Browse Topic: Particulate matter (PM)
The effective reduction of particulate emissions from modern vehicles has shifted the focus toward emissions from tire wear, brake wear, road surface wear, and re-suspended particulate emissions. To meet future EU air quality standards and even stricter WHO targets for PM2.5, a reduction in non-exhaust particulate (NEP) emissions seems to be essential. For this reason, the EURO 7 emissions regulation contains limits for PM and PN emissions from brakes and tire abrasion. Graz University of Technology develops test methods, simulation tools and evaluates technologies for the reduction of brake wear particles and is involved in and leads several international research projects on this topic. The results are applied in emission models such as HBEFA (Handbook on Emission Factors). In this paper, we present our brake emission simulation approach, which calculates the power at the wheels and mechanical brakes, as well as corresponding rotational speeds for vehicles using longitudinal dynamics
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile Particulate Matter (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane. As the particle losses are size dependent, the magnitude of correction
Diesel Particulate Filters (DPFs) have been used extensively worldwide as a Particle Mass (PM) / Particle Number (PN) reduction technology for various diesel applications. Based on CARB’s latest Tier 5 regulation workshop, PM emission targets are expected to become a lot more stringent; from 0.02 g/kWh to 0.005 g/kWh (75% reduction compared to Tier 4 Final (Tier 4f)). Also, CO2 emission targets are expected to be introduced for Tier 5. In parallel, EU Stage VI emission regulation standards and implementation timing could be announced sometime in late 2024. It is expected that PN emission standards will be tightened such as extending measurement range of PN from 23 nm to 10 nm. With Tier 5 and EU Stage VI regulations approaching, several OEMs are considering implementing a common aftertreatment system that can meet emission targets for both regions. High filtration efficiency and low backpressure DPFs will be required to meet PM/PN and CO2 emission standards. NGK has developed several
Cilia, small, slender, hair-like structures present on the surface of all mammalian cells, play a major role in locomotion and are involved in mechanoreception. Ciliary motion in the upper airway is the primary mechanism by which the body transports foreign particulates out of the respiratory system to maintain proper respiratory function.
Items per page:
50
1 – 50 of 6953