Browse Topic: Off-board energy sources

Items (2,998)
The Chinese demand for coal necessitates the transportation over long distances, due to the disparity between its availability and the need. With the increase of coal demand, the scale of railroad transportation is also gradually expanding, which leads to the increasingly prominent problem of coal transportation safety. Especially in the transportation process, coal dust explosion has become an important safety hazard due to the accumulation of a large amount of coal dust in some specific Spaces. Therefore, the study of coal dust explosion suppression has become an urgent task at present. The solution to this problem is of great significance to ensure the safety of coal transportation. In this study, the explosion suppression of coal dust by four types of molecular sieves was experimentally analyzed using the Hartmann flame propagation test equipment, and the results showed that mesoporous molecular sieves were far superior to microporous molecular sieves in suppressing explosions. The
DongYe, ShengjingZhang, YansongChen, JinsheYang, YangWang, FeiHan, Jin
The Object of research in the article is the ventilation and cooling system of bulb hydrogenerators. The Subject of study in the article is the design and efficiency of using the cooling system of various structural types for bulb hydro units. The Purpose of the work is to carry out a three-dimensional study of two cooling systems (axial and radial) of the bulb hydro unit of the Kanivskaya HPP with a rated 22 MW. Research Tasks include analysis of the main design solutions for effective cooling of bulb-type hydrogenerators, in particular, the use of radial, axial, and mixed cooling systems; formulation of the main assumptions for the three-dimensional ventilation and thermal calculation of the bulb hydrogenerator; carrying out a three-dimensional calculation for a hydrogenerator with axial ventilation; determining airflow speeds in the channels and temperatures of active parts of the hydrogenerator under the conditions of using discharge fans and without them; carrying out a three
Tretiak, OleksiiArefieva, MariiaMakarov, PavloSerhiienko, SerhiiZhukov, AntonShulga, IrynaPenkovska, NataliiaKravchenko, StanislavKovryga, Anton
This research explores the use of salt gradient solar ponds (SGSPs) as an environmentally friendly and efficient method for thermal energy storage. The study focuses on the design, construction, and performance evaluation of SGSP systems integrated with reflectors, comparing their effectiveness against conventional SGSP setups without reflectors. Both experimental and numerical methods are employed to thoroughly assess the thermal behavior and energy efficiency of these systems. The findings reveal that the SGSP with reflectors (SGSP-R) achieves significantly higher temperatures across all three zones—Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ)—with recorded temperatures of 40.56°C, 54.2°C, and 63.1°C, respectively. These values represent an increase of 6.33%, 11.12%, and 14.26% over the temperatures observed in the conventional SGSP (SGSP-C). Furthermore, the energy efficiency improvements in the UCZ, NCZ, and LCZ for the SGSP-R are
J, Vinoth Kumar
This work addresses an innovative method for improving energy harvesting in Bladeless wind turbines (BWT) by implementing profile modifications to the wind turbine for fixing it in Unmanned Surface Vehicles (USV). The streamlined flow undergoes a transformation and generates a vortex in the vicinity of the structure when the wind impacts the BWT. As the velocity increases, the wind strikes the structure with greater force, resulting in an imbalance that causes the structure to vibrate. To convert this vibrational energy of the wind turbine into electrical energy, the research investigates the use of a variety of profile modifications to capitalize on the aerodynamic effect generated by the structure. The entire cylindrical shape is altered to tapered shape, airfoil shapes with coordinates such as NACA 0012, 0015, 0018, 4412 and 4420. In addition to these shapes, hybrid models were also constructed by merging models made from two airfoil coordinates, including NACA 0018 & 4412, NACA
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
This research investigates the potential of salt gradient solar ponds (SGSPs) as a sustainable and effective solution for thermal energy storage. The study examines the design, construction, and performance of SGSP systems that incorporate coal cinder, comparing their performance with traditional SGSPs without coal cinder. A combination of experimental and numerical approaches is used to evaluate the thermal characteristics and energy efficiency of these systems. The findings indicate that the salt gradient solar pond with coal cinder (SGSP-CC) achieves notably higher temperatures across the Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ), with measured temperatures of 42.57°C, 56.8°C, and 69.86°C, respectively. These represent increases of 7.53%, 12.01%, and 15.49% over those in the conventional SGSP (SGSP-C). Additionally, the energy efficiency gains in the UCZ, NCZ, and LCZ for the SGSP-CC are noteworthy, with increases of 38.06%, 39.61%, and
J, Vinoth Kumar
The integration of advanced horizontal axis turbines (HATs) into unmanned marine vehicles (UMVs) significantly enhances their operational efficiency by providing power sources. These vehicles, designed for diverse applications, require efficient power systems to operate autonomously over extended periods. The major disadvantages are limited battery life and energy storage capabilities that restrict the operational range and endurance of the UMVs. Utilizing HATs in UMVs provides a renewable energy source, reducing operational costs. This continuous power supply enhances mission capabilities and promotes energy independence, making them ideal for long-term missions. Thus, using Computational fluid dynamics (CFD) models, hydrodynamic and aerodynamic analyses were carried out. For the hydrodynamic scenario, a velocity of 10 m/s and for the aerodynamic case, 27.7778 m/s, were taken into consideration. It is concluded that the UMV with Stepped HAT modification can be effectively employed for
Gunasekaran, Durga DeviKannan, HaridharanSourirajan, LaxanaVinayagam, GopinathGnanasekaran, Raj KumarKulandaiyappan, Naveen KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Copper Antimony Sulfide (CuSbS2) is a promising ternary semiconductor for use as an absorber layer in third-generation thin film heterojunction solar cells. This newly developed optoelectronic material offers a viable alternative to cadmium telluride (CdTe) and copper indium gallium di-selenide (Cu(In,Ga)Se2) due to its composition of inexpensive, readily available, and non-toxic elements. These films were successfully produced at an optimal substrate temperature of 533 K using the conventional spray technique. X-ray diffraction and Raman studies confirm that the films exhibit a chalcostibite structure. Characterization studies reveal that the films possess lattice parameters of a = 0.60 nm, b = 0.38 nm, and c = 1.45 nm, with an absorption coefficient of 105 cm-1 and a band gap of 1.50 eV. Notably, the films exhibit p-type conductivity. All of these studies confirm that CuSbS2 is an excellent choice for the absorber layer in solar cell applications. An attempt was made in this study to
Kumar, YB KishoreYb, KiranTarigonda, HariprasadReddy M, Surya Sekhar
With the increase in vehicle population, the environmental problems caused by excessive carbon emissions from vehicles are becoming increasingly serious. Currently, China is actively promoting the development of electric vehicles to reduce carbon emissions. However, the electricity used by electric vehicles is a secondary energy source, and thermal power generation still dominates China's current power structure, so electric vehicles will indirectly contribute to carbon emissions during use. Calculating and analysing the carbon emissions of fuel vehicles and electric vehicles will give a better idea of the environmental advantages of electric vehicles. In this paper, the World Light Vehicle Test Cycle (WLTC) are selected, and the energy consumption is calculated by the energy consumption formula of fuel and electric vehicles under different conditions, and the carbon emission is obtained by the carbon emission coefficients of gasoline and electric energy. Through MATLAB calculation
Xie, HaonanLin, Guangyu
In recent years, the amount of industrial sewage sludge awaiting treatment has continued to rise steadily, posing serious risks to human health and the ecological environment if mishandled. This study proposes a photothermal-driven supercritical water co-gasification of sludge-coal thermochemical synergistic conversion system for efficient hydrogen production. The main feature is that the medium-low temperature exothermic heating method uses concentrated solar energy to provide reaction heat for the co-gasification process. This approach synergistically converts solar energy into syngas chemical energy while meeting the heat demand of the co-gasification hydrogen production process. The results show that this co-gasification system for hydrogen production can achieve an energy efficiency of 56.82%. The sensitivity analysis shows that the molar flow rate of hydrogen increased from 44.02 kmol/h to 217.51 kmol/h as the gasification temperature increased from 500°C to 700°C. The concluded
Li, GuangyangXue, XiaodongWang, Yulin
Photovoltaic water electrolysis hydrogen production technology has garnered significant attention due to its zero carbon emissions and its potential to address the issue of grid fluctuations associated with solar power generation. However, the direct coupling technology for photovoltaic electrolyzer system remains underdeveloped, leading to the predominance of indirect coupling methods. This limitation results in a low overall conversion efficiency, which significantly hinders the application and promotion of this technology. In this paper, we first constructed a set of miniaturized photovoltaic water electrolysis devices, utilizing commercial photovoltaic modules and self-manufactured electrolyzer, and subsequently tested the operational characteristics of both components. Based on the experimental results, we established a simulation model for direct coupling of photovoltaic water electrolysis. This model incorporates the concept of supplying photovoltaic power to the electrolytic
Geng, JiafengSu, DiDeng, TongkunMo, LuotongLi, HaojieHu, LanwenGuo, Chenyu
The integration of phase change materials (PCMs) with thermoelectric generators (TEGs) presents a solution to the challenge of unstable output resulting from fluctuations in the heat source. This study involved the establishment of an experimental test setup for PCM-TEG system to examine the impact of heat source power on the thermoelectric performance of PCM-TEG system. The results suggest that incorporating PCM effectively mitigates output voltage fluctuations, while higher heating power levels correspond to a notable extension in effective operational duration. In situations of low heat source power, incomplete PCM melting may lead to a significant decline in electricity generation during non-heating stages. Notably, the electricity generation during non-heating stages at 90 W heating power surpasses that at 30 W heating power by a factor of 11.78. Furthermore, the electricity generated during non-heating stages contributes to 22.4% of the total electricity generation. These
Tian, MengWu, FengyuZuo, AoXuan, ZhiweiZhao, Yulong
The selection of the key components of proton exchange membrane fuel cell (PEMFC) crucially impacts the performance. This work developed a model of the fuel cell system model to simulate the power consumption of component and system and the temperature dynamic response of stack in real systems. A PEMFC simulation model was developed based on AMESim, encompassing the air supply subsystem, hydrogen supply subsystem, and the hydrothermal management subsystem. The parameters for the flow and pressure of hydrogen, air, and water were established based on the operational requirements to ensure efficient stack performance. Furthermore, a PID control model was employed to regulate the flow and pressure parameters of hydrogen, air, and water, in accordance with the operational requirements, to ensure optimal PEMFC system performance.The purpose of this study is to predict the power consumption of the key components and the overall system, as well as to analyze the compliance with fuel supply
Yu, PeiwenWang, YanboZhao, XiaojunPan, FengwenShi, BaofanYang, FengQiao, XingnianShan, FengxiangCheng, XiaoxianZhang, YaranZhang, ChunSun, YulingGao, YongFeng, Gang
The inductance parameter is important for the flux regulation performance of the hybrid excitation motor, and the axial structure leads to the change in the inductance parameter of the axial-radial hybrid excitation motor (ARHEM). To clarify the inductance characteristic of the ARHEM with different winding construction and the mutual coupling effect between the axial excitation and permanent magnet excitation on the inductance. Firstly, the structure of the ARHEM is presented. Secondly, the self and mutual inductance characteristics of ARHEM are analyzed using the winding function method. Then, the influence of the axial excitation structure on the armature reaction field and saliency ratio of ARHEM. On this basis, the mechanism of the mutual coupling, between the axial excitation and permanent magnet field under different excitation currents on the main air gap magnetic field, and the inductance of ARHEM with fractional slot are revealed.
Fu, DongXueZhao, HeweiWu, QiminYuan, ChunweiWang, DongQiu, Hongbo
In the highly demanding domain of advanced technologies, Wire Electro Discharge Machining (EDM) has distinguished itself as one of the most promising methods for the efficient machining of sophisticated composite materials. As a critical advanced machining process, EDM caters to the stringent requirements for intricate geometries and effective material removal. This study focuses on Al6063 Alloy Composites reinforced with Silicon Carbide and Fly Ash, materials celebrated for their high strength, exceptional oxidation-corrosion resistance, and high-temperature performance. These composites are widely applied across aerospace, marine, automotive industries, nuclear power, and oilfield sectors. The current research involves a rigorous experimental analysis and parametric optimization of the aluminum matrix composite utilizing EDM. The primary objective is to fine-tune the process parameters, including pulse-off time, current, and taper angle. The experiments were designed and conducted
Sivaram Kotha, M. N. V. S. A.Chinta, Anil KumarGuru Dattatreya, G.S.Lava Kumar, M.Surange, Vinod G.Seenivasan, Madhankumar
The solar-based hybrid automotive vehicle represents a trend marked by technological excellence, offering an efficient, cost-effective, and eco-friendly solution. Besides, the enhancement of solar absorption due to poor weather is influenced by poor solar power with reduced photocurrent density. This research focuses on enhancing the solar power and photocurrent density of conventional solar cells featuring aluminium-doped zinc oxide thin films (AZO) using the Mist Chemical Vapor Deposition (MIST CVD) process with a zinc acetate precursor solution processed at temperatures ranging from 200 to 400°C. To investigate the effect of AZO on the functional behaviour of solar cells, microstructural studies utilizing scanning electron microscopy and X-ray diffraction reveal the concentration of AZO and the alignment of Al/ZnO peaks as even. As a result, this research demonstrates a 21% increase in solar power output compared to conventional Cadmium Telluride (CdTe) cells, with an improvement in
Venkatesh, R.De Poures, Melvin VictorThangamani, P.Manivannan, S.Devanathan, C.Boopathi, M. SugadevaBaranitharan, BalakrishnanMadhu, S.Kaliyaperumal, Gopal
This paper proposes a theoretical drive cycle for the competition, considering the battery pack project under design. The vehicle has a non-reversible, double-stage gear train, created without a dynamic investigation. To evaluate the effect on performance, several ratios were analyzed. Dynamic model uses Eksergian’s Equation of Motion to evaluate car equivalent mass (generalized inertia), and external forces acting on the vehicle. The circuit is divided into key locations where the driver is likely to accelerate or brake, based on a predicted behavior. MATLAB ODE Solver executed the numerical integration, evaluating time forward coordinates, creating the drive cycle. Linear gear train results provided data as boundary conditions for a second round of simulations performed with epicyclic gear trains. Model is updated to include their nonlinearity by differential algebraic equation employment with Lagrange multipliers. All data undergoes evaluation to ascertain the mechanical and
Rodrigues, Patrícia Mainardi TortorelliSilveira, Henrique Leandro
Nestled in the Himalayas, the Kingdom of Bhutan demonstrates a strong commitment to sustainability and environmental conservation, guided by its constitution and the philosophy of Gross National Happiness (GNH). This commitment is underpinned by policies in conservation, waste management, and energy practices. Despite efforts to promote clean energy, Bhutan relies heavily on non-renewable sources—coal, biomass, and petroleum—accounting for 62.4% of its energy mix, while hydropower, wind, and solar contribute 37.6%. The government has introduced initiatives like the “Low Emission Development Strategy” and the “EV Roadmap 2035” to encourage electric vehicle (EV) adoption. However, the transport sector consumes over 108,768.10 KTOE (14.4% of total energy use), with vehicle sales rising at a CAGR of 6.7% from 75,190 in 2014 to 126,650 in 2023. Yet, only 0.36% of these vehicles are electric, while others contributing to 60.01% of the country's carbon dioxide emissions. By referencing
Wangchuk, SingyeDema, Dorji
Adoption of Electric Vehicles (EVs) reduces air pollution by reducing harmful gas emissions. Such adoption, however, needs a reliable and convenient charging infrastructure, including smart EV charging. Renewable energy sources such as solar photovoltaic cells, battery and wind energy systems can address these infrastructural gaps which work in conjunction with main grid power supply thereby providing low-cost electricity. This paper introduces an energy management algorithm for integrated renewable and grid power sources available at charging stations across India that considers techno-economic and environmental factors. The current work proposes a supervisory controller model that manages the load power demand of the charging station. The controller effectively deploys low cost energy sources based on the status of all available power supplies and reduces the overall charging costs in real time. The energy management algorithm ensures adequate stand-alone energy generation and
Shukla, AnkitKushwah, Yogendra SinghSuman, Saurabh
It’s common knowledge that a major challenge for solar energy is how to store excess energy produced when conditions are right, like noon-time sun, so that it can be used later. The usual answer is batteries. But renewable energy resources are causing problems for the electricity grid in other ways as well. In a warm, sunny location like California, mid-afternoon had been a time of peak demand for the electric utility, but with solar it’s now a time of peak output.
The Korea Research Institute of Standards and Science (KRISS) has developed a metamaterial that traps and amplifies micro-vibrations in small areas. This innovation is expected to increase the power output of energy harvesting, which converts wasted vibration energy into electricity, and accelerate its commercialization.
In the future, power sockets used to recharge smartphones, tablets, and laptops could become obsolete. The electricity would then come from our own clothes. By means of a new polymer that is applied on textile fibers, clothing could soon function as solar collectors and thus as a mobile energy supply.
This document provides recommended best practice methods and processes for the in-service inspection, evaluation and cleaning of all physical contact (PC) fiber optic interconnect components (termini, alignment sleeves and connectors), test equipment and test leads for maintainers qualified to the approved aerospace fiber optic training courses developed in accordance with ARP5602 or ARINC807. This document also provides a decision-making disposition flowchart to determine whether the fiber optic components are acceptable for operation. For definitions of individual component parts refer to ARP5061.
AS-3 Fiber Optics and Applied Photonics Committee
As the U.S. military embraces vehicle electrification, high-reliability components are rising to the occasion to support their advanced electrical power systems. In recent years, electronic device designers have started using wide band-gap (WBG) materials like silicon carbide (SiC) and gallium nitride (GaN) to develop the semiconductors required for military device power supplies. These materials can operate at much higher voltages, perform switching at higher frequencies, and feature better thermal characteristics. Compared to silicon, SiC-based semiconductors provide superior performance. The growing availability of these materials, in terms of access and cost, continues to encourage electrification. With the ever-present pressure of size, weight, and power (SWaP) optimization in military applications, and a desire to keep up with the pace of innovation, there's a need for capacitors that can deliver higher power efficiency, switching frequency, and temperature resistance under harsh
Mitigating environmental impacts is ever more crucial as wind energy technology expands to help meet the Nation’s goal of achieving a carbon pollution-free power sector by 2035 and net zero emissions economy by no later than 2050.
Transportation contributes 27% of the greenhouse gas emissions in the US. Governments worldwide are developing new programs to hasten the adoption of electric vehicles (EVs) in the transition to zero-emission vehicles. However, the success of EV adoption generally depends on user preferences. This study explores what we can find out about consumer preferences while accounting for unobserved heterogeneity. Consumer choices for EVs, including plug-in EVs (PEVs) and fuel-cell EVs (FCEVs), are analyzed using the California Vehicle Survey (2019) data. Several factors are examined, including the availability of clean source energy (installed solar panels) at home, preferable location for recharging PEVs, past driving experience with EVs, availability of public charging infrastructure, and sociodemographic factors. A mixed multinomial (random parameter) logit model is estimated, exploring the associations between the selected variables and EV consumer preferences while accounting for
Moradloo, NastaranMahdinia, ImanKhattak, Asad
The aim of paper is to present the workflow of battery sizing for electric L7e-CU type vehicle. The intention is to use it as last-mile delivery multi-purpose vehicle. Based on legislation limits and pursuing the real-world driving cycle, major vehicle characteristics as total vehicle mass including payload and wheel size are determined. Vehicle total energy consumption is calculated knowing vehicle power in time. Accordingly, to selected gearbox ratio the electric motor nominal power-speed curve is defined as well as the nominal torque-speed curve. Applying vehicle acceleration dynamics involving limits considering resistive forces, acting on the vehicle, e.g. slope, friction, air drag, and total inertia, referred to the electric motor through the gearbox the electric motor over-load-ability characteristics are calculated. Next, the motor design is defined and optimized. Defining required vehicle range at given driving cycle and knowing the vehicle and all powertrain characteristics
Rupnik, UrbanVukotić, MarioManko, RomanAlić, AlenČorović, SelmaMiljavec, Damijan
Even if huge efforts are made to push alternative mobility concepts, such as, electric cars (BEV) and fuel cell powered cars, the importance and use of liquid fuels is anticipated to stay high during the 2030s. The biomethane and synthetic natural gas (SNG) might play a major role in this context as they are raw material for chemical industry, easy to be stored via existing infrastructure, easy to distribute via existing infrastructure, and versatile energy carrier for power generation and mobile applications. Hence, biomethane and synthetic natural gas might play a major role as they are suitable for power generation as well as for mobile applications and can replace natural gas without any infrastructure changes. In this paper, we aim to understand the direct production of synthetic natural gas from CO2 and H2 in a Sabatier process based on a thermodynamic analysis as well as a multi-step kinetic approach. For this purpose, we thoroughly discuss CO2 methanation to control emission in
Mauss, Fabian
Sustainable mobility is a pressing challenge for modern society. Electrification of transportation is a key step towards decarbonization, and hydrogen Fuel Cell Hybrid Electric Vehicles (FCHEVs) offer a promising alternative to Battery Electric Vehicles (BEVs), especially for long-range applications: they combine a battery system with a fuel cell, which provides onboard electric power through the conversion of hydrogen. Paramount importance is then given to the design and sizing of the hybrid powertrain for achieving a compromise between high performance, efficiency, and low cost. This work presents a Hardware-in-the-Loop (HIL) platform developed for designing and testing the powertrain layout of an FCHEV. The platform comprises two systems: a simulation model reproducing the dynamics of a microcar and a hardware system for the fuel cell hybrid electric powertrain. The former simulates the vehicle's behavior, while the latter is composed of a 2kW real fuel cell stack and a 100Ah Li-ion
Bartolucci, LorenzoCennamo, EdoardoCordiner, StefanoDonnini, MarcoGrattarola, FedericoMulone, Vincenzo
Rolling bearings play a critical role in rotating machinery, with their fatigue life directly impacting equipment’s operational reliability. This underscores the significant engineering application value of “fault diagnosis” (FD) technology for rolling bearings in mechanical, automation, and aerospace domains. Literature reviews highlight that a substantial portion of failures in machinery such as jet turbine engines, wind turbines, gear reducers, and induction machines are attributable to bearing issues. Early fault detection and preventive maintenance are therefore imperative for ensuring the smooth operation of rotating machinery. This paper focuses on rolling bearings, delving deep into FD technology using machine learning principles. It analyses the structure and common failure modes of rolling bearings, discussing an FD method based on machine learning. Specifically, the SE-DRN (“squeeze-exclusion deep residual network”) approach is employed, leveraging “variational modal
Muin, Abdullah-AlKhan, ShahrukhMiah, Md Helal
To expand the availability of electricity generated from nuclear power, several countries have started developing designs for small modular reactors (SMRs), which could take less time and money to construct compared to existing reactors.
Penn Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.
Reducing dust accumulation on any surface is key for lunar missions as dust can damage or impair the performance of everything from deployable systems to solar cells on the Moon’s surface. Electrodynamic dust shields (EDSs) are a key method to actively clean surfaces by running high voltages (but low currents) through electrodes on the surface. The forces generated by the voltage efficiently remove built up, electrically charged dust particles. Innovators at the NASA Kennedy Space Center have developed a new transparent EDS for removing dust from space and lunar solar cells among other transparent surfaces.
Solar panels are an increasingly popular way to generate electricity from the sun’s energy. Although humans are still figuring out how to reliably turn that energy into fuel, plants have been doing it for eons through photosynthesis. Now, a team reporting in ACS Engineering Au has mimicked the process to produce methane, an energy-dense fuel, from carbon dioxide, water and sunlight. Their prototype system could help pave the way toward replacing nonrenewable fossil fuels.
The ongoing transition from fossil fuels to renewable energy sources has never been more important as climate change and sustainability awareness continue to rise.
With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer. Technologies are compared in respect of their TLR level and
Rothbart, Martin
The automotive PowerNet is in the middle of a major transformation. The main drivers are steadily increasing power demand, availability requirements, and complexity and cost. These factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is, among other factors, caused by the progressive electrification of formerly mechanical components and a constantly increasing number of comfort and safety loads. This leads to a steady increase in installed electrical power. X-by-wire systems1 and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet system, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the most expensive parts of modern cars. These challenges are met with a
Jagfeld, Sebastian Michael PeterWeldle, RichardKnorr, RainerFill, AlexanderBirke, Kai Peter
Sodium is used as a coolant in the fast reactor’s primary and secondary loops to transfer enthalpy from the reactor and transport it to the expander. However, handling sodium is difficult, and it can be hazardous if it comes into contact with air, which causes an exothermic reaction. During maintenance of sodium loop components, isolation is typically accomplished with valves. The valve leaking is caused by the seal or the gland. Seal leakage is compensated because it occurs within the line, but gland leakage should be zero because the liquid is harmful. To address this requirement, the author attempted to design a special type of valve in which sodium is allowed to rise through an annular path along the stem and heat transfer is augmented in such a way that the required enthalpy is evacuated to freeze sodium inside the annular path, confirming the fail-safe zero gland leakage. A finned tube assembly is fitted around the stem to achieve this concept of expanded surface heat transfer
Kudiyarasan, SwamynathanBiswas , Sitangshu Sekhar
Items per page:
1 – 50 of 2998