact of the floating pricing mechanism of railway coal transport on the allocation of capacity and enterprise benefits. Firstly, we construct a model to consider the selection behaviour of highway and railway freight transport modes to reveal shippers’ choice of coal transport modes, and analyse shippers’ preference for highway and railway based on transport cost, timeliness and price elasticity; secondly, we combine railway coal transport clearing rules with market-oriented floating pricing policy, establish a pricing decision model with the goal of optimizing transport volume and carrier revenue, and quantify the full railway tariff, transport time and volume, surplus and so on. Secondly, we establish a pricing decision model
Liu, LiYang, LeiCai, Zhenghong
In view of the complex intertidal terrain challenges faced by offshore wind power maintenance, this paper optimizes the lightweight design of multi-terrain tracked vehicles. The structure was optimized by finite element analysis, and the maximum stress was 211.68 MPa ( lower than the safety limit of 230 MPa), and the maximum deformation was 5.25 mm, which ensured the stability and stiffness. Titanium alloy has the advantages of high strength, low density and corrosion resistance, which improves the durability of the frame while reducing the weight of the frame. Advanced manufacturing technologies such as phase transformation superplastic diffusion welding optimize the connection between TC4 titanium alloy and stainless steel. Modal analysis and optimization techniques refine the structural parameters and improve the complex load performance. The research promotes the lightweight of the frame and provides theoretical and technical support for the design of multi-terrain vehicles.
Xu, HanXu, ShilinMa, WenboZhu, Wei
Toyota's big claim for its new sixth-generation 2026 RAV4 is that the SUV is now“ 100% electrified.” That's true, as Obi-wan once said, from a certain point of view. As it recently did with the Camry, the automaker has eliminated an ICE-only powertrain from the list of options, giving drivers the choice between a gas-electric hybrid or a plug-in hybrid (PHEV). The hybrids use Toyota's fifth-generation hybrid system, which uses a 2.5-L 4-cylinder aluminum Atkinson cycle engine that produces 163 lb-ft and up to 226 hp (169 kW) in FWD configuration, 236 hp (176 kW) in AWD. Seven trim levels - LE, XLE Premium (which Toyota expects to be the volume trim), Limited, SE, XSE and Woodland - can be had with the hybrid powertrain, while the driving-focused GR Sport version can only be had as a PHEV. The plug-in option is available on the SE, XSE and Woodland. These new RAV4s use Toyota's sixth-generation PHEV system, which produces 324 hp (242 kW) and up to 172 lb-ft So, yes, the entire line-up
Blanco, Sebastian
As countries race to expand renewable energy infrastructure, balancing clean electricity production with land use for food remains a pressing challenge — especially in Japan, where mountainous terrain limits space. A recent study led by researchers from the University of Tokyo explores a promising solution: integrating solar panels with traditional rice farming in a practice known as agrivoltaics.
Leonardo DRS Arlington, VA mmount@drs.com
The path toward carbon-neutral mobility represents one of the greatest cultural transformations in recent human history. Positioned between industrial heritage, emerging mobility technologies, and the energy supply sector are the users of 1.5 billion motor vehicles worldwide. Conflicting publications on raw material availability, energy efficiency, and the climate neutrality of propulsion systems have led to widespread uncertainty. This Illustrated Energy Primer provides a new foundation for orientation. It begins with a visual explanation of the basic concepts of energy and power, followed by illustrative comparisons of typical energy demands in vehicles and households. The focus then shifts to common types of energy generation systems. Using regional examples—from coal-fired power plants to wind farms, solar installations, and balcony solar panels—the guide provides clear and accessible performance benchmarks for energy production. Next, nine individual experience profiles highlight
Daberkow, Andreas
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Borle, ShraddhaPrasad, LakshmiCouvret, SebastienFournier, HugoChenuet, Laurent
Requirement for Construction Equipment Vehicles (CEVs) in India is continuously growing due to India’s focus on infrastructure development. Technology in the automotive industry has evolved rapidly in recent times and it is also adding new dimensions to the compliance to Electromagnetic Interference, Susceptibility (EMI/EMC) and Safety. EMC and Safety requirements of CEVs are internationally governed by ISO 13766, Part 1 & Part 2. This paper discusses the significance of each aspect specified in these standards and its applicability. Due to nature of work carried out by construction equipment, there is absolutely no scope for compromise on safety for the same. Although Construction equipment standards are based on automotive standards, there are few additional tests which are part of ISO 13766, Part 1 and 2. This paper explains each aspect with practical case study. It also provides general EMC guidelines and precautions to be followed during design validation and product validation
Yeola, MayurNigade, MaheshMulay, Abhijit B
Direct current (DC) systems are increasingly used in small power system applications ranging from combined heat and power plants aided with photovoltaic (PV) installations to powertrains of small electric vehicles. A critical safety issue in these systems is the occurrence of series arc faults, which can lead to fires due to high temperatures. This paper presents a model-based method for detecting such faults in medium- and high-voltage DC circuits. Unlike traditional approaches that rely on high-frequency signal analysis, the proposed method uses a physical circuit model and a high-gain observer to estimate deviations from nominal operation. The detection criterion is based on the variance of a disturbance estimate, allowing fast and reliable fault identification. Experimental validation is conducted using a PV system with an arc generator to simulate faults. The results demonstrate the effectiveness of the method in distinguishing fault events from normal operating variations. The
Winkler, AlexanderMayr, StefanGrabmair, Gernot
The electric power of most electric two-wheelers on the market ranges between 2 and 12 kW. For this power range, the traction voltage level is mostly between 48V and 96V. There appears to be no strong correlation between electric power and traction voltage, suggesting that the current voltage choice is rather arbitrary. This paper briefly describes the e-motor model used in this study and introduces variations of four design parameters: DC voltage, maximum phase current, e-motor active length, and the number of turns in the e-motor winding. The consequences of these variations on peak performance, continuous performance, and efficiency maps are presented. Specific cases of parameter combinations are also studied. Two e-motors designed for 48V and 96V systems will be compared, showing that size, cost, and performance (power and losses) are equivalent. Additionally, the paper discusses how increasing the maximum phase current rating of the inverter can improve e-motor power in a 48V
Albert, Laurent
The Korea Institute of Energy Research (KIER) has successfully developed ultra-lightweight flexible perovskite/ CIGS (copper indium gallium selenide) tandem solar cells and achieved a power conversion efficiency of 23.64 percent, which is the world’s highest efficiency for flexible perovskite/CIGS tandem solar cells reported to date. The solar cells developed by the research team are extremely lightweight and can be attached to curved surfaces, making it a promising candidate for future applications in buildings, vehicles, aircraft, and more.
Researchers from the National University of Singapore (NUS) have developed a novel triple-junction perovskite/Si tandem solar cell that can achieve a certified world-record power conversion efficiency of 27.1 percent across a solar energy absorption area of 1 sq cm, representing the best-performing triple-junction perovskite/Si tandem solar cell thus far. To achieve this, the team engineered a new cyanate-integrated perovskite solar cell that is stable and energy efficient.
Electricity is a fundamental necessity for individuals worldwide, serving as a force driving technological progress hitherto unimaginable. Electricity generation uses diverse methodologies based on available natural resources in a given geographic region. Conventional methods like thermal power from coal and natural gas, water-based hydropower, solar power from the sun, wind power, and nuclear power are used extensively, the former two being the dominant sources. The generation of nearly 70% of the world's electricity is estimated to be from thermal power plants; however, these operations lead to widespread environmental destruction, greenhouse emissions, and the occurrence of acid rain. Conventional thermal power plants run on the Rankine cycle principle of a boiler, a turbine, a condenser, and a pump. A similar method may be used in the Organic Rankine Cycle (ORC) with the use of solar energy, where heat is transferred to the working fluid in the boiler using a heat pipe, a passive
Deepan Kumar, SadhasivamKumar, VDhayaneethi, SivajiMahendran, MSaminathan, SathiskumarR, KarthickA, Vikasraj
Over the past decade, significant progress in nano science and nanotechnology has opened new avenues for the development of high-performance photovoltaic cells. At present, a variety of nanostructure-based designs—comprising metals, polymers, and semiconductors—are being explored for photovoltaic applications. Advancements in the understanding of optical and electrical mechanisms governing photovoltaic conversion have been supported by theoretical analyses and modeling studies. Nevertheless, the high fabrication cost and relatively low efficiency of conventional solar photovoltaic cells remain major barriers to their large-scale deployment. One-dimensional (1D) nano materials, in particular, have introduced promising prospects for enhancing photovoltaic performance owing to their unique structural and electronic characteristics. Nanowires, nano rods, and nanotubes exemplify such 1D nanostructures, offering substantial potential to improve photon absorption, electron transport, and
P, GeethaSudarmani, Rc, VenkataramananSatyam, SatyamNagarajan, Sudarson
A new bioimaging device can operate with significantly lower power and in an entirely non-mechanical way. It could one day improve detecting eye and even heart conditions. The device uses a process called electrowetting to change the surface shape of a liquid to perform optical functions. By creating a device that doesn’t use scanning mirrors, the technique requires less electrical power than other devices used for OCT and bioimaging. To test the device’s ability to perform biomedical imaging, the researchers turned to zebrafish. The researchers focused on identifying where the cornea, iris, and retina was from the zebrafish. The two benchmarks that the group hoped to achieve were 10 μm in axial resolution and then around 5 μm in lateral resolution.
The publishing of MIL-STD-3072 is critical to the Army’s introduction of electrified vehicles. It is the first of three documents to replace MIL-PRF-GCS600A, a performance specification that is loosely referenced by engineers but lacks necessary details. MIL-STD-3072 defines the characteristics of 600 VDC electric power that will be supplied to utilization equipment. Following this release, MIL-HDBK-3072 will provide suggested test methods for compliance with the standard, and MIL-PRF-3072 will provide generic device specifications for interfaces, control, and safety. Together, these three documents define a set of requirements that vehicles and equipment with 600 VDC electrical systems must operate within.
Haynes, AricSpina, JasonBest, Melissa
In recent years, the powertrains of agricultural tractors have been transitioning toward hybrid electric configurations, paving the way for a greener future agricultural machinery. However, stability challenges arise in hybrid electric tractors due to the relative small capacity to perform power-intensive tasks, such as plowing and harvesting. These operations demand significant power, which are supplied by the electric power take-off system. The substantial disturbances introduced by the electric power take-off system during these tasks render conventional small-signal analysis methods inadequate for ensuring system stability. In this article, we first develop a large-signal model of the onboard power electronic systems, which includes components such as the diesel engine–generator set, batteries, in-wheel motors, and electric power take-off system. By employing mixed potential theory, we conduct a thorough analysis of this model and derive a stability criterion for the onboard power
Li, FangyuanLi, ChenhuiGao, LefeiMa, QichaoLiu, Yanhong
Large-bore spark-ignited engines equipped with individual cylinder injection systems require advanced balancing strategies to achieve optimal combustion performance and mitigate risks associated with abnormal combustion phenomena. The integration of highly reactive fuels, such as hydrogen, introduces additional challenges for high-power-density, low-speed engines. This study investigates closed-loop cylinder balancing strategies utilizing real-time cylinder pressure feedback to optimize engine operation. Key performance metrics were evaluated on a 20-cylinder medium speed stationary gas engine (8.5 MW electrical power) under eight different control strategies. The results indicate that the tested balancing methods reduce average knock intensity and variation of combustion peak pressure across all cylinders compared with original manufacturer control strategy. Furthermore, the study demonstrates that a well-balanced engine offers significant advantages, including enhanced power output
Martelli, AndréPenaranda, AlexanderMartinez, SantiagoZabeu, ClaytonSalvador, Roberto
Despite improvements in internal combustion engine efficiency, fossil fuel reliance remains a challenge for sustainable energy. Syngas, a hydrogen-carbon monoxide mixture produced from gasification, typically of carbon-based feedstocks, offers a viable transitional fuel due to its compatibility with existing combustion technologies and reduced emissions. However, its low ignition propensity elevated intake temperatures or pressures, a limitation that can be overcome through diesel pilot injection in dual-fuel engine configurations. This study extends prior single-cylinder research to a 1.6 L four-cylinder HCCI engine operating in dual-fuel mode, resembling a Reactivity Controlled Compression Ignition (RCCI) engine. The analysis focuses on cylinder-to-cylinder combustion variation, thermal efficiency, and pollutant emissions, with particular emphasis on the influence of diesel pilot injection timing. Experimental evaluations are conducted across a range of injection timing and Syngas
El Younsi, LailaNelson-Gruel, Dominique
Boosting the performance of solar cells, transistors, LEDs, and batteries will require better electronic materials, made from novel compositions that have yet to be discovered.
Solar cells account for approximately six percent of the electricity used on Earth; however, in space, they play a significantly larger role, with nearly all satellites relying on advanced solar cells for their power. That’s why Georgia Tech researchers will soon be sending 18 photovoltaic cells to the International Space Station (ISS) for a study of how space conditions affect the devices’ operation over time.
University of Waterloo researchers are tapping into idled electric vehicles (EVs) to act as mobile generators and help power overworked and aging electricity grids.
While electric powertrains are driving 48V adoption, OEMs are realizing that xEV and ICE vehicles can benefit from a shift away from 12-volt architectures. In every corner of the automotive power engineering world, there are discussions and debates over the merits of 48V power networks vs. legacy 12V power networks. The dialogue started over 20 years ago, but now the tone is more serious. It's not a case of everything old is new again, but the result of a growing appetite for more electrical power in vehicles. Today's vehicles - and the coming generations - require more power for their ADAS and other safety systems, infotainment systems and overall passenger comfort systems. To satisfy the growing demand for low-voltage power, it is necessary to boost the capacity of the low-voltage power network by two or three times that of the late 20th century. Delivering power is more efficient at a higher voltage, and today, 48V is the consensus voltage for that higher level.
Green, Greg
Researchers have demonstrated a new technique that uses lasers to create ceramics that can withstand ultra-high temperatures, with applications ranging from nuclear power technologies to spacecraft and jet exhaust systems. North Carolina State University, Raleigh, NC A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies. “Sintering is the process by which raw materials - either powders or liquids - are converted into a ceramic material,” says Cheryl Xu, co-corresponding author of a paper on this research and a Professor of Mechanical and Aerospace Engineering at North Carolina State University (NCSU). “For this work, we focused on an ultrahigh temperature ceramic called hafnium carbide (HfC). Traditionally, sintering HfC requires placing the raw materials in a furnace that can reach temperatures of at least 2,200
Solar panels are composed of dozens of solar cells, which are usually made of silicon. While silicon is the standard, producing and processing it is energy-intensive, making it costly to build new solar panel manufacturing facilities. Most of the world’s solar cells are made in China, which has an abundance of silicon. To increase solar cell production in the U.S., a new, easily produced domestic material is needed. “We’re developing technologies that we can easily produce without spending a ton of money on expensive equipment,” said Juan-Pablo Correa-Baena, an Associate Professor in the School of Materials Science and Engineering.
PEM fuel cell technology plays a vital role in realizing an emission-free mobility and, depending on the considered use case, offers significant advantages over battery electric solutions as well as hydrogen combustion engines. When high performance over a longer period of time as well as short refueling times are key requirements, fuel cell powertrains show their core strengths. However, the adaption of fuel cells in the mobility sector strongly depends on their efficiency which directly relates to the vehicle’s fuel consumption, range and ultimately cost to operate. Therefore, the influence on efficiency and power of different purge strategies used to operate PEM fuel cells is experimentally investigated and compared. A concentration-dependent purge strategy is developed and examined in reference to a charge-dependent strategy. The measurements are carried out on a fuel cell system test bench which corresponds to a fully functional fuel cell system including all commonly used
Hauser, TobiasAllmendinger, Frank
This study presents a comprehensive techno-economic assessment (TEA) of an integrated e-methanol production system building upon previously published foundational research utilizing Aspen Plus modeling for e-methanol production from sugar cane and sugar beet biomass. The established integrated system converts biomass into ethanol through fermentation and synthesizes e-methanol using both captured CO2 and syngas derived from biomass residue gasification. This approach maximizes CO2 and biomass utilization, promoting a circular carbon economy. The TEA quantifies capital expenditures (CAPEX), operational expenditures (OPEX), and levelized costs of Methanol (LCOM), providing a detailed economic analysis of the potential for commercializing e-methanol. A sensitivity analysis evaluates the impact of feedstock prices and Technology Readiness Levels (TRL), identifying key leverage points affecting financial viability. The study aims to explore the potential of utilizing existing agricultural
Fernandes, Renston JakeShakeel, Mohammad RaghibNguyen, DucduyIm, Hong G.Turner, James W.G.
Researchers have developed a hybrid solar energy converter that generates electricity and steam with high efficiency and low cost.
With the rapid expansion of the electric vehicle (EV) market, the frequency of grid-connected charging has concentrated primarily during peak hours, notably from 7:00 a.m. to 10:00 a.m. and 6:00 p.m. to 10:00 p.m., resulting in substantial demand surges during both morning and evening periods. Such uncoordinated charging patterns pose potential challenges to the stability and economic efficiency of power systems. As vehicle-to-grid (V2G) technology advances, facilitating bidirectional energy exchange between EVs and smart grids, the need for optimized control of EV charging and discharging behaviors has become critical to achieving effective peak shaving and valley filling in the grid. This paper proposes a microgrid energy scheduling optimization algorithm based on existing smart grid and EV charging control technologies. The method establishes a multi-objective optimization model with EVs’ 24-h charging and discharging power as decision variables and microgrid load rate, load
Fan, LongyuChen, YuxinZhang, Dacai
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
Norris, Mark A.Orzechowski, JeffreySanderson, BradSwanson, DouglasVantimmeren, Andrew
Battery Electric Vehicles (BEVs) are extremely sensitive in terms of NVH requirements. While the engine is being replaced with an almost silent electric motor, the transmission noise appears persistent and demands more silent transmission. This has raised demand for improvement in design as well as manufacturing quality. Various innovations are being made to drive an improvement in the NVH. The following paper will discuss the improvement in NVH achieved through a design optimization of the housing using modal analysis. Firstly, the NVH results were co-related with the modal analysis and the cause for the dominant peak in amplitude of the NVH graph associated with the housing modes were mapped. A simple Excel based correlation matrix is used to map the list of all Eigenfrequencies of housing and its corresponding gear tooth frequency. Further optimization is done in housing design to defer the modal frequencies and another NVH test was run. It was proven that housing design
Pingale, Abhijeet SatishDeshpande, Prasannakumar
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
A joint research effort led by the University of Illinois Urbana-Champaign has shown how coal can play a vital role in next-generation electronic devices.
Recent advances are reducing the cost of space launch, high specific power solar cells, and the production of satellite systems. Modular architectures with no moving parts and distributed power systems would minimize assembly and maintenance costs. Together, this may enable space-based solar power to provide decarbonized dispatchable power at a lower cost than equivalent technologies such as nuclear power stations. Space-based Solar Power for Instantaneously Dispatchable Renewable Power on Earth discusses the advances in emerging technologies, like thin film solar cells, reusable launch vehicles, and mass-produced modular satellite systems that would make economic space power feasible. Click here to access the full SAE EDGETM Research Report portfolio.
Muelaner, Jody Emlyn
In this study, vibration characteristics inside an electric power unit at gravity center where direct measurement is impossible were estimated by using virtual point transformation to consider guideline for effective countermeasures to the structure or generated force characteristics inside the power source. Vibration acceleration, transfer function and the generated force in operation at the gravity center of the electrical power source were obtained by vibration characteristics at around the power source which can be measured directly. In addition, the transfer functions from the gravity center to the power source attachment points on the product were also estimated. And then, the contribution from the gravity center to the power unit attachment point was obtained by multiplying generated force with the transfer function. As results, the obtained total contribution was almost same with the actual measured vibration at the attachment point. Furthermore, the rotational contribution
Kubo, RyomaHara, KentaYoshida, Junji
Remote sensing offers a powerful tool for environmental protection and sustainable management. While many remote sensing companies use wind or solar energy to power their platforms, California-based startup Dolphin Labs is harnessing wave energy to enable sensing networks for enhanced maritime domain awareness, improving the safety and security of offshore natural resources and critical infrastructure.
Items per page:
1 – 50 of 3033