Browse Topic: Particulate matter (PM)

Items (7,049)
This research experimentally investigates the spray vaporization of high-pressure dimethyl ether (DME) using a single-hole research injector focusing on nominal operating conditions from the Engine Combustion Network (ECN). DME is a synthetic alternative to diesel fuel, offering both high reactivity and potential reductions in particulate emissions. Because DME only features half of the energy density of diesel fuel, a specifically designed fuel system with a high mass flow rate to meet the energy delivery requirements is needed. The unique physical properties of DME, including higher vapor pressure and lower viscosity, introduce challenges like cavitation and unique evaporation characteristics that deviate from typical diesel fuel. These features are likely to lead to differences in fuel mixing and combustion. This study aims to provide detailed experimental data on DME spray characteristics under engine-like conditions, helping the development of predictive CFD models for optimal
Yi, JunghwaWan, KevinPickett, LyleManin, Julien
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile Particulate Matter (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane. As the particle losses are size dependent, the magnitude of correction
E-31P Particulate Matter Committee
The Standard Test Method for Determination of Benzene, Toluene, and Total Aromatics in Finished Gasolines by Gas Chromatography/Mass Spectrometry, also known as ASTM D5769, identifies aromatic compounds ranging from carbon groups six to twelve (C6-C12). This method provides determination in less than 15 minutes of twenty-three target aromatics, quantification of uncalibrated Indans, as well as C10, C11, and C12 aromatics using extracted ions. In contrast, the Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100-MetreCapillary (with Precolumn) High-Resolution Gas Chromatography (ASTM D6730) offers a more comprehensive identification of compounds of multiple classes in gasoline samples also using a mass spectrometer (MS), focusing on aromatics from C6 to C14 for this research. This method uses a standard template of identified fuel components and corrects responses based on theoretical Flame Ionized Detector (FID) hydrocarbon responses
Dozier, JonathanGoralski, SarahGeng, PatReilly, Veronica
Low-carbon alternatives to diesel are needed to reduce the carbon intensity of the transport, agriculture, and off-grid power generation sectors, where compression ignition (CI) engines are commonly used. Acid-catalysed alcoholysis produces a potentially tailorable low-carbon advanced biofuel blend comprised of mixtures of an alkyl levulinate, a dialkyl ether, and the starting alcohol. In this study, model mixtures based on products expected from the use of n-butanol (butyl-based blends) as a starting alcohol, were blended with diesel and tested in a Yanmar L100V single-cylinder CI engine. Blends were formulated to meet the flash point, density, and kinematic viscosity limits of fuel standards for diesel, the 2022 version of BS 2869 (off-road). No changes to the engine set-up were made, hence testing the biofuel blends for their potential as “drop-in” fuels. Changes in engine performance and emissions were determined for a range of diesel/biofuel blends and compared to a pure diesel
Wiseman, ScottLi, HuTomlin, Alison S.
The upcoming EURO 7 and EPA Tier 4 regulations and the possible China 7 are expected to tighten the tailpipe particulate emissions limits significantly. High performance Gasoline Particulate Filters (GPFs) with high filtration efficiency and low pressure drop would be mandated for gasoline engines to meet these stringent regulations. Due to packaging constraints, GPFs are often coated with three-way catalyst (TWC) materials to achieve four-way functionality. Ash accumulation in GPFs also has a significant impact on the performance of GPFs. This paper utilizes 3D CFD to predict the transient filtration efficiency and pressure drop of a washcoated GPF with ash accumulation during the soot loading process. Simulation results show a decent match with experimental data. The 3D CFD model also provides detailed information on soot penetration in the GPF wall substrate and soot cake characteristics on the wall. These information can be crucial for GPF wall substrate design and washcoating
Yang, PengzeCheng, Zhen
Selective catalytic oxidation/reduction catalysts coated on diesel particulate filters (SDPF) are an important technology route to meet next-stage emission regulations. The previous research of the research group showed that compared with SDPF coated with Cu-SSZ-13, the SDPF coated with novel selective catalytic oxidation-selective catalytic reduction (SCO-SCR) catalyst, which combined MnO2-CeO2/Al2O3 and Cu-SSZ-13, can simultaneously improve NOx reduction and soot oxidation performance. Catalyst coating strategy is an important parameter affecting the performance of SDPF. In this study, the effects of different coating strategies of SCO-SCR catalysts (C25, C50, C75, and C100) on the performance of NOx reduction and soot oxidation in SDPF were investigated. The results show that, as the inlet gas temperature increases, NO emissions first decrease and then increase, NOx conversion efficiency first increases and then decreases, and the rich-NO2 area, NH3 oxidation rate, N2O, CO, CO2
Chen, Ying-jieTan, PiqiangYao, ChaojieLou, DimingHu, ZhiyuanYang, Wenming
Diesel Particulate Filters (DPFs) have been used extensively worldwide as a Particle Mass (PM) / Particle Number (PN) reduction technology for various diesel applications. Based on CARB’s latest Tier 5 regulation workshop, PM emission targets are expected to become a lot more stringent; from 0.02 g/kWh to 0.005 g/kWh (75% reduction compared to Tier 4 Final (Tier 4f)). Also, CO2 emission targets are expected to be introduced for Tier 5. In parallel, EU Stage VI emission regulation standards and implementation timing could be announced sometime in late 2024. It is expected that PN emission standards will be tightened such as extending measurement range of PN from 23 nm to 10 nm. With Tier 5 and EU Stage VI regulations approaching, several OEMs are considering implementing a common aftertreatment system that can meet emission targets for both regions. High filtration efficiency and low backpressure DPFs will be required to meet PM/PN and CO2 emission standards. NGK has developed several
Fakih, HusseinElizondo, ZacheryIshikawa, HiroakiYoshioka, FumihikoKato, KyoheiSuzuki, HiroakiAoki, TakashiIto, Yoshitaka
The challenges with electrification in the automotive industry have led to rethinking the decisions to ban internal combustion engines. Nonetheless, decarbonization of transportation remains a regulatory priority in many countries, irrespective of the energy source for automotive powertrains. Renewable oxygenated fuel components can help with the rapid decarbonization of gasoline fuels in the current fleet. Ethanol is one of the primary renewable components typically used for blending in gasoline primarily at 10% v/v but up to 20% v/v substitution which corresponds to 3.7 to 8.0% oxygen by mass. However, a range of oxygenates could be used instead of ethanol. This study aimed to determine if the engine could discriminate between different oxygenates in gasoline fuels blended at the same octane (RON) and oxygen levels. Oxygenates such as methyl-tert-butyl-ether (MTBE) and ethyl-tert-butyl-ether (ETBE) were considered in this study. Blends were made using a combination of n-heptane, iso
Kalaskar, VickeyMitchell, RobertPourreau, Daniel
Progressive emission reductions and stricter legislation require a closer look at the emission behaviour of a vehicle, in particular non-exhaust emissions and resuspension. In addition to the analysis of emissions in isolation, it is also necessary to consider the impact of transport routes and dispersion potential. These factors provide insight into the movement of dust particles and, consequently, the identification of particularly vulnerable areas. Measurements using low-cost environmental sensors can increase the level of detail of dispersion analyses and allow a statement on the distribution of emissions in the vehicle's wake, as several measuring points can be covered simultaneously. A newly developed measurement setup allows vehicle emissions to be recorded in a plane behind the vehicle in a measurement area of 2 by 2 metres. The measuring grid consisting of 16 sensors (4x4 grid) can be variably positioned up to 1 metre from the rear of the vehicle. The sensors detect fine dust
Kunze, MilesIvanov, ValentinGramstat, Sebastian
A diesel engine was run on off-highway cycle sequence on nine (9) fuels and blends. Number-weighted solid particle size distribution (PSD) in the size range from 5.6 nm to 560 nm was measured at inlet and outlet of a diesel particulate filter (DPF) on a sequence of five (5) non-road transient cycles (NRTCs) and five (5) non-road steady-state cycles (NRSCs). The measurements were used to correlate the fuel properties to the DPF-In concentrations and filtration of different size particles in the DPFs. The data showed an expected trend with the DPF-In emissions. Ultra-low sulfur diesel (ULSD) had the highest solid particle number (SPN) concentrations and biodiesels (soy-based biodiesel (B100) and rapeseed-based biodiesel (RME)) had the lowest concentrations. The geometric number mean diameter (GNMD) of DPF-In PSD correlates with the concentrations. The calculated GNMD was the highest for ULSD and lowest for B100/RME. An opposite trend for the GNMD was observed at the DPF-Out where the
Lakkireddy, VenkataKhalek, ImadBuffaloe, Gina
Simulated distillation (SimDis) uses wide bore capillary gas chromatography (GC) to provide a detailed volatility profile of blended gasoline. The boiling point distribution from SimDis analysis is correlated to the hydrocarbon contents of spark ignition fuels and provide the resolution necessary to characterize the compositions of the fuel. Recent publications on simulated distillation applied to spark ignition fuel reveal the merits of indexing a gasoline fuel so that it can be correlated to the tendency of particulate emissions from vehicles. With this in mind, SimDis can be a useful and quick tool in assessing the PM-formation potential of market gasolines. Heavy aromatic compounds are compounds identified as having at least 10 Carbons and 1 aromatic ring. These compounds that are present in spark ignition fuels are major contributors to vehicle particulate emissions. These compounds can be found in the higher boiling portion (T70+) of the distillation profiles. As demonstrated in
Goralski, SarahGeng, PatDozier, JonButler, Aron
The low emission of carbon and minimum level of soot formation in combustion engines and turbines strategy is adopted by many countries to counteract global warming and climate change. The use of ammonia with hydrocarbon fuels can limit the formation of soot and carbon emissions due to non-carbon atoms. The current study explores the use of ammonia with air at coflow flame conditions, which was not tested before. It may give the choice for diesel cycle engines to use the ammonia either with air or fuel. The combustion and emission characteristics of methane coflow flame were studied at low pressure and air polluted by ammonia conditions. The results showed that a significant decline in carbon formation was observed when ammonia was boosted, 5-10%. The impact of sub-atmospheric pressure, 90-70 KPa, on COx development was higher than that of NH3 addition, 0-5%, thanks to the lower formation of hydroxymethylium, formaldehyde, and aldehyde radical. In the environment of lower pressure, the
Hina, AnamAkram, M ZuhaibShafa, AmnaAkram, M Waqar
As part of decarbonization, alternative fuels are likely to be used in compression ignition internal combustion engines as a substitute for diesel fuel. There have been many studies on the effect of these alternative fuels on emissions and catalytic aftertreatment systems. Past research has reported lower particulate matter (PM) and higher oxides of nitrogen (NOx) with biofuels. However, there are limited studies on the effect of PM on the performance of diesel particulate filters (DPFs), especially in its effectiveness of PM filtration. PM emissions from four (4) types of fuels and five (5) of their blends, a total of nine fuels, were investigated using PM2.5 mass, soot mass, solid particle number (> 10 nm SPN10 and > 23 nm SPN23) and size distribution (6 nm to 560 nm) measurements at inlet and outlet of a DPF. The PM emissions were measured over a non-road regulatory cycle sequence consisting of five (5) non-road transient cycles (NRTCs) and five (5) non-road steady-state cycles
Lakkireddy, VenkataKhalek, ImadBuffaloe, Gina
With the continuous upgrading of emission regulations for internal combustion engines, the nitrogen oxide treatment capacity of selective catalytic reduction (SCR) aftertreatment needs to be continuously improved. In this study, based on a prototype of SCR aftertreatment, the impact of the arrangement of key components in the SCR system (urea injector, mixer, and catalyst unit) on ammonia uniformity was investigated. First, parameterized designs of the urea injector, mixer, and SCR unit were conducted. Then, using computational fluid dynamics (CFD), numerical simulations of the established aftertreatment system models with different parameter factors were performed under a high-exhaust temperature and a low-exhaust temperature conditions to study the impact of each individual parameter on ammonia uniformity. Finally, an optimized solution was designed based on the observed patterns, and the optimized samples were tested on an engine performance and emission test bench to compare their
Jie, WangJin, JianjiaoWu, Yifan
Sustainable aviation fuels (SAFs) derived from renewable sources are promising solutions for achieving carbon neutrality and further controlling aircraft engine emissions, operating costs, and energy security. These SAFs, primarily consist of branched and normal paraffins and exhibit significantly reduced sooting tendencies compared to conventional petroleum-based jet fuels, due to their lack of aromatics content. Our previous study investigated soot formation in non-premixed combustion for three ASTM-approved alternative jet fuels, namely Fischer–Tropsch synthetic paraffinic kerosene (FT-SPK), hydroprocessed esters and fatty acids from camelina (HEFA-Camelina), and alcohol-to-jet (ATJ), and demonstrated that the varying paraffinic composition within SAFs results in diverse sooting propensities, in the order of ATJ > FT-SPK > HEFA-Camelina. To evaluate the impact of iso-paraffins on sooting tendency and validate the suitability of utilizing binary blends of iso-dodecane (iC12) and
Xue, XinSung, Chih-JenWang, Xiaofeng
Diesel/Polymethoxy Dimethyl Ether (PODE) blend fuel can significantly reduce emissions from diesel engines. However, emission levels often vary due to high transients during real-world driving conditions. To evaluate the emission and economic performance of diesel/PODE blend fuel, this study analyzed the real-world driving behavior of heavy tractors using different blend ratios (0%, 20%, 30%) across urban, suburban, and expressway road sections, in compliance with the national VI emission standard. Based on Vehicle Specific Power (VSP) bins, the study compared carbon monoxide, carbon dioxide, nitrogen oxide, particulate matter, and fuel consumption rates between pure diesel and blended fuels, providing insights into their performance under varying driving conditions. In addition, specific emissions of pollutants, effective fuel consumption, and effective thermal efficiency for urban, suburban, and expressway sections, as well as for the entire test process, are analyzed to quantify the
Liu, HeYang, YajingFarooq, Muhammad ShahidLiu, ShenghuaWei, Yanju
The use of carbon-neutral fuels instead of conventional fuels in gasoline direct injection (GDI) engines is beneficial to global decarbonization. However, the application of renewable non-petroleum fuels in GDI engines is still unclear due to their different physicochemical properties. Acetone-Butanol-Ethanol (ABE) is a promising low-carbon alternative fuel for GDI engines, but its high viscosity and latent heat cause pool firing during cold start. The existing flash boiling technology can solve this problem. This study explores the effects of flash boiling on spray characteristics, flame propagation, soot, and emissions of gasoline-ABE blend in a constant volume combustion chamber (CVCC) without airflow. Optical windows, high-speed camera recording, in-chamber pressure measurement, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscope (TEM) were used to analyze flame spreading, combustion characteristics, exhaust gases, and soot morphology. Flash boiling
Nour, MohamedZhang, WeixuanCui, MingliLi, XuesongXu, MinQiu, Shuyi
This research investigates the development of a heat pipe heat exchanger coated with graphene for cooling and purification of automobile exhausts. The heat exchanger directly affects the performance of the engine because proper heat dissipation and transfer can improve engine performance, reduce fuel consumption, and decrease the emission. Moreover, this effect is much more noticeable on coated heat pipes because of the enhanced thermal conductivity and mechanical properties of the graphene films. A heat null emitted by internal combustion engines was used in the experimental setup to test the thermal performance, cooling efficiency, and purification efficiency of the newly designed in-house exhaust simulation system where the new heat pipes were inserted. The results of the experiment show that the heat pipes have very high thermal performance as the efficiency of the heat pipes was calculated to be around 85%. Furthermore, the temperature decrease over the surfaces of the heat
Karthigairajan, M.Seeniappan, KaliappanBalaji, N.Natrayan, L.Sheik, Salman BashaRavi, D.
High and ultra-high pressure direct injection (UHPDI) can enhance efficiency gains with flex-fuel engines operating on ethanol, gasoline, or their mixtures. This application aims to increase the engine’s compression ratio (CR), which uses low CR for gasoline due to the knocking phenomenon. This type of technology, involving injection pressures above 1000 bar, permits late fuel injection during the compression phase, preventing auto-ignition and allowing for higher compression ratios. UHPDI generates a highly turbulent spray with significant momentum, improving air-fuel mix preparation, and combustion, resulting in even greater benefits while minimizing particulate matter emissions. This study aims to develop ultra-high-pressure injection systems using gasoline RON95 and hydrated ethanol in a single-cylinder engine with optical access. Experimental tests will be conducted in an optically accessible spark ignition research engine, employing thermodynamic, optical, and emission results
Malheiro de Oliveira, Enrico R.Mendoza, Alexander PenarandaMartelli, Andre LuizDias, Fábio J.Weissinger, Frederico F.dos Santos, Leila RibeiroLacava, Pedro Teixeira
In the last decade, the increased global temperature, stringent regulations, and customer demand for high fuel economy have led to the accelerated development of alternative propulsion solutions, with particular focus on electrified vehicles. Hybrid electric vehicles (HEVs), the combination of electric machinery with conventional powertrains, allows diversifications of powertrain architectures. In addition, it has been demonstrated that engines employing advanced low temperature combustion concepts, such as dual fuel reactivity controlled compression ignition (RCCI), and able to operate on both renewable and conventional fuels, produce ultra-low nitrogen oxides (NOx) and particulate matter (PM) emissions while maintaining thermal efficiency similar to conventional diesel operation at part load operating conditions. This study aims to investigate the potential of integrating a gasoline-diesel RCCI engine in an HEV in achieving reduced fuel consumption and lower NOx and PM emissions
Marwaha, TejasvaKhedkar, Nikhil DilipSarangi, Asish Kumar
Sustainable Aviation Fuels (SAFs) offer great promises towards decarbonizing the aviation sector. Due to the high safety standards and global scale of the aviation industry, SAFs pose challenges to aircraft engines and combustion processes, which must be thoroughly understood. Soot emissions from aircrafts play a crucial role, acting as ice nuclei and contributing to the formation of contrail cirrus clouds, which, in turn, may account for a substantial portion of the net radiative climate forcing. This study focuses on utilizing detailed kinetic simulations and soot modeling to investigate soot particle generation in aero-engines operating on SAFs. Differences in soot yield were investigated for different fuel components, including n-alkanes, iso-alkanes, cycloalkanes, and aromatics. A 0-D simulation framework was developed and utilized in conjunction with advanced soot models to predict and assess soot processes under conditions relevant to aero-engine combustion. The simulations
Yi, JunghwaManin, JulienWan, KevinLopez Pintor, DarioNguyen, TuanDempsey, Adam
Next generation lubricating oils for transportation sector require higher durability in operation, compatibility with new engine technologies and aftertreatment devices as well as high fuel economy (FE), thus contributing to the reduction of CO2 emissions, both in passenger cars and heavy-duty vehicles. The current paper aims to highlight the impact of dispersant main properties in preventing sludge and deposits formation on engine surfaces. The effect on frictional properties of lubricating oils through a multi-step activity was evaluated. Oil contamination by soot is a big concern not only for diesel but also for new generation of direct injection gasoline (GDI) engines. The presence of soot leads to oil thickening that heavily impacts on friction coefficient thus enhancing the role of dispersant in controlling soot and related viscosity increase and, indirectly, fuel consumption for long running periods. After an introduction on dispersant technologies, the focus of the paper moves
Lattuada, MarcoManni, MassimoNotari, MarcelloFerraro, GiovanniFratini, Emiliano
The gasoline particulate filter (GPF) represents a durable solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as a viable technology in North America to meet the upcoming US EPA tailpipe emission regulation, the proposed “Multipollutant Rule for Model Year 2027”. The goal of this study was to track the evolution of tailpipe particulate emissions of a modern GTDI light duty vehicle under typical North American mileage accumulation; from a fresh state to 4000-mile, and finally to its full useful life of 150,000-miles. For this purpose, a production TWC + GPF after-treatment system was installed in place of the T3B85 TWC-only system. Chassis dyno emissions testing was performed at the pre-determined mileage points with on-road driving conducted for the necessary mileage accumulation. This report will show the outstanding filtration durability and enhanced particulate control and of the current GPF technology all the way to 150,000 miles for
Craig, AngusWarkins, JasonBeattie, JamesNipunage, SanketMoser, DavidDay, RyanBanker, Vonda
The rising demand for vehicles has increased CO and HC emissions, worsening air quality and contributing to climate change, key issues under the clean development mechanism and UN SDG 13: Climate Action. Reactivity-Controlled Compression Ignition (RCCI) offers a promising solution to reduce PM and NOx while maintaining fuel efficiency. However, the cyclic variation of the RCCI engine remains an underexplored area in control strategies, necessitating further research for optimization in line with sustainable development goals. This study explores the impact of premixing ratios on RCCI engines fueled with butanol and the nature of cyclic variation to know the controllability. Tests were conducted on a single-cylinder diesel engine at 1500 rpm and constant engine load. The experiments reveal that increasing the premixing ratio from 45% to 60% decreases the heat release rate by 15%, Pmax by 10%, and IMEP by 12%. Recurrence Quantitative Analysis (RQA) confirmed strong deterministic
Yadav, Ratnesh KumarMohite, Avadhoot AbasoMaurya, Rakesh Kumar
Dimethyl ether (DME) is a promising substitute for diesel as a fuel in heavy-duty engines. This article presents the comparison between a diesel- and a DME-powered compression ignition engine. The diesel-powered version was initially characterised at a range of operating points before being converted to operate on DME. This was achieved by replacing fuel system components with bespoke DME-compatible engine parts. An off-board fuel pressurisation and conditioning system was designed to replace the existing high-pressure fuel pump, while maintaining all other engine hardware and components. Engine behaviour, in terms of combustion and emissions on both fuels was examined. Firstly, the effect of varying recirculated exhaust gas (EGR) concentration at constant excess air ratio, combustion phasing (CA50) and equal fuel delivery rate (by energy input) was interrogated. DME combustion was significantly faster, as combustion duration was reduced by around 30%, in some cases, when comparing to
Apostolou, ChristosElliott, ThomasRutledge, JohnButcher, DanielLong, EdwardSpencer, Adrian
Light-duty vehicle emissions regulations worldwide impose stringent limits on particulate matter (PM) emissions, necessitating accurate modelling and prediction of particulate emissions across a range of sizes (as low as 10 nm). It has been shown that the decision tree-based ensemble machine learning technique known as Random Forest can accurately predict particle size, concentration, and accumulation mode geometric standard deviation (GSD) for particulate emission diameters as low as 23 nm from a highly boosted gasoline direct injection (GDI) engine operating on a single fuel, while also offering insights into the underlying factors of emissions production because of the interpretable nature of decision trees. This work builds on the prior Random Forest research as its basis and further investigates the relative performance of five decision tree-based machine learning techniques in predicting these particulate emission parameters and extends the work to 10 nm particles. In addition to
Stangierska, MartaBajwa, AbdullahLewis, AndrewAkehurst, SamTurner, JamesLeach, Felix
In this work we demonstrate the influence of different refined TCR refining diesel fuels on emission, power and efficiency in comparison to reference Diesel fuel (homologation fuel for Euro 6 emission testing), hydrotreated vegetable oil (HVO) and a blend of poly(oxymethylene)dimethyl ether (OME3) with reference Diesel. The emission characteristics of such TCR fuels used in a production type Diesel engine with modern common rail system has up to now not been tested. The comparison was performed at an engine test bench equipped with a Hatz 4H50 TIC direct injection common rail Diesel engine. For different engine operation points exhaust gas emissions and particulate matters were measured and the results analyzed.
Seeger, JanTaschek, Marco
The aviation industry is undergoing environmental scrutiny due to its significant greenhouse gas emissions. Sustainable aviation fuels (SAFs) are a vital solution for reducing carbon emissions and pollutants, aligning with global efforts for carbon-neutral aviation growth. SAFs can be produced via multiple production routes from different feedstock, resulting in significantly different physical and chemical fuel properties. Their suitability in a compression-ignition (CI) aircraft engine was evaluated through test bench investigations at TU Wien - Institute of Powertrain and Automotive Technology in partnership with Austro Engine. ASTM D7566-certified fuels like Hydrotreated Vegetable Oil (HVO), Fischer–Tropsch–Kerosene (FTK) or Alcohol to Jet (AtJ), but also an oxygen containing biodiesel have been tested extensively. Gaseous emissions, soot emissions, indication measurement data, efficiencies, and the like were acquired and comprehensively analyzed for engine operation with different
Kleissner, FlorianHofmann, Peter
The aim of this work was to investigate the influence of different combinations of engine oil and oil additive as well as additivated and unadditivated fuel on particulate emissions in gasoline engines. To accomplish this, load, speed, and type of oil injection were varied on a single-cylinder engine, and the influence on particle number concentration and size distribution were evaluated. The tests were supplemented by an optical investigation of their in-cylinder soot formation. The investigation of fuel additives showed no significant differences compared to the reference fuel without additives. However, in the case of oil additives, detergents led to a significant increase in the number of particles in the <20 nm range. This effect occurred when used as both a single additive and a component in the standard engine oil. While viscosity improvers also lead to a measurable, but less pronounced, increase in the particle number concentration, no significant influence can be determined
Böhmeke, ChristianHeinz, LukasWagner, UweKoch, Thomas
Vehicular emissions represent the main responsible of the deterioration of air quality in the urban area. In the attempt to reduce both gaseous emissions and particulates from internal combustion engines, increasingly stricter regulations were introduced from European Union in the last years. These limits have led to the improvement of emissions-reduction technologies as well as the vehicle hybridization and electrification. In this scenario, vehicle emissions due to other sources rather than the propulsion systems, such as brakes and tires, have taken a significant weight. In this regard, European Commission has proposed the introduction in the next EURO 7 standard of the first-ever limit on the particles emitted by vehicle brakes. This study is devoted to improving the knowledge on the particle characteristics due to the brake wear by means of laboratory experiments thus providing support to the definition of the new standards. An experimental layout was realized consisting in a box
Catapano, FrancescoDi Iorio, SilvanaMagno, AgneseVaglieco, Bianca Maria
Light commercial vehicles are an indispensable element for the transport of people and the delivery of goods, especially on extra-urban and long-distance routes. With a view to sustainable mobility, it is necessary to think about hybridizing these vehicles to reduce the fuel consumption as well as greenhouse gas emissions and particulate matter. These types of vehicles are generally powered by diesel and travel many kilometers a day. On the other hand, the use of light commercial vehicles in battery electric vehicle (BEV) configuration has already been started but is not receiving widespread recognition. In this panorama, starting from a study already developed for the hybridization of a plug-in light commercial vehicle in Worldwide harmonized Light vehicles Test Cycle (WLTC) condition, the simulation analysis has been extended to the plug-in hybrid vehicle (PHEV) operating in real driving emission conditions (RDE). In particular, using Advisor software, a vehicle has been simulated in
Mancaruso, EzioMeccariello, GiovanniRossetti, Salvatore
This SAE Aerospace Recommended Practice (ARP) details the recommended process for correcting measured non-volatile particulate matter (nvPM) mass and number data for particle losses in the sampling and measurement system specified in ARP6320B. This technique is only recommended for conditions where both nvPM mass and number concentration measurements are in the valid measurement ranges of the instruments that are discussed in the tool limitations section. This ARP also supplies an Excel software tool with documentation to automate the process. The body of this ARP details the recommended calculation method, uncertainties, and limitations of the system loss correction factors. It explains, in detail, the required inputs and outputs from the supplied Excel software tool (developed on Windows 7, Excel 2016). Also included are: The Excel correction tools (refer to Attachments I and V). Installation instructions for a Windows-based computer (refer to Attachment II). A user technical manual
E-31P Particulate Matter Committee
This paper’s aim is to explain alternative friction lining formulations based on inorganic polymer binders for the production of new, future-proof brake friction materials. The aspects of high-temperature stability in the fading tests of the AKM- and AMS tests, as well as the reduction in PM10 emissions compared to classic organic friction materials, make these materials particularly fascinating for future use. Additionally, the energy savings potential of this type of friction lining could be of particular importance when sustainability considerations further influence our development activities in friction brake related applications.
Milczarek, Roman PaulWittig, Niels
Many performance sport passenger vehicles use drilled or grooved cast iron brake rotors for a better braking performance or a cosmetic reason. Such brake rotors would unfortunately cause more brake dust emission, appearing with dirty wheel rims. To better understand the effects of such brake rotors on particle emission, a pin-on-disc tribometer with two particle emission measurement devices was used to monitor and collect the emitted airborne particles. The first device was an aerodynamic particle sizer, which is capable of measuring particles ranging from 0.5 to 20 μm. The second device was a condensation particle counter, which measures and collects particles from 4 nm to 3 μm. The testing samples were scaled-down brake discs (100 mm in diameter) against low-metallic brake pads. Two machined surface conditions (plain and grooved) with uncoated or ceramic-coated friction surfaces were selected for the investigation. The results showed that the grooved friction surface led to a higher
Cai, RanNie, XueyuanLyu, YezheWahlström, Jens
Brake drag in disc brakes occurs during the off-brake-phase, when the brake is not applied but friction contacts between brake disc and pads persist. First and foremost, the resulting drag torque increases energy consumption, where a few Newton meters can have a significant impact on the crucial factor – range – of battery-electric-vehicles. Moreover, brake wear is accelerated in conjunction with enlarged taper-wear of the pads. Additional wear can also imply increased brake particle emissions which are going to be limited by upcoming regulations due to their potential health risk. In this light different countermeasures aim to create and maintain a sufficient air gap between brake disc and pads when the brake is released to avoid residual friction contacts. Among others these include optimization of piston retraction by adjusting the seal-grooves and integrating pad springs into the caliper to push the pads back. State of the art to analyze the effectiveness of countermeasures are
Huchtkoetter, PhilippNeubeck, JensWagner, Andreas
The most used rotor material is gray cast iron (GCI), known for its susceptibility to corrosion. The impact of corrosion on the braking system is paramount, affecting both braking performance and the emission of particulate matter. The issue becomes more severe, especially when the brakes are left stationary or unused for extended durations in humid conditions, as seen with electric vehicles (EVs). Brake disc corrosion amplifies the risk of corrosion adhesion between contacting surfaces, leading to substantial damage, increased quantity and mass of non-exhaust particulate emissions, and decreased braking effectiveness. In addition, brake pads' friction material plays a crucial role in generating the necessary stopping force, creating friction that transforms kinetic energy into heat. However, heightened pressure during braking elevates rotor temperatures, contributing to the degradation of the friction material. This degradation manifests in decreased mechanical strength, heightened
Nousir, SaadiaWinter, Karl-Michael
This study examined the effects of lubricant viscosity and metallic content on the oxidation reactivity of diesel particles. In the first part, the factors affecting thermogravimetric analysis (TGA) experiments was discussed and confirmed. The influences of initial soot mass, heating rate, and airflow rate on soot oxidation rate and experimental reproducibility were investigated to develop an optimized TGA method. On the basis of these experiments, an initial soot mass of 2.0 mg, airflow rate of 4.8 L/h, and heating rate of 2.5°C/h were used for all subsequent TGA tests. It could be found that the TGA experiments had high repeatability, and the differences were less than 0.1%. In the second part, a four-cylinder diesel engine was lubricated with seven kinds of lubricant with different viscosity and metallic content by the use of viscosity index improver (VII), antioxidant and corrosion inhibitor (ACI), and ashless dispersant (AD). Particle samples were subjected to TGA to test their
Meng, HaoYang, HeZhang, WeiliXing, JianqiangXu, YanWang, Yajun
Morphology, nanostructure, and composition of soot extracted from the oil sump of different heavy-duty engines operated under dynamometer and field conditions were investigated. Soot characteristics were then compared to a carbon black sample. Soot was extracted from used oil for transmission electron microscopy (TEM) analysis. Energy-dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analyses were also performed to assess soot composition. Two soot classes, I and II, can be identified based on their appearance under the TEM. Carbon black and class I particles have graphitic structures, while class II samples have a more sludge-like appearance. Similar aggregate sizes were observed among the samples. In all samples, the primary particle size distribution ranges from 16 nm to 22 nm in terms of mean diameter. Differences in the length and tortuosity of the graphitic fringes between the samples were observed. The findings suggest a greater degree of interaction between
Pacino, AndreaLa Rocca, AntoninoCairns, AlasdairFay, Michael W.Smith, JoshuaBerryman, JacquelineFowell, Mark
This ARP describes recommended sampling conditions, instrumentation, and procedures for the measurement of nonvolatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to estimate sampling system loss performance. This ARP is not intended for in-flight testing, nor does it apply to engines operating in the afterburning mode. This ARP is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
E-31P Particulate Matter Committee
Nowadays, the push for more ecological low-carbon propulsion systems is high in all mobility sectors, including the recreational or light-commercial boating, where propulsion is usually provided by internal combustion engines derived from road applications. In this work, the effects of replacing conventional fossil-derived B7 diesel with Hydrotreated Vegetable Oil (HVO) were experimentally investigated in a modern Medium-Duty Diesel Engine, using the advanced biofuel as ‘drop-in’ and testing according to the ISO 8178 marine standard. The compounded results showed significant benefits in terms of NOx, Particulate Matter, mass fuel consumption and especially Well-to-Wake (WtW) CO2 thanks to the inner properties of the aromatic-free, hydrogen-rich renewable fuel, with no impact on the engine power and minimal deterioration of the volumetric fuel economy.
Cosseddu, CinziaSpedicato, TonioPennazio, DavideVassallo, AlbertoFittavolini, Corrado
In the frame of growing concerns over climate change and health, renewable fuels can make an important contribution to decarbonizing the transport sector. The current work presents the results of an investigation into the impact of renewable fuels on the combustion and emissions of a turbocharged compression-ignition internal combustion engine. An experimental study was undertaken and the engine settings were not modified to account for the fuel's chemical and physical properties, to analyze the performance of the fuel as a potential drop-in alternative fuel. Three fuels were tested: mineral diesel, a blend of it with waste cooking oil biodiesel and a hydrogenated diesel. The analysis of the emissions at engine exhaust highlights that hydrogenated fuel is cleaner, reducing CO, total hydrocarbon emissions, particulate matter and NOx.
Chiavola, OrnellaMatijošius, JonasPalmieri, FulvioRecco, Erasmo
In general, GDI engines operate with stratified mixtures at part-load conditions enabling increased fuel economy with high power output, however, with a compensation of increased soot emissions at part-load conditions. This is mainly due to improper in-cylinder mixing of air and fuel leading to a sharp decrease in gradient of reactant destruction term and heat release rate (HRR), resulting in flame quenching. The type of fuel injector and engine operating conditions play a significant role in the in-cylinder mixture formation. Therefore, in this study, a CFD analysis is utilized to compare the effect of stratified mixture combustion with multi-hole solid-cone and hollow-cone injectors on the performance and emission characteristics of a spray-guided GDI engine. The equivalence ratio (ϕ) from 0.6 to 0.8 with the constant engine speed of 2000 rev/min is considered. For both injectors, the fuel injection pressure of 200 bar is used with 60° spray-cone angles. For lean boosting conditions
Kumar, RahulBhaduri, SreetamMallikarjuna, J.M.
The present study focuses on the impacts of pistachio shell particles (2–10 wt.%) on the mechanical and microstructures properties of Al–Cu–Mg/pistachio shell particulate composites. To inspect the impact of the pistachio shell powder content with Al–Cu–Mg alloys, the experimentation was carried out with different alloy samples with constant copper (Cu) and magnesium (Mg) content. Parameters such as hardness, tensile strength with yield strength and % elongation, impact energy, and microstructure were analyzed. The outcomes demonstrated that the uniform dissemination of the pistachio shell particles with the microstructure of Al–Cu–Mg/pistachio shell composite particulates is the central point liable for the enhancement of the mechanical properties. Incorporating pistachio shell particles, up to 10 wt.%, is a cost-effective reinforcement in the production of metal matrix composites for various manufacturing applications.
Om Prakash, S.Srinivasan, V.Selvaraj, Dinesh KiruphaNandhakumar, S.Dharmaraj, T.B.
Vehicle emissions, which are rising alarmingly quickly, are a significant contributor to the air pollution that results. Incomplete combustion, which results in the release of chemicals including carbon monoxide, hydrocarbons, and particulate matter, is the main cause of pollutants from vehicle emissions. However, CO2 contributes more than the aforementioned pollutants combined. Carbon dioxide is the main greenhouse gas that vehicles emit. For every liter of gasoline burned by vehicles, around 2,347 grams of carbon dioxide are released. Therefore, it’s important to reduce vehicle emissions of carbon dioxide. The ability of materials like zeolite and silicon dioxide to absorb CO2 is outstanding. These substances transform CO2 into their own non-polluting carbonate molecules. Zeolite, silicon dioxide, and calcium oxide are combined to form the scrubbing material in a ratio based on their increasing adsorption propensities, along with enough bentonite sand to bind the mixture.
Saravanakumar, L.Arunprasad, S.
A DMS500 engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulate emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, secondary injection ratio and secondary injection end time) on particle diameter distribution and particle number density of emission were investigated. The experimental result indicates that the split injection can suppress the knocking tendency at higher engine loads. The combustion is improved, and the fuel consumption is significantly reduced, avoiding the increase in fuel pump energy consumption caused by the 50 MPa fuel injection system, but the delayed injection increases particulate matter emissions. In terms of particulate matter emissions, increasing the excess air ratio, advancing direct fuel injection, increasing fuel injection pressure, and delaying ignition timing will all lead to the reduction of the particulate
Wang, TongLou, DimingZhao, YinghuaZhang, YunhuaTan, PiqiangHu, ZhiyuanFang, Liang
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work. This finding suggests that a DFI retrofit for this
Svensson, KenthFitzgerald, RussellMartin, Glen
This paper is part of a broader research project aiming at studying, designing, and prototyping a hydrogen-powered internal combustion engine to achieve fast market implementation, reduced greenhouse gas emissions, and sustainable costs. The ability to provide a fast market implementation is linked to the fact that the technological solution would exploit the existing production chain of internal combustion engines. Regarding the technological point of view, the hydrogen engine will be a monofuel engine re-designed based on a diesel-powered engine. The redesign involves specific modifications to critical subsystems, including combustion systems, injection, ignition, exhaust gas recirculation, and exhaust gas aftertreatment. Notably, adaptations include the customization of the cylinder head for controlled ignition, optimization of camshaft profiles, and evaluation of the intake system. The implementation incorporates additive manufacturing for the production of new intake manifolds and
Malagrinò, GianfrancoAccardo, AntonellaCostantino, TrentalessandroPensato, MicheleSpessa, Ezio
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables. In the current work, engine dynamometer tests were conducted on a SCR-DPF at different
Kannan, RajeshParamadhayalan, ThiyagarajanMital, RahulGustafson, ErikEdwards, David
As one of the pollutants that cannot be ignored, soot has a great impact on human health, environment, and energy conversion. In this investigation, the effect of residence time (25ms, 35ms, and 45ms) and ammonia on morphology and nanostructure of soot in laminar ethylene flames has been studied under atmospheric conditions and different flame heights (15 mm and 30 mm). The transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM) are used to obtain morphology of aggregates and nanostructure of primary particles, respectively. In addition, to analyze the nanostructure of the particles, an analysis program is built based on MATLAB software, which is able to obtain the fringe separation distance, fringe length, and fringe tortuosity parameters of primary particles, and has been verified by the multilayer graphene interlayer distance. It is found that soot is mainly composed of tens of primary particles in the form of tree-like at HAB (height
Qian, WeiweiShi, XiuyongLi, Song
Injector nozzle deposits can have a profound effect on particulate emissions from vehicles fitted with Gasoline Direct Injection (GDI) engines. Several recent publications acknowledge the benefits of using Deposit Control Additives (DCA) to maintain or restore injector cleanliness and in turn minimise particulates, but others claim that high levels of DCA could have detrimental effects due to the direct contribution of DCA to particulates, that outweigh the benefits of injector cleanliness. Much of the aforementioned work was conducted in laboratory scenarios with model fuels. In this investigation a fleet of 7 used GDI vehicles were taken from the field to determine the net impact of DCAs on particulates in real-world scenarios. The vehicles tested comprised a range of vehicles from different manufacturers that were certified to Euro 5 and Euro 6 emissions standards. In a first phase, the vehicles were fuelled on EN228 compliant gasoline treated with a high dose of DCA and were driven
Mitchell, BenjiKrueger-Venus, JensChahal, JaspritButtery, IanWilliams, RodCracknell, RogerPery, LukeAradi, Allen
Items per page:
1 – 50 of 7049