Browse Topic: Off-board energy sources

Items (3,011)
In recent years, the powertrains of agricultural tractors have been transitioning toward hybrid electric configurations, paving the way for a greener future agricultural machinery. However, stability challenges arise in hybrid electric tractors due to the relative small capacity to perform power-intensive tasks, such as plowing and harvesting. These operations demand significant power, which are supplied by the electric power take-off system. The substantial disturbances introduced by the electric power take-off system during these tasks render conventional small-signal analysis methods inadequate for ensuring system stability. In this article, we first develop a large-signal model of the onboard power electronic systems, which includes components such as the diesel engine–generator set, batteries, in-wheel motors, and electric power take-off system. By employing mixed potential theory, we conduct a thorough analysis of this model and derive a stability criterion for the onboard power
Li, FangyuanLi, ChenhuiGao, LefeiMa, QichaoLiu, Yanhong
Despite improvements in internal combustion engine efficiency, fossil fuel reliance remains a challenge for sustainable energy. Syngas, a hydrogen-carbon monoxide mixture produced from gasification, typically of carbon-based feedstocks, offers a viable transitional fuel due to its compatibility with existing combustion technologies and reduced emissions. However, its low ignition propensity elevated intake temperatures or pressures, a limitation that can be overcome through diesel pilot injection in dual-fuel engine configurations. This study extends prior single-cylinder research to a 1.6 L four-cylinder HCCI engine operating in dual-fuel mode, resembling a Reactivity Controlled Compression Ignition (RCCI) engine. The analysis focuses on cylinder-to-cylinder combustion variation, thermal efficiency, and pollutant emissions, with particular emphasis on the influence of diesel pilot injection timing. Experimental evaluations are conducted across a range of injection timing and Syngas
El Younsi, LailaNelson-Gruel, Dominique
Large-bore spark-ignited engines equipped with individual cylinder injection systems require advanced balancing strategies to achieve optimal combustion performance and mitigate risks associated with abnormal combustion phenomena. The integration of highly reactive fuels, such as hydrogen, introduces additional challenges for high-power-density, low-speed engines. This study investigates closed-loop cylinder balancing strategies utilizing real-time cylinder pressure feedback to optimize engine operation. Key performance metrics were evaluated on a 20-cylinder medium speed stationary gas engine (8.5 MW electrical power) under eight different control strategies. The results indicate that the tested balancing methods reduce average knock intensity and variation of combustion peak pressure across all cylinders compared with original manufacturer control strategy. Furthermore, the study demonstrates that a well-balanced engine offers significant advantages, including enhanced power output
Martelli, AndréPenaranda, AlexanderMartinez, SantiagoZabeu, ClaytonSalvador, Roberto
University of Waterloo researchers are tapping into idled electric vehicles (EVs) to act as mobile generators and help power overworked and aging electricity grids.
Solar cells account for approximately six percent of the electricity used on Earth; however, in space, they play a significantly larger role, with nearly all satellites relying on advanced solar cells for their power. That’s why Georgia Tech researchers will soon be sending 18 photovoltaic cells to the International Space Station (ISS) for a study of how space conditions affect the devices’ operation over time.
Boosting the performance of solar cells, transistors, LEDs, and batteries will require better electronic materials, made from novel compositions that have yet to be discovered.
Researchers have demonstrated a new technique that uses lasers to create ceramics that can withstand ultra-high temperatures, with applications ranging from nuclear power technologies to spacecraft and jet exhaust systems. North Carolina State University, Raleigh, NC A new technique that leverages the concept of sintering, can be used to create ceramic coatings, tiles or complex three-dimensional structures, which allows for increased versatility when engineering new devices and technologies. “Sintering is the process by which raw materials - either powders or liquids - are converted into a ceramic material,” says Cheryl Xu, co-corresponding author of a paper on this research and a Professor of Mechanical and Aerospace Engineering at North Carolina State University (NCSU). “For this work, we focused on an ultrahigh temperature ceramic called hafnium carbide (HfC). Traditionally, sintering HfC requires placing the raw materials in a furnace that can reach temperatures of at least 2,200
While electric powertrains are driving 48V adoption, OEMs are realizing that xEV and ICE vehicles can benefit from a shift away from 12-volt architectures. In every corner of the automotive power engineering world, there are discussions and debates over the merits of 48V power networks vs. legacy 12V power networks. The dialogue started over 20 years ago, but now the tone is more serious. It's not a case of everything old is new again, but the result of a growing appetite for more electrical power in vehicles. Today's vehicles - and the coming generations - require more power for their ADAS and other safety systems, infotainment systems and overall passenger comfort systems. To satisfy the growing demand for low-voltage power, it is necessary to boost the capacity of the low-voltage power network by two or three times that of the late 20th century. Delivering power is more efficient at a higher voltage, and today, 48V is the consensus voltage for that higher level.
Green, Greg
Solar panels are composed of dozens of solar cells, which are usually made of silicon. While silicon is the standard, producing and processing it is energy-intensive, making it costly to build new solar panel manufacturing facilities. Most of the world’s solar cells are made in China, which has an abundance of silicon. To increase solar cell production in the U.S., a new, easily produced domestic material is needed. “We’re developing technologies that we can easily produce without spending a ton of money on expensive equipment,” said Juan-Pablo Correa-Baena, an Associate Professor in the School of Materials Science and Engineering.
PEM fuel cell technology plays a vital role in realizing an emission-free mobility and, depending on the considered use case, offers significant advantages over battery electric solutions as well as hydrogen combustion engines. When high performance over a longer period of time as well as short refueling times are key requirements, fuel cell powertrains show their core strengths. However, the adaption of fuel cells in the mobility sector strongly depends on their efficiency which directly relates to the vehicle’s fuel consumption, range and ultimately cost to operate. Therefore, the influence on efficiency and power of different purge strategies used to operate PEM fuel cells is experimentally investigated and compared. A concentration-dependent purge strategy is developed and examined in reference to a charge-dependent strategy. The measurements are carried out on a fuel cell system test bench which corresponds to a fully functional fuel cell system including all commonly used
Hauser, TobiasAllmendinger, Frank
This study presents a comprehensive techno-economic assessment (TEA) of an integrated e-methanol production system building upon previously published foundational research utilizing Aspen Plus modeling for e-methanol production from sugar cane and sugar beet biomass. The established integrated system converts biomass into ethanol through fermentation and synthesizes e-methanol using both captured CO2 and syngas derived from biomass residue gasification. This approach maximizes CO2 and biomass utilization, promoting a circular carbon economy. The TEA quantifies capital expenditures (CAPEX), operational expenditures (OPEX), and levelized costs of Methanol (LCOM), providing a detailed economic analysis of the potential for commercializing e-methanol. A sensitivity analysis evaluates the impact of feedstock prices and Technology Readiness Levels (TRL), identifying key leverage points affecting financial viability. The study aims to explore the potential of utilizing existing agricultural
Fernandes, Renston JakeShakeel, Mohammad RaghibNguyen, DucduyIm, Hong G.Turner, James W.G.
Researchers have developed a hybrid solar energy converter that generates electricity and steam with high efficiency and low cost.
With the rapid expansion of the electric vehicle (EV) market, the frequency of grid-connected charging has concentrated primarily during peak hours, notably from 7:00 a.m. to 10:00 a.m. and 6:00 p.m. to 10:00 p.m., resulting in substantial demand surges during both morning and evening periods. Such uncoordinated charging patterns pose potential challenges to the stability and economic efficiency of power systems. As vehicle-to-grid (V2G) technology advances, facilitating bidirectional energy exchange between EVs and smart grids, the need for optimized control of EV charging and discharging behaviors has become critical to achieving effective peak shaving and valley filling in the grid. This paper proposes a microgrid energy scheduling optimization algorithm based on existing smart grid and EV charging control technologies. The method establishes a multi-objective optimization model with EVs’ 24-h charging and discharging power as decision variables and microgrid load rate, load
Fan, LongyuChen, YuxinZhang, Dacai
Battery Electric Vehicles (BEVs) are extremely sensitive in terms of NVH requirements. While the engine is being replaced with an almost silent electric motor, the transmission noise appears persistent and demands more silent transmission. This has raised demand for improvement in design as well as manufacturing quality. Various innovations are being made to drive an improvement in the NVH. The following paper will discuss the improvement in NVH achieved through a design optimization of the housing using modal analysis. Firstly, the NVH results were co-related with the modal analysis and the cause for the dominant peak in amplitude of the NVH graph associated with the housing modes were mapped. A simple Excel based correlation matrix is used to map the list of all Eigenfrequencies of housing and its corresponding gear tooth frequency. Further optimization is done in housing design to defer the modal frequencies and another NVH test was run. It was proven that housing design
Pingale, Abhijeet SatishDeshpande, Prasannakumar
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
Norris, Mark A.Orzechowski, JeffreySanderson, BradSwanson, DouglasVantimmeren, Andrew
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
A joint research effort led by the University of Illinois Urbana-Champaign has shown how coal can play a vital role in next-generation electronic devices.
Recent advances are reducing the cost of space launch, high specific power solar cells, and the production of satellite systems. Modular architectures with no moving parts and distributed power systems would minimize assembly and maintenance costs. Together, this may enable space-based solar power to provide decarbonized dispatchable power at a lower cost than equivalent technologies such as nuclear power stations. Space-based Solar Power for Instantaneously Dispatchable Renewable Power on Earth discusses the advances in emerging technologies, like thin film solar cells, reusable launch vehicles, and mass-produced modular satellite systems that would make economic space power feasible. Click here to access the full SAE EDGETM Research Report portfolio.
Muelaner, Jody Emlyn
In this study, vibration characteristics inside an electric power unit at gravity center where direct measurement is impossible were estimated by using virtual point transformation to consider guideline for effective countermeasures to the structure or generated force characteristics inside the power source. Vibration acceleration, transfer function and the generated force in operation at the gravity center of the electrical power source were obtained by vibration characteristics at around the power source which can be measured directly. In addition, the transfer functions from the gravity center to the power source attachment points on the product were also estimated. And then, the contribution from the gravity center to the power unit attachment point was obtained by multiplying generated force with the transfer function. As results, the obtained total contribution was almost same with the actual measured vibration at the attachment point. Furthermore, the rotational contribution
Kubo, RyomaHara, KentaYoshida, Junji
Remote sensing offers a powerful tool for environmental protection and sustainable management. While many remote sensing companies use wind or solar energy to power their platforms, California-based startup Dolphin Labs is harnessing wave energy to enable sensing networks for enhanced maritime domain awareness, improving the safety and security of offshore natural resources and critical infrastructure.
In 2022, the U.S. transportation sector was the largest source of greenhouse gas emissions in the country, with the combination of passenger and commercial vehicles contributing 80% of these emissions. As adoption of passenger electric vehicles continues to climb, sights are being set on the electrification of heavy-duty commercial vehicle (HDCV) fleets. The sustainability of these shifts relies in part on the addition of significant renewable energy generation resources to both bolster the grid in the face of increased demand, and to prevent a shift in the source of greenhouse gas (GHG) emissions to the grid, as opposed to a true net reduction. Additionally, it is necessary to quantify the variations in economic viability across the country for these technologies as it pertains to their productive capabilities. Doing so will encourage investment and ensure that the transition to electrified HDCV fleets is commercially viable, as well as sustainable. In an effort to meet these goals
Miller, BrandonSun, RuixiaoSujan, Vivek
Reducing emissions in individual transport requires electrification and hybridization. Emission reduction depends on the degree of electrification, the specific powertrain design and optimized components. This is especially true for hybrids with the highest number of components, consisting of combustion engine, transmission, electric motors and batteries. The integration of the electric motor in the transmission for dedicated hybrid transmissions leads to many possible concepts. Computer-aided powertrain synthesis is therefore needed to develop new powertrain architectures. In a publicly funded project, we have developed a powertrain synthesis that includes a combustion engine synthesis and a transmission synthesis. In this paper we focus on the impact of the engine concept on the powertrain dimensioning, fuel consumption, performance and operating behavior in a parallel hybrid configuration. In addition to different engine concepts, the electrical power is also varied to discuss the
Sturm, AxelHenze, RomanKüçükay, FeritWolgast, CarstenEilts, Peter
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) recently received a relevant interest as an electric power generation technology in Fuel Cells Electric Vehicles (FCEVs) to decarbonize hard-to-abate sectors as a complement to Battery Electric Vehicles (BEVs). However, the massive requirements of power and durability indicate the urgent need to develop higher-than-ever power density designs with minimum internal gradients to mitigate degradation, discarding sub-optimal designs since the early design stage. Starting from the outcomes of a first study, confirming that for industry-relevant PEMFCs the parallel channel flow field was the only archetype able to minimize jointly pressure losses and limiting super-saturation at high current density, still several degrees of freedom exist for the cell designer. In this study, the research of the optimal PEMFC design is fine-tuned using a CAE-guided design process. Candidate solutions are explored using an optimization software and solving for
Rossi, EdoardoCroci, FedericoMartoccia, LorenzoCicalese, GiuseppeD'Adamo, Alessandro
In the United States (US), the off-road sector (i.e., agriculture, construction, etc.) contributes to approximately 10% of the country’s transportation greenhouse gas (GHG) emissions, similar to the aviation sector. The off-road sector is extremely diverse; as the EPA MOVES model classifies it into 11 sub-sectors, which include 85 different types of equipment. These equipment types have horsepower ranging from 1 to greater than 3000 and have very different utilization, which makes decarbonization a complex endeavor. To address this, Argonne’s on-road vehicle fleet model, VISION, has been expanded to the off-road sector. The GHG emission factors for several energy carriers (biofuels, electricity, and hydrogen) have been incorporated from Argonne’s GREET model for a sector-wide well-to-wheel (WTW) GHG emissions analysis of the present and future fleet. Several technology adoption and energy decarbonization scenarios were modeled to better understand the appropriate actions required to
Tripathi, ShashwatKolodziej, ChristopherGohlke, DavidBurnham, AndrewZhou, YanLongman, Douglas
Sustainable aviation fuels are becoming more widely available for current and future engine powered propulsion systems. However, the diversity of ignition behavior in these fuels poses a challenge to achieving robust, efficient operation. Specifically, low cetane fuels with poor ignitability exhibit highly variable torque production unless fuel is injected earlier during compression. The tradeoff is that earlier injection may cause dangerously high in-cylinder pressure rise rates. Novel models that can simulate these competing behaviors are needed so that appropriate strategies may be developed for controlling combustion at low cetane fueling conditions. This work builds upon a previously developed model that simulates asymmetric combustion phasing (CA50) distributions as a function of fuel cetane, fuel injection timing, and electrical power supplied to an in-cylinder thermal ignition assist device. An extension of the model is presented in which the phasing output is used to
Ahmed, OmarMiddleton, RobertStefanopoulou, AnnaKim, KennethKweon, Chol-Bum
Electrifying truck fleets has the potential to improve energy efficiency and reduce carbon emissions from the freight transportation sector. However, the range limitations and substantial capital costs with current battery technologies imposes constraints that challenge the overall cost feasibility of electrifying fleets for logistics companies. In this paper, we investigate the coupled routing and charge scheduling optimization of a delivery fleet serving a large urban area as one approach to discovering feasible pathways. To this end, we first build an improved energy consumption model for a Class 7-8 electric and diesel truck using a data-driven approach of generating energy consumption data from detailed powertrain simulations on numerous drive cycles. We then conduct several analyses on the impact of battery pack capacity, cost, and electricity prices on the amortized daily total cost of fleet electrification at different penetration levels, considering availability of fast
Wendimagegnehu, Yared TadesseAyalew, BeshahIvanco, AndrejHailemichael, Habtamu
Based on the harmonic current injection method used to suppress the torsional vibration of the electric drive system, the selection of the phase and amplitude of the harmonic current based on vibration and noise has been explored in this paper. Through the adoption of the active harmonic current injection method, additional torque fluctuations are generated by actively injecting harmonic currents of specific amplitudes and phases, and closed-loop control is carried out to counteract the torque fluctuations of the motor body. The selection of the magnitude of the injected harmonic current is crucial and plays a vital role in the reduction of torque ripple. Incorrect harmonic currents may not achieve the optimal torque ripple suppression effect or even increase the motor torque ripple. Since the actively injected harmonic current is used to counteract the torque ripple caused by the magnetic flux linkage harmonics of the motor body, the target harmonic current command is very important
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanDai, Zhengxing
As the first pure electric flagship sedan under the Geely Galaxy brand, a challenging aerodynamic target was set at the early stage of Geely Galaxy E8 for reducing electric power consumption and improving vehicle range. In response, the aerodynamic team formulated a detailed development plan and an overall drag reduction strategy. After conducting numerous loops of simulations and wind tunnel tests, along with continuous cross-disciplinary communication and collaboration, a product with outstanding aerodynamic performance was successfully developed. During the aerodynamic development of the E8, the primarily utilized steady-state simulations sometimes revealed significant discrepancies when compared to wind tunnel test results, particularly in schemes such as the air curtain, aerodynamic rims, and rear light feature optimizations. Some trends were even contradictory. Further investigations demonstrated that unsteady simulation methods captured different flow field information
Li, QiangLiu, HuanYang, TianjunLiang, ChangqiuZhu, ZhenyingLiao, Huihong
This SAE Aerospace Standard (AS) establishes the minimum performance standards for equipment used as secondary alternating current (AC) electrical power sources in aerospace electric power systems.
AE-7B Power Management, Distribution and Storage
It might look like a roll of chicken wire, but this tiny cylinder of carbon atoms — too small to see with the naked eye — could one day be used for making electronic devices ranging from night vision goggles and motion detectors to more efficient solar cells, thanks to techniques developed by researchers at Duke University.
Efuels, synthetic gasolines made from captured carbon dioxide and renewable energy (usually wind and solar power), are “a valuable part of the solution,” said Aston Martin CEO Adrian Hallmark at a press briefing in New York on January 31. He described the process of creating the fuel as “really clean,” but also cited a rather off-putting price: $31 a gallon in the U.S. Still, Hallmark thinks eFuels could be a way for Aston to continue producing at least a few V12-powered cars in the coming electric future. Other automakers agree, but the battle over eFuels has by no means reached a cease-fire.
Motavalli, Jim
The Chinese demand for coal necessitates the transportation over long distances, due to the disparity between its availability and the need. With the increase of coal demand, the scale of railroad transportation is also gradually expanding, which leads to the increasingly prominent problem of coal transportation safety. Especially in the transportation process, coal dust explosion has become an important safety hazard due to the accumulation of a large amount of coal dust in some specific Spaces. Therefore, the study of coal dust explosion suppression has become an urgent task at present. The solution to this problem is of great significance to ensure the safety of coal transportation. In this study, the explosion suppression of coal dust by four types of molecular sieves was experimentally analyzed using the Hartmann flame propagation test equipment, and the results showed that mesoporous molecular sieves were far superior to microporous molecular sieves in suppressing explosions. The
DongYe, ShengjingZhang, YansongChen, JinsheYang, YangWang, FeiHan, Jin
The Object of research in the article is the ventilation and cooling system of bulb hydrogenerators. The Subject of study in the article is the design and efficiency of using the cooling system of various structural types for bulb hydro units. The Purpose of the work is to carry out a three-dimensional study of two cooling systems (axial and radial) of the bulb hydro unit of the Kanivskaya HPP with a rated 22 MW. Research Tasks include analysis of the main design solutions for effective cooling of bulb-type hydrogenerators, in particular, the use of radial, axial, and mixed cooling systems; formulation of the main assumptions for the three-dimensional ventilation and thermal calculation of the bulb hydrogenerator; carrying out a three-dimensional calculation for a hydrogenerator with axial ventilation; determining airflow speeds in the channels and temperatures of active parts of the hydrogenerator under the conditions of using discharge fans and without them; carrying out a three
Tretiak, OleksiiArefieva, MariiaMakarov, PavloSerhiienko, SerhiiZhukov, AntonShulga, IrynaPenkovska, NataliiaKravchenko, StanislavKovryga, Anton
Copper Antimony Sulfide (CuSbS2) is a promising ternary semiconductor for use as an absorber layer in third-generation thin film heterojunction solar cells. This newly developed optoelectronic material offers a viable alternative to cadmium telluride (CdTe) and copper indium gallium di-selenide (Cu(In,Ga)Se2) due to its composition of inexpensive, readily available, and non-toxic elements. These films were successfully produced at an optimal substrate temperature of 533 K using the conventional spray technique. X-ray diffraction and Raman studies confirm that the films exhibit a chalcostibite structure. Characterization studies reveal that the films possess lattice parameters of a = 0.60 nm, b = 0.38 nm, and c = 1.45 nm, with an absorption coefficient of 105 cm-1 and a band gap of 1.50 eV. Notably, the films exhibit p-type conductivity. All of these studies confirm that CuSbS2 is an excellent choice for the absorber layer in solar cell applications. An attempt was made in this study to
Kumar, YB KishoreYb, KiranTarigonda, HariprasadReddy M, Surya Sekhar
Electrochemical machining (ECM) is a remarkably effective technique for producing detailed designs in materials that can conduct electricity, regardless of their level of hardness. As the desire for high-quality products and the necessity for rapid design changes grow, decision-making in the industrial sector becomes increasingly intricate. This work focuses on Titanium Grade 19 and proposes the development of prediction models using regression analysis to estimate performance measurements in ECM. The experiments are designed using Taguchi's methodology, employing a multiple regression approach to produce mathematical equations. The Taguchi technique is utilized for the purpose of single-objective optimization in order to determine the optimal combination of process parameters that will optimize the rate at which material is removed. ANOVA is a statistical method used to assess the relevance of process factors that impact performance indicators. The suggested prediction technique for
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSilambarasan, RD, Palanisamy
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their level of hardness. With the rising demand for superior products and the necessity for quick design modifications, decision-making in the industrial sector becomes increasingly complex. This study specifically examines Titanium Grade 7 and suggests creating prediction models through regression analysis to estimate performance measurements in ECM. The experiments are formulated based on Taguchi's ideas, utilizing a multiple regression approach to deduce mathematical equations. The Taguchi method is utilized for single-objective optimization in order to determine the ideal combination of process parameters that will maximize the material removal rate. ANOVA is a statistical method used to determine the relevance of process factors that affect performance measures. The suggested prediction technique for Titanium Grade 7 exhibits
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VKrishnamachary, PCSomsole, Lakshmi NarayanaSilambarasan, R
This research explores the use of salt gradient solar ponds (SGSPs) as an environmentally friendly and efficient method for thermal energy storage. The study focuses on the design, construction, and performance evaluation of SGSP systems integrated with reflectors, comparing their effectiveness against conventional SGSP setups without reflectors. Both experimental and numerical methods are employed to thoroughly assess the thermal behavior and energy efficiency of these systems. The findings reveal that the SGSP with reflectors (SGSP-R) achieves significantly higher temperatures across all three zones—Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ)—with recorded temperatures of 40.56°C, 54.2°C, and 63.1°C, respectively. These values represent an increase of 6.33%, 11.12%, and 14.26% over the temperatures observed in the conventional SGSP (SGSP-C). Furthermore, the energy efficiency improvements in the UCZ, NCZ, and LCZ for the SGSP-R are
J, Vinoth Kumar
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, independent of their level of hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study primarily examines the use of Haste alloy in vehicle applications and suggests creating regression models to predict performance parameters in ECM. The experiments are formulated based on Taguchi's ideas, and mathematical equations are derived using multiple regression models. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. ANOVA is employed to evaluate the statistical significance of process parameters that impact performance indicators. The proposed regression models for Haste alloy are more versatile
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamySilambarasan, RKrishnamachary, PC
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, regardless of their level of hardness. Due to the growing demand for superior products and the necessity for quick design adjustments, decision-making in the manufacturing industry has grown increasingly intricate. This study specifically examines Titanium Grade 7 and suggests the creation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for predictive modelling in ECM. The study employs a Taguchi-grey relational analysis (GRA) methodology to attain multi-objective optimization, with the goal of concurrently maximizing material removal rate, minimizing surface roughness, and achieving precise geometric tolerances. Analysis of variance (ANOVA) is used to assess the relevance of process characteristics that impact these performance measures. The ANFIS model presented for Titanium Grade 7 provides more flexibility, efficiency, and accuracy in
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamyKiruthika, JothiSilambarasan, R
Items per page:
1 – 50 of 3011