Browse Topic: Exhaust emissions

Items (17,459)
Driving behavior is a significant factor influencing vehicle emissions, and it must be carefully considered when modeling emissions for real road transportation vehicles. This study aims to contribute to this field by improving the intelligence and accuracy of distinguishing driving behavior volatility through the use of clustering algorithm. The research begins by processing raw emissions data collected from light-duty gasoline vehicle during real-driving emissions (RDE) test, which are used as input features for the clustering algorithm. Subsequently, a driving behavior classification method based on the gaussian mixture model (GMM) clustering algorithm is proposed. The results show that aggressive driving has a significantly higher CO2 emission rate compared to normal and calm driving. Specifically, the average CO2 emission rate for aggressive driving is 5.61 g/s, which is substantially higher than that of calm driving (2.40 g/s) and normal driving (2.91 g/s). Following this, the
Yu, HaoMa, YiTan, JianxunWang, JingZhang, HonghaoHu, WeiChen, HaoYu, Wenbin
In this study, the combustion and emission characteristics of a single-cylinder direct injection (DI) diesel engine fueled with Spirulina biodiesel along with diesel blends were examined using a combined CFD and thermodynamic simulation framework. Three test fuels, including pure diesel (D100), Spirulina biodiesel blends (B20 and B40), and pure Spirulina biodiesel (B100), were analysed at 1500 rpm under full load. In the first stage, CFD simulations were performed in ANSYS Fluent, where the Discrete Phase Model (DPM) was applied to capture spray atomization and droplet evaporation, while a non-premixed combustion model coupled with the RNG k-ε turbulence model was employed to resolve in-cylinder flow and heat release dynamics. Subsequently, the Diesel-RK software was utilised to predict engine performance and exhaust emissions based on compression ratios (18.5) and injection timings. Results from the CFD analysis revealed faster atomization and reduced ignition delay for biodiesel
Kumar, B Varun
This study investigates the potential of using a dual green alternative fuel combination, the one is hydrogen fuel and another one is biodiesel for enhancing the Performance, combustion and emission profile of a compression ignition engine. The kapok oil biodiesel was blended with Diesel in proportions of 20% (K20) and 40% (K40) by volume. The hydrogen gas was supplied at a constant flow of 4 liter per minute (LPM). The experimental fuels are neat diesel D100, K20 (80% Diesel and 20 % kapok methyl ester), K40 (60% Diesel + 40 % Kapok methyl ester), K20 + H4L (K20 with 4 LPM hydrogen) and K40+H4L (K40 with 4 LPM hydrogen). These test blends are investigated in a single cylinder direct injection CI engine under 0% to 100% load conditions at a fixed speed of 1500 rpm combustion, and emissions characteristic were evaluated and compared with base fuel. The outcomes indicated that the use of B20 and B40 blends without hydrogen led to reduced BTE because of their lower cetane number and
Anbarasan, BM, KumaresanBalamurugan, SRajesh, Munnusamy
Mining operations are important to industrial growth, but they expose the mining workers to risk including hazardous gases, elevated ambient temperatures, and dynamic structural instabilities within underground environments. Safety systems in the past, typically based on fixed sensor networks or manual patrols, fall short in accurate hazard detection amidst shifting mine conditions. The proposed project Miner's Safety Bot advanced this paradigm by leveraging an ESP 32 microcontroller as a mobile platform that integrates gas sensing, thermal monitoring, visual inspection and autonomous obstacle avoidance. The system incorporates MQ7 semiconductor gas sensor to monitor real time carbon monoxide (CO), offering detection range from 5 to 2000 ppm with accuracy of 5 ppm. Temperature and humidity are monitored through DHT11 digital sensor, calibrated to ensure reliability across the harsh microclimates in mines. Navigation and autonomous movement are enabled by Ultrasonic Sensor (HC-SR04
D, SuchitraD, AnithaMuthukumaran, BalasubramaniamMohanraj, SiddharthSubash Chandra Bose, Rohan
Items per page:
1 – 50 of 17459