Browse Topic: Off-board energy sources
University of Waterloo researchers are tapping into idled electric vehicles (EVs) to act as mobile generators and help power overworked and aging electricity grids.
Solar cells account for approximately six percent of the electricity used on Earth; however, in space, they play a significantly larger role, with nearly all satellites relying on advanced solar cells for their power. That’s why Georgia Tech researchers will soon be sending 18 photovoltaic cells to the International Space Station (ISS) for a study of how space conditions affect the devices’ operation over time.
Boosting the performance of solar cells, transistors, LEDs, and batteries will require better electronic materials, made from novel compositions that have yet to be discovered.
Researchers have demonstrated a new technique that uses lasers to create ceramics that can withstand ultra-high temperatures, with applications ranging from nuclear power technologies to spacecraft and jet exhaust systems. North Carolina State University, Raleigh, NC A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies. “Sintering is the process by which raw materials - either powders or liquids - are converted into a ceramic material,” says Cheryl Xu, co-corresponding author of a paper on this research and a Professor of Mechanical and Aerospace Engineering at North Carolina State University (NCSU). “For this work, we focused on an ultrahigh temperature ceramic called hafnium carbide (HfC). Traditionally, sintering HfC requires placing the raw materials in a furnace that can reach temperatures of at least 2,200
While electric powertrains are driving 48V adoption, OEMs are realizing that xEV and ICE vehicles can benefit from a shift away from 12-volt architectures. In every corner of the automotive power engineering world, there are discussions and debates over the merits of 48V power networks vs. legacy 12V power networks. The dialogue started over 20 years ago, but now the tone is more serious. It's not a case of everything old is new again, but the result of a growing appetite for more electrical power in vehicles. Today's vehicles - and the coming generations - require more power for their ADAS and other safety systems, infotainment systems and overall passenger comfort systems. To satisfy the growing demand for low-voltage power, it is necessary to boost the capacity of the low-voltage power network by two or three times that of the late 20th century. Delivering power is more efficient at a higher voltage, and today, 48V is the consensus voltage for that higher level.
Solar panels are composed of dozens of solar cells, which are usually made of silicon. While silicon is the standard, producing and processing it is energy-intensive, making it costly to build new solar panel manufacturing facilities. Most of the world’s solar cells are made in China, which has an abundance of silicon. To increase solar cell production in the U.S., a new, easily produced domestic material is needed. “We’re developing technologies that we can easily produce without spending a ton of money on expensive equipment,” said Juan-Pablo Correa-Baena, an Associate Professor in the School of Materials Science and Engineering.
Researchers have developed a hybrid solar energy converter that generates electricity and steam with high efficiency and low cost.
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
A joint research effort led by the University of Illinois Urbana-Champaign has shown how coal can play a vital role in next-generation electronic devices.
Recent advances are reducing the cost of space launch, high specific power solar cells, and the production of satellite systems. Modular architectures with no moving parts and distributed power systems would minimize assembly and maintenance costs. Together, this may enable space-based solar power to provide decarbonized dispatchable power at a lower cost than equivalent technologies such as nuclear power stations. Space-based Solar Power for Instantaneously Dispatchable Renewable Power on Earth discusses the advances in emerging technologies, like thin film solar cells, reusable launch vehicles, and mass-produced modular satellite systems that would make economic space power feasible. Click here to access the full SAE EDGETM Research Report portfolio.
In this study, vibration characteristics inside an electric power unit at gravity center where direct measurement is impossible were estimated by using virtual point transformation to consider guideline for effective countermeasures to the structure or generated force characteristics inside the power source. Vibration acceleration, transfer function and the generated force in operation at the gravity center of the electrical power source were obtained by vibration characteristics at around the power source which can be measured directly. In addition, the transfer functions from the gravity center to the power source attachment points on the product were also estimated. And then, the contribution from the gravity center to the power unit attachment point was obtained by multiplying generated force with the transfer function. As results, the obtained total contribution was almost same with the actual measured vibration at the attachment point. Furthermore, the rotational contribution
Remote sensing offers a powerful tool for environmental protection and sustainable management. While many remote sensing companies use wind or solar energy to power their platforms, California-based startup Dolphin Labs is harnessing wave energy to enable sensing networks for enhanced maritime domain awareness, improving the safety and security of offshore natural resources and critical infrastructure.
It might look like a roll of chicken wire, but this tiny cylinder of carbon atoms — too small to see with the naked eye — could one day be used for making electronic devices ranging from night vision goggles and motion detectors to more efficient solar cells, thanks to techniques developed by researchers at Duke University.
Efuels, synthetic gasolines made from captured carbon dioxide and renewable energy (usually wind and solar power), are “a valuable part of the solution,” said Aston Martin CEO Adrian Hallmark at a press briefing in New York on January 31. He described the process of creating the fuel as “really clean,” but also cited a rather off-putting price: $31 a gallon in the U.S. Still, Hallmark thinks eFuels could be a way for Aston to continue producing at least a few V12-powered cars in the coming electric future. Other automakers agree, but the battle over eFuels has by no means reached a cease-fire.
This research explores the use of salt gradient solar ponds (SGSPs) as an environmentally friendly and efficient method for thermal energy storage. The study focuses on the design, construction, and performance evaluation of SGSP systems integrated with reflectors, comparing their effectiveness against conventional SGSP setups without reflectors. Both experimental and numerical methods are employed to thoroughly assess the thermal behavior and energy efficiency of these systems. The findings reveal that the SGSP with reflectors (SGSP-R) achieves significantly higher temperatures across all three zones—Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ)—with recorded temperatures of 40.56°C, 54.2°C, and 63.1°C, respectively. These values represent an increase of 6.33%, 11.12%, and 14.26% over the temperatures observed in the conventional SGSP (SGSP-C). Furthermore, the energy efficiency improvements in the UCZ, NCZ, and LCZ for the SGSP-R are
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, independent of their level of hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study primarily examines the use of Haste alloy in vehicle applications and suggests creating regression models to predict performance parameters in ECM. The experiments are formulated based on Taguchi's ideas, and mathematical equations are derived using multiple regression models. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. ANOVA is employed to evaluate the statistical significance of process parameters that impact performance indicators. The proposed regression models for Haste alloy are more versatile
Items per page:
50
1 – 50 of 3011